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Abstract

Nonlinear modeling of joints is often difficult to do accurately because of various small-scale and nonlinear features, such
as local geometry, surface shape, preload and friction. These features cause a local change in stiffness and energy dissipation
which result in changes in the effective natural frequency and damping of the whole structure. Past studies have found good
success using nonlinear Iwan elements as whole joint models for bolted joints in a few different structures. In this paper, a
similar approach is proposed for modeling riveted joints, which seeks to capture the vibrational response of a test structure
including changes in the effective modal frequency and damping with vibration amplitude. A four parameter, nonlinear Iwan
element is used to model each rivet joint in the test structure. The rest of the structure is modeled using a linear finite element
model (FEM), which is reduced using interface spiders and the Hurty/Craig-Bampton method to speed up simulations. The
Quasi-Static Modal Analysis (QSMA) approach is used to find the effective mode frequencies, shapes, and damping as a
function of vibration amplitude. These results are then compared to experimental measurements of the impact excited response
on a test structure to validate the model accuracy.
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1 Introduction
Joints in structures serve a practical purpose by allowing large, complex structures to be built from smaller, simpler pieces and
making it possible to disassemble components for maintenance or to replace a part. Joints also add friction and damping to
the structure [1], reducing the vibration amplitudes and potentially avoiding catastrophic failure. Quite a bit of research has
been performed seeking to understand how these interfaces [2, 3], and in particular, bolted joints in structures, influence the
effective damping and natural frequencies of vibration modes in assembled structures. Many recent works have found that
the nonlinearity that they introduce causes these effective properties to change with vibration amplitude or with the level of
excitation applied [4, 5].

One particular model that has been used and developed to predict amplitude-dependent changes in effective damping and natural
frequency is the 4 parameter Iwan element. Originally developed by Iwan [6], the element has as a series of friction sliders
(Jenkins elements) that capture the hysteresis in a joint by allowing a certain fraction of the elements to slip under a given load
while the rest remain stuck and cause the joint to have a certain stiffness. Segalman [7] later expanded on this, creating a 4
parameter Iwan element that has been used often in recent work.

The 4 parameter Iwan element has been successful at modeling joints in structures, but the identification of the 4 parameters in
the model tends to be quite difficult. Festjens et al. [8] proposed a quasi-static modal analysis (QSMA) method that involves
forcing the structure in the shape of a particular mode and then using the nonlinear static response to infer the dynamic behavior
at various forcing amplitudes. Specifically, Masing’s rules are used to infer the response over one loading and unloading cycle
from the quasi-static force-displacement behavior. This can then be related to the dynamic response as the structure vibrates
in the particular mode of interest. This allows one to compute the amplitude dependent natural frequency and damping while
avoiding the computational expense required to integrate the equations of motion to find the dynamic response. Lacayo and
Allen [9] simplified their approach and showed that it could be applied to a reduced model with Iwan elements in place of the
bolted joints. QSMA then allowed the effective natural frequency and damping to be computed very efficiently. They measured
the amplitude dependent frequency and damping of a mode of the structure of interest and then used an optimization approach
to iteratively find the 4 parameters in the Iwan elements that best reproduced the measured response.

Singh et al. [10] introduced a simple benchmark structure called the S4 beam that was tested at various amplitudes of excitation
and yielded significant nonlinearities in natural frequency and damping of different modes of the structure. Later, using Lacayo’s



method of QSMA, Singh et al. [11] modeled the S4 beam and matched the model’s amplitude-dependent frequency and damping
to the previously measured experimental data in [10]. Specifically, Singh et al. [11] began with a full-order finite element
model of the S4 beam. They then applied the Hurty/Craig-Bampton method to reduce the full-order model and created multi-
point constraints to simplify the joint interfaces. Linear springs were inserted into the reduced model at the joint locations to
match the low amplitude experimental mode frequencies. A Monte Carlo optimization then found Iwan parameters for the 4
parameter Iwan joint used in QSMA, using the optimized stiffness of the linear springs as the value for the Iwan parameter,
Kt. In [11], the focus of the work was how different multi-point constraints in the FEM affect the model and the Iwan element
stiffness parameter, Kt. One important finding was that some multi-point constraints yielded higher linear spring stiffnesses
during the linear optimization. These high spring stiffnesses made it impossible to find a set of Iwan parameters that were
capable of matching the model to the experiments during the nonlinear optimization and QSMA.

This paper builds on that in [11], focusing on how Iwan elements perform when modeling rivets instead of bolts, since rivets
join two structures in a distinct manner. Whereas bolts apply a normal pressure to the plate during pretension, rivets apply a
radial pressure to the rivet hole [12]. Using the previously developed QSMA methods, an Iwan element will be used to model
each rivet in a simple test structure, and then optimization will be used to match the nonlinear frequency and damping behavior
of the first mode to experimental measurements.

2 Theory
This section discusses the process that was used in this study to find a nonlinear model for the riveted joints. A finite element
model (FEM) was first built in the Abaqus commercial finite element analysis (FEA) package. The FEM was reduced using
the Hurty/Craig Bampton (HCB) method and the resulting mass and stiffness matrices were exported to Matlab for further
analysis. Using Matlab’s fminsearch function, a set of best-fit linear springs were inserted in every degree of freedom at each
joint by modifying the reduced stiffness matrix. The linear spring stiffnesses were then used as one of four Iwan parameters in
a nonlinear model for the joints. The rest of the parameters were found using the quasi-static optimization approach used by
Lacayo [13] and Singh [11], which uses a Monte Carlo approach to iterate on the rest of the parameters in the Iwan model
until the best agreement is obtained between the measured natural frequency and damping versus amplitude and that predicted
by the model.

2.1 Hurty/Craig Bampton Reduction

The Hurty/Craig Bampton (HCB) method reduces a large, complicated model to a smaller model that is quicker and more
efficient to work with. A discussion of the general principles of HCB reduction [14, 15] will follow: Consider a full model
whose undamped equation of motion is given by Equation 1, where M is the full order mass matrix, K is the full order stiffness
matrix, F is a vector of applied forces, FJ(u,θ) is the source of nonlinearity in the system, and u and ü are the physical
displacement and acceleration, respectively.

Mü+Ku+ FJ(u,θ) = F (1)

The mass and stiffness matrices are partitioned into boundary and internal degrees of freedom (DOFs) as follows:[
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where the subscript i denotes the internal DOF and b denotes a boundary DOF. It is assumed that the nonlinearity and any
forces are applied only at the boundary locations; the nonlinear joints must also exert forces only between the boundary DOF.
The interfaces of the structure are described by a set of static constraint modes, ψ, which are the responses of the structure
with each interface DOF displaced one unit. The interior of the structure is defined by a set of fixed interface modes (FIM),
ϕ, which are the vibrational modes with every interface DOF fixed. Thus a small number of FIMs and constraint modes can
accurately and efficiently describe the structure. The combination of the FIMs and constraint modes can be used to form the
HCB transformation matrix in Equation 3.{
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In this work, the HCB reduction was performed using the Substructure Generate step in Abaqus FEA. The user must first
specify the set of boundary nodes, which are retained. The set of boundary nodes was reduced further by using Multi-Point
Constraints (MPCs) to connect all nodes within the joint to one reference (or virtual) node. See Figure 1 for an example of
how these constraints connect a region of nodes to a reference node.



Figure 1: Multi-point constraints applied in the riveted beam model. The red lines are the constraints connecting
each node within a defined radius to the reference node.

2.2 Linear Response Optimization

Once the FEM of the structure was built and the mass and stiffness matrices were reduced, the next step was to insert linear
springs in place of the joints and then to adjust their stiffnesses to match the linear mode frequencies of the model to the
experimental mode frequencies. This was done by adding the corresponding spring constant into the stiffness matrix at the
indices of the degrees of freedom of the joint. Equation 4 shows how the spring stiffness can be added into the reduced
stiffness matrices; this was implemented in a Matlab script.

K(n,n) = K(n,n) +Ks

[
1 −1
−1 1

]
(4)

where K is the reduced stiffness matrix, n is a length 2 vector representing the indices in the stiffness matrix of the two joints
being connected, and Ks is the spring stiffness that is inserted between that pair of degrees of freedom. This was repeated for
every pair of nodes that were joined by rivets, and in all six degrees of freedom. There are 24 rivets in the model, and each
node representing a rivet location had 6 degrees of freedom, so there were a total of 6× 24 springs inserted. The stiffnesses in
the X and Y directions were assumed to be equal because the rivets are round and have the same geometry in both directions.
The rotational stiffnesses in X and Y were also assumed to be equal, so there were a total of 4 unknown stiffness parameters.
These were collected in a vector θ = [Kx = Ky,Kz, Rx = Ry, Rz]

T.

Matlab’s fminsearch function was used to optimize towards the minimum of the defined function, f(θ), in Equation 5. This
optimization finds the spring stiffnesses that minimize the root mean square error between experimental and model mode
frequencies.

f(θ) =

n∑
i=1

(
ωmodel,i(θ)− ωexp,i(θ

ωexp,i(θ)

)2

(5)

where n is the number of vibration modes to match frequency.

The ultimate goal of the linear optimization is to find a model whose linear natural frequencies match with those measured
experimentally at low vibration amplitudes. Once these optimized spring stiffnesses were found, the springs in the X and Y
direction were replaced with Iwan elements and the value Kx was used as the Kt parameter, as elaborated in the next section.

2.3 Nonlinear Response Optimization

2.3.1 QSMA

Quasi-Static Modal Analysis (QSMA) was first developed by Festjens et al. [8] as an alternative to dynamic time integration of
a FEM. In QSMA, a distributed force is applied at increasing amplitudes to excite a particular mode in question. The resulting
force-displacement curve is then used to find the effective natural frequency and damping of the structure as it vibrates in the
specific mode of interest over a range of vibration amplitude. In effect, the static response is used to infer the unforced response
of the structure as the vibration decays in the mode in question. This process is much faster than a dynamic simulation of a
FEM and is accurate as long as there is no modal coupling.

In [8], Festjens et al. split their model into a linear portion and a nonlinear portion and iterated on each until both solutions
agreed at the interface. Lacayo and Allen [9] adjusted this QSMA approach by simply treating the whole model as the nonlinear



portion, thus avoiding the need to iterate. This potentially increases the computational cost, so Lacayo and Allen performed
Hurty/Craig-Bampton reduction on the model and modeled the joints as four parameter Iwan elements [7]; In contrast, Fetjens
et al. modeled the preload and contact in detail using Coulomb friction. Note that Jewel et al [16] later applied QSMA to a
model in which the joints were modeled in detail, as done by Festjens et al.

The process used by Lacayo and Allen [9] is the same process used in this work and will be summarized here: We begin
again with the equation of motion for the FEM of our structure with joints represented with a discrete, force constitutive model,
FJ(u,θ).

Mü+Ku+ FJ(u,θ) = F (6)

The assumption is made that the structure is vibrating at the rth mode such that u(t) = φrsin(ωrt), where φr is the mode shape
of the rth mode. The inertial term in Equation 6 is now proportional to Mφr. The structure is allowed to vibrate freely such
that F = 0, and so the inertial term can be moved to the right hand side and treated as an applied distributed load that only
excites one mode in the linear structure. This yields Equation 7.

Ku+ FJ(u,θ) = −αMφr (7)

which can be solved for the displacement u in terms of a monotonically increasing amplitude level, α.

After solving for the quasi-static response, u(α), the amplitude-dependent modal frequency and damping ratio can be found
using the same approach as Festjens et al. which comes from assumptions made using Masing’s rules and the force-deflection
hysteresis curve. In brief summary, the amplitude dependent stiffness is related to the natural frequency which comes from the
slope of the secant line in the hysteresis plot, as given in Equation 8.

ωr(αj) ≜
√

αj

qr(αj)
(8)

where ωr(αj) is the natural frequency of the mode and qr(αj) is the modal displacement, which are both dependent on the
amplitude of excitation, αj . The amplitude dependent damping of the structure can be found using Equation 9.

ζr(αj) ≜
D(αj)

2παjqr(αj)
(9)

where D(αj) is the total energy dissipated per cycle of vibration or the area enclosed by the Hysteresis curve after applying
Masing’s rules.

2.3.2 Monte Carlo Optimization

Optimization is used to find the four Iwan parameters that cause the natural frequency and damping versus amplitude of the
reduced order model to best agree with measurements. The optimization has been found to be prone to getting stuck in local
minima, so a Monte Carlo optimization strategy is used. Bounds are defined around each of the parameters, and then NMC

random samples are drawn from a uniform distribution defined by those bounds. QSMA is used to evaluate the weighted average
error between the frequency and damping curves predicted by the model and the measured ones and the set of parameters that
gives the best results is retained. The bounds are then contracted around the set of parameters that gave the best results and the
optimization is repeated. The process ends when the optimization either reaches a prescribed accuracy or ceases to improve.

In the studies in this paper, we have typically used NMC = 100 and after each set of iterations defined a new range for
each parameter that is ±3% of the optimal value found in the previous step. The optimization described in Sec 2.2, ends by
identifying an ideal tangential stiffness value, Kt. As a result, this parameter typically does not need to be varied over a large
range. To simplify the process, KT is varied by changing γ ≈ 1 where KT = γKs and Ks is the value found in the first
optimization for the spring that is being replaced by the Iwan element. The power-law slope χ has a clear effect on the damping
curve so it typically only varies between −1 < χ < 1. In contrast, the other two parameters FS and β may need to be varied
by several orders of magnitude to find the optimal value.

The approach above has worked well in some prior studies [11], yet it loses effectiveness if the parameter ranges are very large.
When certain parameters are varied over a large range the response sometimes changes very little, but if the parameter is near
the optimum it may be very sensitive to small changes. In the course of this work the authors have found it helpful to manually
explore the search space using very wide parameter ranges before starting the optimization. This helps to ensure that the Monte
Carlo algorithm will search in a space where the changes to the parameters can improve the response of the model.



3 Results
The test structure modeled for this study consisted of two long and slender beams joined together by 24 steel rivets set in an
offset pattern along the length of the beams. All experimental data used in this work was collected as described in a companion
paper by Gilbert et al. [17].

3.1 Riveted Beam Abaqus Model

Various iterations of the model were created in Abaqus to understand the effect of different modeling choices that can be made,
such as whether to model the beams with shell or solid elements, what type of multi-point constraints to use, and other settings
specific to the constraints and HCB substructuring procedure. A companion paper [18] explores the importance of the various
modeling options. For this work, the beams were modeled using shell elements and the holes were ignored; this model is called
the ”Shell No Holes” model in [18]. The region near each rivet was constrained using Distributing Uniform type multi-point
constraints. See Figure 1 for a picture of the model created in Abaqus.

3.2 Linear Spring Model

The approach described in Sec. 2.2 was used to find the stiffnesses of the linear springs that brought the model’s natural
frequencies into agreement with those from test. As the fminsearch function does this, it returns the value of the objective
function (f(θ) in Eq. 5) and this can be monitored as the optimizer approaches best results. An example of this can be seen
in Figure 2. Notice that around Iteration 40, the function value reaches a minimum and no longer improves significantly. It
was found that even though the function value no longer improves, the spring stiffness continues to increase as the optimization
continues to iterate. This can be seen in Table 1, which shows the stiffness Kx as the optimization advances.

Figure 2: Plot of the fminsearch objective function value during linear optimization.

Table 1: Objective function value and normalized spring stiffness at various iterations of the linear optimization.
Iteration F (θ) Stiffness Kx

30 0.056667 1
40 0.049434 168
50 0.049349 32372
60 0.049348 206730
70 0.049347 195510
80 0.049347 195510

Singh et al. [11] found that an Iwan element would contribute little damping to the assembly if its stiffness KT was too large,
and this made it difficult or impossible to find an optimized model that agreed with the measurements. To avoid this, the linear
optimization was stopped as early as possible to minimize the spring stiffness, Kx, while also minimizing the objective function
sufficiently. For this particular model, the best results were found after only 31 iterations. This was the smallest Kx value for
which the error between each individual mode frequency was less than 1% in magnitude. See Table 2 for the results. As noted
previously, the optimization forces Kx = Ky and Rx = Ry .



Table 2: Normalized mode frequency error for the first 6 bending modes (Left). Normalized spring stiffness for
each degree of freedom in joints (Right).

Mode Type Experimental Freq. (Hz) Model Freq. (Hz) Error (%) DOF Stiffness
Bending 1.0000 1.0001 0.00784 Kx 1
Bending 2.7462 2.7392 -0.25261 Ky 1
Bending 5.3266 5.3176 -0.16668 Kz 0.0264
Bending 8.7025 8.6746 -0.32236 Rx 0.4468
Bending 12.8347 12.7502 -0.65987 Ry 0.4468
Bending 17.5646 17.4679 -0.54919 Rz 0.0375

There is also a torsion mode that has a similar frequency as Mode 5, yet it was not captured well by the model, as elaborated in
[18], so it was not included in the optimization.

To understand whether these results represent a global optimum, the effect of changes in spring stiffnesses across all degrees of
freedom was investigated. This was done by sweeping one stiffness parameter across a large range of values above and below
the optimal value, while holding the rest of the stiffness parameters constant at their optimized values. Figure 3 shows the
results of this investigation. In this model, only Kx seemed to have a significant effect on the accuracy of the mode frequencies.
Rz was also important, but only for a few modes. There is an interesting trend as Kx is increased, where one by one, each mode
reaches a minimum error and then the error increases towards a bound as the stiffness continues to increase. This suggests a
tradeoff in error between the modes themselves, where, for example, having a perfectly accurate mode 1 frequency will cause
higher error in other modes.
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Figure 3: Plots of mode frequency error due to changes in one spring stiffness at a time. Spring stiffnesses are
normalized and the vertical lines represent the optimized value for each stiffness parameter.

In our initial attempts at finding the linear spring stiffnesses, it was noted that the modes of the beam would often change order
during the course of the optimization. In particular, the first torsion mode of the model is close in frequency to two bending
modes, and as the optimization passes through different stiffness values, the torsion mode will change in frequency and switch
order with other modes. Figure 4 shows an example of a case in which the mode order changed as the stiffnesses were varied
towards their optimal values. Column 6 in Figure 4a is a stiff bending mode and does not match with any experimental mode
because measurements were not acquired in that direction. The stiff bending mode moves to column 4 in Figure 4b, which
means that the FE modes 4 and 5 have increased in stiffness until they are higher in frequency than the stiff bending mode.
The torsion mode is in column 8 of Figure 4a and moves to column 6 of Figure 4b, meaning that its frequency has decreased
until it occurs at a smaller frequency than the FE modes 5 and 6. These changes in mode order made it necessary to include
a MAC check during every iteration of the linear optimization to ensure that that the correct modes had been matched prior to
computing the error in the natural frequencies.



(a) Iteration 15 of optimization. (b) Iteration 31 of optimization.
Figure 4: MAC plots of linear optimization at two different iterations.

3.3 Nonlinear Iwan Element Model

As explained previously, the four Iwan parameters (Kt, Fs, χ, β) were equal for all 24 Iwan elements and were varied using
a Monte Carlo optimization routine, with the goal of maximizing correlation between the measured natural frequency and
damping versus amplitude and those of the model. Several insights were obtained while performing this optimization. While it
was expected that the most important parameter to the overall performance of the Iwan joint would be the tangential stiffness
(Kt), the slipping force parameter (Fs) also affected the performance of the joint by changing the slope of the natural frequency
and damping versus amplitude curves of the model. This is illustrated in Figures 5 and 6, where, in Figure 5 the force of
slipping is twice the optimized parameter (shown in Figure 6). The increased Fs parameter caused the model to have a smaller
slope at high amplitudes in both damping and frequency. The general trend is that a higher Fs causes the QSMA results to have
a smaller slope at higher amplitudes and a lower Fs increases the slope of frequency and damping at high amplitudes.
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Figure 5: Frequency and damping of Iwan joint model with altered Fs parameter.

As was mentioned previously, while one would ideally leave the KT value at the stiffness found during the linear optimization,
the parameter γ was introduced to allow this to be relaxed. This introduces a tradeoff between the accuracy of the Iwan
joint at high amplitudes (i.e. the frequency and damping curves such as those in Fig. 6) and low amplitudes (i.e. the linear
mode frequencies). With this in mind, different sets of Iwan parameters were found which prioritize either the accuracy of the



nonlinear frequency and damping (γ < 1) or the accuracy of the linear frequencies (γ = 1). These parameters are shown in
Table 3.

Table 3: Normalized Iwan parameters with different values of γ. The linear mode frequency errors for Set A are
shown in Table 2 while those for Set B are shown in Table 4. The frequency and damping of Mode 1 versus
vibration amplitude are shown in Figures 6 and 7 respectively.

Parameter Set A Set B
Fs 1.00 0.872
Kt 1.00 0.100
χ -1.00 -0.727
β 1.00 11.11
γ 1.00 0.10

Using the Iwan parameters in Set A in Table 3, the reduced model maintains the accuracy in terms of linear mode frequency
errors shown in Table 2. This model’s nonlinear frequency and damping versus amplitude can be seen in Figure 6. This model
predicted that the damping would increase by an order of magnitude over the range of magnitudes tested. The model also has
reasonable accuracy in matching the changes in frequency however, improvements can be made in matching the curvature of
the frequency and damping plots.
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Figure 6: Frequency and damping of Iwan joint model with parameter set A in Table 3 where γ = 1.00.

As was discussed earlier, tradeoffs can be made to make the nonlinear frequency and damping more accurate, but losing the
accuracy of linear mode frequencies. This was explored by changing the parameter γ, which resulted in the Set B Iwan param-
eters in Table 3. Changing γ changes the Kx stiffness and the linearized natural frequencies of the model. The comparison
between model and experimental natural frequencies is shown in Table 4 for the Set B model. As was expected, using γ to
scale Kt introduced much more error in mode frequencies, particularly in the higher order modes. The nonlinear response can
be seen in Figure 7. With this modified set of Iwan parameters, there is an improved match across the entirety of the tested
amplitude range, with exception of the highest amplitudes. The model actually goes into macroslip at the highest amplitudes.
The model also slightly overestimates the changes in frequency and damping at the highest amplitudes.



Table 4: Normalized linear mode frequencies of the model with Iwan parameters using γ = 0.10.
Experimental Freq. (Hz) Model Freq. (Hz) Error (%)

1.0000 0.99673 -0.32247
2.7462 2.7067 -1.4371
5.3266 5.1899 -2.5615
8.7025 8.3408 -4.156

12.8347 12.065 -5.9942
17.5646 16.268 -7.3825
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Figure 7: Frequency and damping of Iwan joint model with parameter set B in Table 3 where γ = 0.10.

Considering both of these alternatives, the authors prefer the model with the Set A parameters with γ = 1. The Iwan element
has the optimal Kx spring constant in that model and hence the linear modes are as accurate as possible. Furthermore, the actual
structure is not thought to be on the verge of macroslip at the upper end of the measurement range, so the Set B model with
γ = 0.1 does not seem reasonable. Finally, it should be noted that there is scatter in the experimental measurements, especially
with regard to the nonlinear frequency and damping, as elaborated in [17], so it seems unwise to sacrifice agreement in the
linear parameters in order to obtain slightly better agreement in the nonlinear response. Furthermore, it is hoped that these two
models capture the bounds on the accuracy that is possible with this model and the corresponding experimental hardware and
measurements.

4 Conclusions
The approach used in this paper was used in a few prior works [13, 11] on structures with bolted joints. Specifically, similar
reduced order models were created and the same optimization approach was used to identify the linear stiffnesses of the
joints and the parameters of Iwan elements, which were inserted between the components to capture nonlinearity. This study
has shown that this same approach is effective for a structure with many rivets, and good agreement was obtained when the
parameters were equal for all rivets.

On the other hand, the study uncovered some important limitations of the optimization approaches that were used. For the
structure studied here, as well as that in [11], the stiffness of the Iwan elements needed to be kept low, and in this study manual
intervention was required to achieve that. In the future perhaps multi-objective optimization could be used to improve this
process. Additionally, the Monte Carlo procedure that was used to find the Iwan parameters was found to struggle when the
parameter bounds were large, as they often need to be. This could possibly be addressed by drawing the Monte Carlo samples
logarithmically from wide bounds; alternatives should be explored in future works.

This paper considered only the nonlinear behavior of the first mode, but test data is available in [17] for several other modes.
The first mode was chosen because it exhibited the strongest nonlinearity, yet the model found here should be checked to see if



it also correctly reproduces the nonlinear behavior of the other modes. This model also has the potential to capture nonlinear
modal interactions, and this should also be explored.
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