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Abstract

A variety of reduced order modeling (ROM) methods for geometrically nonlinear structures have been developed over recent
decades, each of which takes a distinct approach, and may have different advantages and disadvantages for a given application.
This Research Challenge is motivated by the need for a consistent, reliable and ongoing process for ROM comparison. In this
study, twelve state-of-the-art ROM methods are evaluated and compared in terms of accuracy and efficiency in capturing the
nonlinear characteristics of a benchmark structure: a curved, perforated plate that is part of the exhaust system of a large diesel
engine. Preliminary results comparing the full-order and ROM simulations are discussed. The predictions obtained by the vari-
ous methods are compared to provide an understanding of the performance differences between the ROM methods participating
in the Challenge. Where possible, comments are provided on insight gained into how geometric nonlinearity contributes to the
nonlinear behavior of the benchmark system.
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1 Introduction

Recently developed reduced order models (ROMs) have been beneficial for analyzing the dynamics of geometrically nonlinear
structures, significantly alleviating the computational burden [1]. This ROM Research Challenge is the community’s first
attempt in recent decades to apply a wide range of state-of-the-art ROM methods to the same problem and to compare them
in terms of accuracy and efficiency. The Research Challenge covers various ROM methods, mainly categorized into implicit
condensation (IC) [2—-6], modal derivatives (MDs) [7-9], invariant manifold [10-14], and machine-learning-based data-driven
approaches [15, 16].

The ROM methods are applied to a benchmark structure (described below) to capture its nonlinear characteristics as the
system energy increases. This paper presents a list of the methods and participants, and a small sampling of the results of
the ROM predictions characterized in terms of nonlinear normal modes (NNMs). The next section describes the benchmark



structure. Section 3 presents the NNM backbone curves of the structure predicted by the different ROM methods. The paper
concludes with a summary and future works in Section 4.

2 Benchmark problem

The benchmark structure is a perforated cover plate, 317.5 mm in diameter, that is part of the exhaust system of a large diesel
engine. The plate is of engineering interest because it experienced fatigue failures in service. During durability testing, the
plate was found to behave nonlinearly, and it was later used to validate a nonlinear model updating approach in [17]. Figure 1
illustrates the structure and the finite element model (FEM) approximating the perforated cover as a thin, curved stainless steel
(unperforated) plate whose density and modulus were adjusted to account for the holes. The curvature and geometry were
measured with 3D digital image correlation and mapped onto the plate model. The plates were annealed prior to testing to
minimize residual stresses. The FEM mesh is comprised of 1440 shell elements of 1.5 mm thickness (8,566 free degrees of
freedom (DOF)), an elastic modulus of 96 GPa, a Poisson ratio of 0.3, and a density of 5,120 kg m~2. The model is assumed
to have weak structural damping with a constant modal damping ratio of 0.000425, and the welded boundary is approximated
by a series of 80 linear springs in the radial direction each having a stiffness of 650 kN m 1.
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Figure 1: The benchmark exhaust cover plate. (a) A perforated plate before being welded to the test configuration (left) and
after welding to the supporting cylinder (right), (b) measured surface geometry, and (c) meshed plate FEM model based on the
measured geometry. Figures adapted from [17] with permission.

In [17], a low-order ROM (i.e. 2-DOF IC ROM) of the structure was able to capture some interesting nonlinear behaviors
with increasing response amplitude, including a softening-hardening behavior and a nonlinear modal interaction that resulted
in increased stresses at the center of the plate. These observations explained experimental failures at that location. Based on
these findings the structure is expected to exhibit complex nonlinearities at large deflection. The Research Challenge described
here aims to evaluate and compare the ability of recent ROM methods to accurately reproduce the plate’s nonlinear behavior as
compared with the high-fidelity FE analysis.

3 Preliminary results: nonlinear normal modes

The ROM methods were applied to the benchmark structure to predict the nonlinear normal modes (NNMs), which are an
efficient metric for describing the characteristics of geometrically nonlinear structures [18]. NNMs are preferred to simply
comparing time histories, as they provide for a more rigorous comparison [19].

Figure 2 presents the first NNM backbone curves for a subset of the ROM methods in the frequency-energy and frequency-
peak center deflection plane. The total energy can be either conservative or non-conservative, depending on whether damping
is considered in a ROM method. The full-order FEM was used to compute the backbone curves that served as ground truth to



evaluate the ROMs. The FEM-based backbone curves were computed using the multi-harmonic balance (MHB) method [20]
with five harmonics. While this is taken to be the “ground truth” result, the accuracy is, in fact, limited by the assumption that
five harmonics are sufficient to describe all behaviors of interest. Additionally, the MHB algorithm used was not able to obtain
a converged solution above an energy level of 1.3 J. This is presumed to occur due to an internal resonance in this vicinity or
due to coupling between the underlying linear modes, both of which increase the demands on the algorithm.
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Figure 2: The first NNM backbone curves of the plate model computed using the full-order FEM and some of the considered
ROM methods. The curves are represented on the two different planes: the frequency-energy (top), and frequency-peak center
displacement plane (bottom). ‘Conserved’ indicates the model neglected the dissipative term of the benchmark system. ‘nH’
indicates the number of harmonics used in the MHB algorithm. The gray shading corresponds to the 95% confidence interval
of the GPR ROM prediction. The predictions using other ROM methods are in progress and will be discussed during the
conference presentation.

The ROM methods considered so far captured the softening-hardening transition of the benchmark structure quite well.
The implicit condensation-based ROM (i.e. ICE-GPR and ICE-IC ROM) required four bending modes in order to accurately
predict the softening-hardening behavior of the backbone curve. The GPR ROM was trained with static solutions applied by
random forces in the forcing range corresponding to [0.25, 3.00] times the plate thickness. The confidence interval of the GPR
ROM prediction gauges the sensitivity of the IC ROMs with respect to the level of applied forces in the static sets, which
gradually increased after the snap-through. The ICE with inertial compensation (ICE-IC) method accounted for the kinetic
energy and non-conservative forces on the quasi-statically coupled modes of the benchmark system [5,7]. The backbone curves
were computed using the computational continuation core (COCO) [21], and had a good agreement with the GPR ROM curves
within the confidence bound. The curves after a sudden change of the center deflection in a reverse direction (at a peak center
deflection of 4 mm) indicate a severe multi-mode coupling in the system.

The ROM based on modal derivatives (MDs) used the first six vibration modes and the corresponding modal derivatives,
which made the ROM feature 27 DOF. The ROM could accurately capture the backbone curve at small amplitudes (total energy



up to 0.4 J). Note that similar to other methods, MD ROMs also had a convergence issue related to the continuation scheme at
large amplitudes.

The two ROM methods based on the direct invariant manifold parameterization were also applied to the benchmark model
(i.e. DNF and DPIM ROM). The ROMs contained the first two axisymmetric modes (Mode 1 and 6) that had a strong modal
coupling with a ratio of 3:1. Both ROMs are computed with no damping. The ROMs with two modes were able to capture the
softening-hardening behavior at small displacement. The DNF ROM used a third-order truncation [12]. Since the DNF method
relies on asymptotic expansions around the fixed point, the accuracy is limited to the basin of attraction of the fixed point.
This might be an explanation for the poor behavior of the method at large amplitudes. The DPIM ROM used a seventh-order
truncation in graph style [14]. The higher order improved the prediction, as expected. However, as the software for DPIM is
only available for 3D FEM, the model used for such prediction was a 3D adaptation of the 2D model provided. This explains
the shift in the linear frequency as compared to the other methods.

The SSM ROM method was also investigated on the benchmark, which takes advantage of the smoothest nonlinear contin-
uations of spectral subspaces [10, 11]. Two approaches were studied: a data-driven approach that identifies invariant manifolds
based on unforced trajectory data obtained from FE simulations, and an equation-driven method that computes non-autonomous
SSMs in a completely non-intrusive manner. In Figure 2, only the curve using the data-driven approach is illustrated because
the results between the two approaches are very similar and overlap each other. Both methods captured softening behavior and
then encountered some issues when the dynamics became sophisticated at snap-through. The equation-driven method suffered
from the convergence issue while the data-driven method could not fit a good dynamics at peak center deflection around 2 mm
in the ring-down simulation. These require further investigation.

The ROM methods and research groups contributed so far to the ROM Research Challenge are presented in Table 1. The
ROM methods all dramatically reduced the cost of computing the backbone curves, orders of magnitude faster than computing
the full-order FEM solutions. Note that differences in FEM configuration (e.g. Rayleigh damping), FEA solver, and NNM
continuation method used for each ROM method could contribute to the gaps between the curves (e.g. the gap between the
curves at the linear frequency). The results from different methods so far capture the nonlinear behavior of the same benchmark
model using each of their distinct characteristics. Further analysis is needed regarding the accuracy of the truth model as
compared to each ROM and the tradeoff between efficiency and accuracy made in each method before one could rank their
performance. The presentation will seek to present a more in-depth analysis, and hence additional insights on the strengths and
limitations of each method in capturing the complicated nonlinear behaviors exhibited by this structure.

Research Institute ROM method References
ETH Zurich, Switzerland SSM [10,11]
ETH Zurich, Switzerland MD [7-9]
Imperial College London, UK / University of Exter, UK / University of Liege, Belgium DNF [12]
Politecnico di Milano, Italy / Institut Polytechnique de Paris, France / University of Exeter, UK DPIM [13,14]
University of Bristol, UK ICE-IC [5,6]
University of Minnesota, USA / Brigham Young University, USA ICE-GPR [4]

Table 1: Research Groups and ROM methods that contributed so far to the ROM Research Challenge with the preliminary
results.

4 Conclusion

This paper presented the preliminary results of the 2023 ROM Research Challenge. Various ROM methods were used to predict
the nonlinear dynamic responses of an exhaust cover plate structure in an effort to understand the performance of state-of-the-
art ROM methods. Our future work will focus on more detailed, in-depth analysis and comparison of the participating ROM
methods by predicting additional types of nonlinear response of the benchmark problem. These may include investigating the
effect of different ROM formulations and parameter selections on the performance of each of the ROM methods.
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