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Abstract

Full order finite element models are often too computationally expensive to be seen as a viable option for predicting the
nonlinear dynamic response of systems with joints. To lower this cost, reduced-order modeling techniques have been developed
that significantly decrease the time needed to predict the response of a system. The use of Multi-Point Constraints (MPCs), in
conjunction with Hurty/Craig-Bampton reduction, can significantly lower the computational expense required. However, few
works have investigated how this approach affects the accuracy of the model, as compared to a high-fidelity truth model. This
work applies several types of MPCs to a benchmark model comprised of two cantilever beams with a frictional joint connecting
their free ends. A two-dimensional model is used so that the quasi-static and dynamic response of a high-fidelity truth model
can be computed and compared to that of the reduced models. The linearized modes of the reduced model are compared to
those of the truth model, to see which spidering approaches produce the best accuracy. The models are then compared in terms
of their ability to capture the amplitude dependent natural frequency and damping of the fundamental mode of the assembly.
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1 Introduction
Finite Element Analysis (FEA) has become essential in structural dynamics, enabling engineers to predict the dynamic response,
and hence the loading in critical structural members, of complicated aerospace vehicles that are comprised of dozens of parts
with intricate geometry. However, in practice these models are only predictive when the material properties are well known and
the parts are rigidly bonded together. Interfaces introduce uncertainty as one must determine where to enforce contact and where
the surfaces are bonded in the normal and tangential directions. The alternative, which would be to model the contact in detail
while enforcing contact in the normal direction and Coulomb friction in the tangential direction, is extremely computationally
expensive and not compatible with current workflows for structures such as launch vehicles, where the dynamic response must
be computed for thousands of loading scenarios.

As a result, when structural dynamic models are created in industry, the geometry of the structure is simplified considerably
and the joints between parts are replaced with some kind of spider or multipoint constraint (MPC). A good example of this
was recently presented by Winkel et al. [1], who performed a study comparing the standard industry/NASA approach to other
alternatives. When modeling a structure such as a launch vehicle, the typical practice is to use shell elements for each of the
various parts, to simplify joints to a single node or small number of nodes by joining the nodes over an area with rigid bar
elements (MPCs), and then to connect the joint nodes with springs or beam elements. These can then be tuned during model
updating [2] to bring the modes of the model into agreement with measurements. When nonlinearity must be considered, the
spring or beam elements can be replaced with nonlinear elements such as springs with Coulomb friction sliders [3].

It appears that the approach used in [3, 4] is actually quite common in industry, although there are not too many references to
case studies, presumably because most of that work is kept in house. As a result, there are very few studies that explore how
well this approach can capture the various types of nonlinearities that occur. This work is focused on the nonlinearity that arises
due to macro-slip in a bolted joint. Along those lines, Segalman proposed the four parameter Iwan element [5] as a “whole joint
element” that can be placed between two virtual nodes and used to capture micro- and macro-slip nonlinearity in an assembly.
(Those virtual nodes are presumably connected to the rest of the structure through multi-point constraints.) The subsequent

*Honeywell Federal Manufacturing Technologies, LLC operates the Kansas City National Security Campus for the United States Department of Energy /
National Nuclear Security Administration under Contract Number DE-NA0002839. UUR – NSC-614-6620



work at Sandia [6] validated many features of Segalman’s Iwan element. However, it appears that Lacayo et al. [4, 7] was the
first work to show that this approach was sufficient to allow the reduced model to bring the nonlinear features of several modes
into agreement with measurements. Specifically, Lacayo et al. used MPC spiders to reduce the interface of a bolted assembly
(the Brake-Reuss Beam [8]) to five pairs of virtual nodes. These were connected using Iwan elements. Lacayo et al. [4] found
that the resulting model captured the low-amplitude, linear natural frequencies of several modes very well, and also captured
the amplitude dependent effective natural frequency and damping of the first few modes with good accuracy. Singh et al. [9]
later revisited that approach for the S4 Beam [10], showing that the same approach worked well to capture several linear modes
of the structure and one mode that showed significant stick-slip nonlinearity.

Singh et al.’s work [9] explored the role of the spiders in more detail, varying the type of spider and the area that was connected
by the spiders. They found that any of the spider methods or spider areas could produce a model that captured the linear natural
frequencies of the first several modes of the structure, although each model had different spring constants between the virtual
nodes. However, when checking the model’s ability to capture the nonlinearity that was observed in experiments, he found that
only rigid spiders (i.e. RBE2 or RBAR spiders in Nastran terminology) produced acceptable results. Those spiders allowed the
reduced model to use less stiff springs between the parts, and this allowed the Iwan elements to more accurately capture the
damping of the assembly. Singh et al.’s work compared a model to experimental data, and while there are certainly advantages
to doing so, the true behavior of the system was only known to the resolution of the measurements.

Jewell et al. [11], proposed a 2D model that consists of two cantilever beams that are joined at their free ends due to a
clamping force and Coulomb friction. The beams are modeled in two dimensions (plane strain), so the model is reasonably
inexpensive to simulate and yet it can capture micro-slip behavior in detail. This work uses Jewell’s model to explore the ability
of reduced models with MPC spiders to capture the behavior of bolted joints. The detailed FEM is taken as the truth model,
as it presumably captures the actual physics of the bolted interface. Then a reduced order model is created by simplifying
the interface with various types of MPC spiders and then reducing the model using the Hurty/Craig-Bampton (HCB) method
[12, 13]. Simulations of the truth model are used as experimental data and then the reduced model is updated using the approach
in [4, 9] to see the extent to which the reduced model can capture the actual physics of the truth model.

This work uses the commercial FEA package Abaqus, which allows one to define spider constraints as kinematic (i.e. similar to
Nastran RBE2) or continuum (i.e. Nastran RBE3) distributed, with the latter having additional options for how a force should
be distributed from the parent node (virtual node in our case) to its children (uniform, linear, quadratic, or cubic) [14].

The next section briefly reviews the theoretical basis behind the modeling methods used here. Then the case studies are
presented followed by the conclusions.

2 Theory
This work utilizes the Hurty/Craig-Bampton Method to reduce the size of the finite element model and then Quasi-Static Modal
Analysis (QSMA) to quickly estimate the effective natural frequency and damping of the system. A brief overview of these
methods is given in the following subsections.

2.1 Hurty-Craig/Bampton Method

The Hurty/Craig-Bampton method simplifies the system by representing numerous internal nodes’ physical displacement DOFs
with a smaller number of system-wide modal DOF, greatly reducing the computational cost of simulations. Details of the
general method are described below, while further details can be found at [13, 12]. The HCB method is implemented using
Abaqus’s built-in substructure generation tool [14].

A model’s equation of motion, neglecting damping, can be seen below.

Mẍ+Kx+ FJ(x,θ) = Fp (1)

The nonlinear forces in the system are modeled by the function FJ(x, θ), and the external forcing of the system is Fp. The
variable θ captures the prior state of each node: sticking or slipping. From this equation, the HCB method first partitions all
matrices, according to boundary and internal nodes, as follows.[
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where B is for boundary DOF, and I is for internal DOF. The internal nodes’ coordinates are then converted to modal coordi-
nates, which allows higher frequency modes to be discarded. A transformation between these two coordinate systems is then



generated, as seen below. {
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where qm is the reduced set of modal coordinates that approximate the displacements xI , I is the identity matrix, Ψ and Φ
are the transformation sub-matrices responsible for the coordinate change. The transformed system contains all of the interface
DOF but the number of internal DOF is reduced to typically tens of fixed interface modal DOF.

2.2 Quasi-Static Modal Analysis

The process of QSMA is described below. For further details, see [11, 4].

Consider the previous equation of motion with Fp = Fext + Fpre, or the sum of the externally applied force and the preload
force. It is assumed that the force in the joints behaves linearly at small amplitudes. In this case, the nonlinear term in the
previous equation can be approximated as K0x ≈ FJ(x,θ) at small amplitudes. One can then solve the following eigenvalue
problem to find the modes for this small amplitude state.(

K+K0 − ω2
rM

)
ϕr = 0 (4)

Where ωr and ϕr are the respective natural frequency and mode shape of the rth mode. Note that the modes thus found are
for displacements relative to the preloaded state, yet the model tracks quasi-static displacement starting before the preload is
applied. So, when a preload force is applied (as in the case of the unreduced FE truth model) then one must subtract off the
preload deflections to relate the quasi-static motions to the modes. A quasi-static load is then applied in the shape of the mode
of interest using the mode’s eigenvector as follows,

Kx+ FJ(x,θ) =
(
ϕL,m

r

)T
α (5)

where ϕL,m
r is the rth row of the pseudo-inverse of ϕ, computed using the first m modes, and α is a scaling factor that sets the

amplitude of the force applied to mode r.

Applying this load quasi-statically results in a nonlinear force-displacement curve. This backbone curve is then used to generate
a full hysteretic loop using Masing’s rules, as shown in Fig. 1 [4]. As is mentioned in [11, 4], the backbone curve and hysteresis
loop can then be used to calculate the natural frequency and damping of the structure as a function of vibration amplitude. A
typical result is shown in Fig. 9, which is discussed later.

Figure 1: Hysteresis loop generated by applying Masing’s rules to the force-displacement backbone curve generated from
QSMA.

2.3 Four parameter Iwan Elements

This work models the joint’s nonlinear behavior using Segalman’s four-parameter Iwan element [5], so this defines the joint
force FJ(x,θ). Further details regarding how Iwan elements are implemented and the internal forces computed are given in
[15]. The Iwan element is a simple and relatively easy to use model that effectively captures power-law energy dissipation due
to microslip, and this type of behavior has been observed in several structures with bolted joints [16, 17, 18].



3 Case Study: Stacked Beam
Due to its simplicity, a two-dimensional finite element model was chosen as the benchmark for comparing MPC types. This
allowed for dynamic analysis to be performed on the model to verify the results obtained from the full-order model QSMA.

The model consists of two cantilever beams stacked on top of each other and bolted together near their free ends, as shown in
Fig. 2. Each beam is 8 inches long and 0.25 inches thick. The model was meshed with plane strain elements, which assume
that the beam is infinite in width. A pressure load of 212 foot-pounds spanning over 0.25 inches was first applied on the upper
surface of the top beam and the lower surface of the bottom beam, seen in the purple region of Fig. 2. This ensured that the
beams were in a preloaded state before any further analysis. For a more in depth description of the model, see [11].

Figure 2: Visual representation of the stacked beam model used to compare MPCs. The magnified section illustrates the
pressure load that simulated the bolt load that joins the two beams. The purple region is where the contact pressure is applied,
while the blue represents the region with a refined mesh so that contact can be captured accurately.

3.1 Application of Quasi-Static Modal Analysis (QSMA) to Truth Model
Simulated measurements were obtained from the full order truth model using QSMA. This provides the relationship between
the effective natural frequency and effective damping ratio as a function of the modal acceleration amplitude. QSMA was
applied to the model using quasi-static analysis in Abaqus. After applying a pressure load to the model, as discussed in the
previous section, Abaqus’s eigensolver was used to calculate the linear frequencies and mode shapes of the model, as seen in
Table 1 and Fig. 3. The beam has several low order modes, with about every other mode exhibiting clapping of the beams.
Shearing of the joint causes a typical bolted-joint type nonlinearity, and Mode 1 is the first mode that exhibits this, so it is the
focus of the nonlinear analysis. Hence, Mode 1 was used to calculate the forces in Eq. (5). An Abaqus input file was created to
apply this load using a static analysis following the preload step.

Table 1: Preloaded Natural frequencies of the full order Truth model for the first seven modes.
Mode Number Frequency

1 198.33 Hz
2 1035.8 Hz
3 1157.4 Hz
4 2531.6 Hz
5 3177.7 Hz
6 4716.6 Hz
7 6145.4 Hz



(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 3: The beam’s first six linear modes. Mode 7, which is also referenced in this work, is a higher order clapping mode
similar to modes 3 and 5. Modes 1, 2, 4, and 6 are referred to as bending modes, while modes 3, 5, and 7 are referred to as
clapping modes. The coloring on the beams shows the x-direction stress, which induces tangential forces in the contact region.

The results from this static analysis were extracted from Abaqus using a Python script, which translated the data into a for-
mat suitable for further processing in MATLAB. The first mode’s data, shown in Fig. 3, was then used to generate a force-
displacement backbone curve after subtracting any linear displacements [11]. Masing’s rules were then applied to this backbone
curve to generate a hysteresis loop, as seen in Fig. 1. The amplitude-dependent frequency and damping were then calculated
using the secant of the backbone curve and the area enclosed in the hysteresis loop [11, 4]. The results of this post-processing
can be seen in Fig. 4. Note that the waviness in the damping of the truth model is thought to be caused by the finite size of the
mesh and is not physically meaningful.
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Figure 4: Nonlinear natural frequency and damping generated by running QSMA on the full order model.

This processed data served as our “truth” model. As discussed below, the information from the QSMA analysis of the full-order
model will be used during the model updating phase, where optimization methods will be applied to fit linear springs and an
Iwan element into our reduced-order model (ROM) to match the results from linear modal analysis and QSMA.

3.2 Creating and Calibrating Reduced Order Models

With the truth data in hand, a reduced version of the model was next created using the methods mentioned previously. While in
reality the reduced model would likely be created from a model with a coarser mesh and less geometric detail, in this case the
ROM was created by simply reducing the truth model.

After meshing the model, two additional unattached nodes were created at the center of the region where the pressure load is
applied. These nodes serve as the parent nodes for the MPCs and were attached to a radial subset of joint interface nodes, using
Abaqus’s coupling constraints [14], as illustrated in Fig. 5. The nominal radius of this constraint initially matched the radius
of the pressure load, although other radii were also considered, as elaborated later. After selecting the control nodes and radius,
one must also select the constraint type: kinematic (RBE2 or RBAR) or continuum distributed (RBE3).

Figure 5: Visualization of MPCs defined on the Stacked Beam Model. Control nodes offset for MPC visibility.

The kinematic method in effect inserts rigid bars between the parent node and the interface nodes, creating a rigid surface. In
contrast, continuum distributed constraints use an averaging approach with a specified polynomial (Uniform, Linear, Quadratic,
or Cubic) that is used to distribute the forces and moments from the parent node to the child nodes. Thus, Abaqus offers five
types of MPCs for users to define. For simplicity, sections 3.3-3.4 will focus on the results obtained using kinematic constraints.
Section 4.1 will then show how the results differed when using each of the other types of constraints.

After defining the MPC, Abaqus was used to reduce the system using the HCB method, using the spider parent nodes as the
interface nodes. This process reduced the system from approximately 9,000 degrees of freedom, to 26, with three degrees of
freedom for each interface node and twenty degrees of freedom for fixed interface modes that were retained during the HCB
reduction. The reduced mass and stiffness matrices were then exported from Abaqus into MATLAB, where optimization was
used to match the ROM to the simulated measurements from the truth model.



3.3 Linear Optimization and Validation

Before inserting an Iwan element into the model, linear springs were inserted to capture the stiffness of the joint for small
displacements where no micro-slip occurs. The linear spring in the slip direction will eventually be replaced by an Iwan
element, with the linear spring stiffness becoming the KT parameter of the Iwan element, as will be discussed later. This spring
will be referred to as the KT spring or the slip direction spring in later sections.

The natural frequencies obtained from linear modal analysis of the preloaded, full-order model are taken as known values, as
if they had been measured in a modal test. Then, optimization is used to find the linear spring stiffnesses that cause the natural
frequencies of the ROM to match those of the truth model as well as possible. This is achieved using a slightly modified version
of Matlab’s built-in “fminsearch” function, which includes bounds on the search space to speed up optimization convergence
and prevent negative stiffness outputs. Because the KT spring plays such an important role in the nonlinear optimization, it was
treated as a parameter and results were obtained for many different values of KT while the stiffnesses of the other springs were
optimized to minimize the errors in the first seven mode frequencies. As an example, Table 2 shows the natural frequencies of
the truth model, those of the reduced model, and the percent errors when KT = 107 lb/in and optimization was used to find the
other spring constants.

Table 2: Natural Frequencies found after Linear Optimization with KT set to 107 lb/in. The spring constants obtained for the
other DOFs were 1.22 ∗ 1011 lb/in and 8.86 ∗ 105 lb/in for the y translation and z rotation DOFs respectively

Mode Number Truth Model Frequency Reduced Model Frequency Reduced Model Percent Error
1 198.33 Hz 196.57 Hz -0.89%
2 1035.8 Hz 1028.7 Hz -0.68%
3 1157.4 Hz 1161.3 Hz 0.33%
4 2531.6 Hz 2527.0 Hz -0.18%
5 4716.6 Hz 3180.1 Hz 0.075%
6 6145.4 Hz 6127.5 Hz -0.29%

3.4 Application of an Iwan Element

To capture the nonlinear behavior of the system, the tangential linear spring was replaced by an Iwan element between the two
virtual nodes from the HCB reduction. This substitution enables the model to capture the effects of slip at the interface while
maintaining linear behavior in the non-tangential degrees of freedom.

As mentioned in Section 2.3, the Iwan element has four parameters that govern its behavior. A Monte-Carlo optimization was
used to find the parameters that brought the nonlinear behavior of the ROM into agreement with the simulated measurements
from the truth model. In essence, QSMA is applied to the ROM and the natural frequency and damping are computed over
a range of acceleration amplitudes. These are then compared with those from the full-order model. This computation is very
fast on the ROM because of its low order. Hence, the optimization algorithm can vary these parameters and search for those
that minimize the difference between the ROM and the truth model. An example of such a comparison is shown in Fig. 9. An
error metric is computed as the sum of the area between the frequency curves, multiplied by a weighting factor, plus the area
between the damping curves [4]. The optimization seeks to minimize this error metric.

4 Results

When considering the linear natural frequencies of the structure, the coupling type and MPC radius were found to influence the
accuracy of the ROM. These factors are considered in the next two subsections. These results revealed that the optimization
drives the slip direction spring stiffnesses excessively high if only the linear modes are considered, and this degrades the model’s
ability to capture the nonlinear response. This is explored in Sec. 4.3.

4.1 MPC Type Impact on Linear Accuracy

Figure 6 explores the effect of the spider type on the accuracy of the linear natural frequencies. Each line shows the percent
error in each mode frequency after optimization was used to find the spring constants that minimized the sum of the squared
errors of these mode frequencies. The spider types considered are kinematic (RBE2) and continuum distributed (RBE3), with



the latter comprised of uniform, linear, quadratic, and cubic subtypes. The distributed coupling subtypes significantly effect
modes 3, 5, and 7, all of which are clapping modes, while minimally affecting the bending modes. Of those, the spiders that
use uniform weighting gave the smallest errors in the clapping modes. Therefore, subsequent tests only report on the uniform
continuum distributed coupling type.

As seen in Fig. 6, the kinematic (RBE2) spiders produced lower errors than the continuum distributed (RBE3) spiders. However,
one should note that the spider area used for this comparison, the “Plus 12” case, turned out to be optimal for the RBE2 spiders
and a larger area was needed for RBE3 spiders. This is elaborated in the next subsection.

Figure 6: Percent error between the frequencies calculated using the truth model and the ROM. All models used the “Plus 12”
spider area, which is explained in Sec. 4.2. The kinematic (RBE2) model uses a rigid spider, whereas the others are continuum
distributing (RBE3) spiders with the distribution type (Uniform, Linear, Quadratic, Cubic) listed in the legend.

4.2 The Influence of Spider Radius

To explore the effect of the spider radius, models with various spider radii were created and the optimization process was
repeated for each. The spider radius initially included only the area directly under the pressure load, or the region shown in
purple in Fig. 2. The additional spider radii were denoted “Plus α”, where α is the number of additional child nodes added
on each side of the spider. The radii considered ranged from “Plus 0” to “Plus 49.” The latter covered the entire region where
contact was defined, which extended from the center of the bolt to the right edge of the beam in Fig. 2 and an equal distance in
the opposite direction.

As shown in Fig. 7, the spider radius significantly influences the clapping mode errors and, to a lesser extent, the lower-
frequency bending modes. For the Kinematic (RBE2) spiders, the optimal area was the “Plus 12” case, but the “Plus 6” and
“Plus 18” models also give good results. The “Plus 12” case corresponds to a 25.3◦ bolt frustum. Interestingly, this lies within
the 25− 33◦ bolt frustum range mentioned by Shigley [19].

In contrast, when uniform continuum distributing (RBE3) type spiders were used, the best results were obtained when a much
larger area was used, such as “Plus 30” or “Plus 49.” Also, none of the RBE3 cases were able to achieve errors less than 1% for
all seven modes, while the best result with kinematic spiders did.
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Figure 7: The effect of MPC radius on the percent errors in the first seven linear natural frequencies. In the “Plus 0” case the
spider area is the purple region in Fig. 2 while the “Plus 49” case covered the entire contact region.

4.3 Influence of KT Values on ROM Accuracy

In the course of the optimization it was discovered that the optimizer tended to drive the tangential spring stiffness, which
becomes KT in the Iwan element, to very large values. This was found to adversely affect the nonlinear optimization. Further-
more, the optimizer does this even though there may be a minimal improvement in the correlation between the linear natural
frequencies of the ROM and those of the truth model. To study this, the linear optimization was modified by selecting a value
for KT and then optimizing to find the other two spring constants. (In all previous cases the optimizer was allowed to vary all
of the spring stiffnesses, including KT ). Then the KT value was varied to see how it affects the linear natural frequencies; the
results are shown in Fig. 8. Then, the spring constants found in that step were used in a nonlinear optimization. The nonlinear
optimization compared the frequency and damping versus amplitude predicted by QSMA with those of the truth model, shown
in Fig. 4, and adjusted the Iwan parameters until the best possible agreement was obtained.
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Figure 8: Effects of KT stiffness on ROM accuracy. These results used the model with kinematic (RBE2) spiders and with the
“Plus 12” spider area.

All of the results shown in Fig. 8 used Kinematic (RBE2) spiders and the “Plus 12” spider area. Figure 8a shows the percent



errors in the natural frequencies as KT was varied. Increasing the linear spring stiffness in the slip direction reduces the percent
errors in the bending modes (Modes 1, 2 and 4), although with diminishing returns. The frequencies of the clapping modes are
small in all cases. The error in Mode 1 falls below 1.0% for KT > 8× 106.

Figure 8b shows the results of the nonlinear optimization step. The optimization, which was repeated for each value of KT ,
produced an estimate of the natural frequency and damping of Mode 1 as a function of vibration amplitude. These were then
compared to those of the truth model, shown in Fig. 4. (An example of this comparison is shown in Fig. 9 for KT = 106

lb/in.) For each value of KT , the average percent error was computed and is shown in Fig. 8b for both the damping and natural
frequency. These results show that the nonlinear damping increases in error as KT increases beyond about 105 or 106 lb/in.
In contrast, the error in the Mode 1 natural frequency increases for KT < 106, primarily because its linear mode frequency
becomes much less accurate. Both objectives must be considered to obtain a model that captures both the natural frequencies
and the damping. The model captures amplitude dependent frequency and damping of the truth model very well.

Results of roughly similar quality were obtainable for values of KT near the optimium value, but the results showed considerable
error for KT > 108 lb/in, and even more so for KT > 5 ∗ 108 lb/in. At higher KT values, less energy goes into the Iwan
element, so the damping in the ROM becomes much lower than that of the target. As a result, the optimization algorithm drives
the slip force Fs to smaller and smaller values until macro-slip happens in the range shown in Fig. 9, where the response should
be purely micro-slip. Singh et al. [9] observed similar issues, although in their study the value of KT seemed to be dictated by
the spider type, with RBE2 spiders producing smaller values of KT and RBE3 spiders producing larger values. The approach
presented here, in which KT is treated as a parameter rather than as an optimization variable, seems to simplify the optimization
process while providing the user with a clear picture of any tradeoffs that must be made.

4.4 Optimal Results

Among all of the case studies considered, the best results were obtained with kinematic (RBE2) coupling with a spider radius
of “Plus 12.” The optimal value of KT was found to be 106 lb/in. Table 3 compares the linear natural frequencies of the ROM
when these settings are used to the frequencies generated using the truth model. The linear natural frequencies are less accurate
than those presented in Sec. 4.2, where optimization was performed considering only the linear natural frequencies. When that
was done the errors were less than 1% for most modes, while this ROM has errors of errors of −6.4% and −4.9% for Modes 1
and 2 respectively. However, this model gave an excellent fit for the nonlinear frequency and damping of the joint, which are
shown in Fig. 9. Note that the frequency error in Fig. 9 is expressed as the change in the frequency from its linear value, so as
to focus on how the model captures the nonlinearity and not on the error in the linear natural frequency. In contrast, if the KT

values found in Sec. 4.2 were used in the nonlinear model, the error in nonlinear frequency and damping would be much more
significant.
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Figure 9: Comparison of nonlinear frequency and damping versus vibration amplitude between the full-order truth model and
the best ROM (Kinematic, “Plus 12,” KT = 106 lb/in).

Results were also generated using the continuum distributed (RBE3) spider type with a uniform forcing distribution. This model
used a “Plus 30” spider radius and a 106 lb/in KT stiffness. This value is once again smaller than the optimum used in Sec. 4.2.
It was found that the ROM with this MPC type was also able to accurately capture the nonlinear frequency and damping of



Mode 1. The frequency and damping curves obtained with this ROM are nearly indistinguishable from those in Figure 9 so they
are not repeated here. However, as was the case with the RBE2 spiders, using KT = 106 increased the errors in the linear mode
frequencies. Table 3 shows that the model with RBE3 spiders also had errors up to 6.5%, significantly increased as compared
to the best results obtained in Sec. 4.2.

Table 3: Linear natural frequencies calculated using two models with different MPC types. One model consisted of a kinematic
(RBE2) spider with a “Plus 12” radius. The other model utilized a continuous distributed (RBE3) spider with uniform forcing
distribution and a “Plus 30” radius. Both models used a KT = 106 lb/in.

Mode #
Truth Model
Freq. (Hz)

Kinematic (RBE2)
Freq. (Hz)

Continuum (RBE3)
Freq. (Hz)

RBE2
% Error

RBE3
% Error

1 198.33 185.67 185.34 -6.4 -6.5
2 1035.8 985.09 985.8 -4.9 -4.8
3 1157.4 1161.3 1157 0.33 -0.036
4 2531.6 2487.5 2474.3 -1.7 -2.3
5 3177.7 3180.1 3179.5 0.074 0.056
6 4716.6 4711.8 4618.2 -0.10 -2.1
7 6145.4 6127.4 6144.6 -0.29 -0.014

5 Conclusion

This paper has presented the first efforts at using spidering, Hurty/Craig-Bampton reduction, linear springs, and an Iwan element
to capture the micro-slip damping and nonlinear behavior of a simple two dimensional structure. The structure is simple and
computationally efficient, allowing a large range of simulations to be performed and many optimization case studies. The end
goal of the work is to use this benchmark system to understand the limitations of this type of modeling. The effort so far has
confirmed the findings in other studies, namely the importance of the value of the tangential stiffness KT on the ability of the
nonlinear model to capture the damping in the joint. While a prior study [9] found that Kinematic or RBE2 spiders produced
much smaller values of KT than continuum distributing spiders (RBE3), this work found that each spider type can obtain
reasonable results if the spider area is varied. If KT was allowed to be large enough then either model could reproduce the
natural frequencies of the first seven modes with less than 1% error. However, with the large values of KT that were required,
the model could not capture the nonlinear damping accurately.

To address this, the authors modified the optimization approach relative to that used in prior works. In those studies [4, 9],
optimization was used to find the spring constants of a set of springs that define the joint stiffness, and one of those springs was
then replaced with an Iwan element. In this work, the stiffness of the Iwan element was treated as a parameter that was varied to
reveal its effect on both the linear natural frequencies of the assembly and on the nonlinear frequency and damping of a mode of
interest. Using this approach, it was relatively straightforward to identify a model that obtained a reasonable trade-off between
error in the linear mode frequencies and error in the capturing the nonlinearity.

It is interesting to note that the best result that was obtained did not meet the standard that is typically enforced in the aerospace
industry [2, 20]. Specifically, the first and second modes were not within the < 3% or < 5% frequency error standards. This
was true for either RBE2 or RBE3 spiders. It is surprising that better results could not be obtained for such a simple system, and
this is a subject of ongoing study. On the other hand, the model did accurately capture the nonlinear damping of the structure
due to friction, a feat that has rarely been achieved for bolted structures, and such a model could still prove useful in various
settings.

The authors hope to continue to study this model, including the occurrence of mode coupling, as initiated by Singh et al. [21],
to understand the conditions under which a ROM such as this can capture these effects.
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