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Abstract

Structures with mechanical joints display complicated, hysteretic behavior that can be difficult to
characterize using existing nonlinear system identification techniques. However, methods based
on the Hilbert Transform have been successful in several previous works. In this work, a Hilbert
Transform-based approach is used with impact measurements to determine the amplitude-
dependent modal parameters of a slender riveted beam which has similar features to a component
on an aircraft engine. An impact at almost any point on the beam excites several modes, most of
which exhibit varying levels of nonlinearity and decay at varying rates. Additionally, because the
structure is light, one cannot apply a large number of accelerometers and use a modal filter
because this would add significant cable damping to the structure. This paper presents the results
of system identification on this structure, in the presence of these features that push the limits of
the Hilbert Transform method.
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1. Introduction

Mechanical joints are of great interest in dynamics research because they are widely used and are
usually the main source of damping and nonlinearity in built-up structures. This nonlinearity is a
result of slip within the joint interface, which changes the stiffness of the joint and adds damping
from friction. The amount of slip depends on the deflection shape of the modes and their
amplitudes of vibration. Thus, jointed structures exhibit a type of nonlinearity where the modal
frequencies and damping ratios shift as a function of vibration amplitude. It is useful to quantify
this behavior to better understand the dynamics of the system and to enable more accurate
prediction of the stresses experienced by the system, thereby allowing one to develop more
efficient designs. For example, one could take advantage of the added damping from joint
friction instead of assuming linearity and over-building the structure to provide sufficient
strength.

Many nonlinear system identification methods have been proposed and are often validated on
simple benchmark structures or models. However, most system identification techniques have
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weaknesses that make them difficult to use or unreliable when applied to structures with joints.
Thus, the selection of a proper method for a given system is a challenge in and of itself. One
method that has been particularly useful is Feldman’s “Freevib” method [1], which uses the
Hilbert transform of the transient ringdown of a system to extract the amplitude-dependent
frequency and damping of each mode. This method has proven effective in several studies [2]. It
does not require extensive measurements; the instantaneous modal parameters can be extracted
from a single ring-down. No previous knowledge of the system is required, and it can be applied
to a wide variety of linear and nonlinear systems. However, a major drawback of the Hilbert
transform approach is that it is only valid for mono-component signals. Thus, the individual
modes must first be isolated. This becomes difficult in highly nonlinear systems where there are
significant interactions between modes and other features such as nonlinear harmonics. Popular
techniques for separating out modes for Hilbert processing are bandpass filtering, modal filtering
[3] and empirical modal decomposition [4]. The latter is combined with the Hilbert transform in
the Hilbert-Huang transform.

However, this class of techniques does have limitations. Jin et. al. found evidence that the Hilbert
transform method performs more poorly for systems with greater nonlinearity; in a numerical
study with a duffing oscillator, the Hilbert transform showed greater error in identifying the
stiffness and damping as the amplitude of the nonlinear stiffness term increased relative to the
linear stiffness [5]. Prior studies that used it successfully [3] treated systems with damping
nonlinearities rather than the stiffness nonlinearity studied by Jin et al. The Hilbert transform is
known to be sensitive to noise because it involves taking derivatives of the amplitude and phase;
thus, smoothing or curve-fitting are usually applied to the signal and the way that this is done
certainly affects the results. The algorithm also introduces end effects into the signal, often
requiring truncation of the beginning and end of the signal. Other similar methods are the zero-
crossing method [6] and the peak finding and fitting algorithm [7], both of which estimate the
instantaneous frequency and damping of a single mode from a ring-down measurement, and thus
share the requirement to isolate an individual mode.

In this work, a system identification approach based on the “Freevib” method is used to identify
the amplitude-dependent frequency and damping of a riveted beam. The results are used in a
companion paper [8] to update and validate a finite element model of the structure.

The riveted beam is comprised of two long, thin steel beams connected along their length by 24
rivets in two offset rows, such that the contact area extends along the entire length of the
structure. The beam offers a unique challenge for system identification; the contact area plays a
larger role in the beam dynamics than many benchmark structures or industrial equipment, and
its thin, lightweight frame requires a measurement setup that does not add significant mass or
damping to the structure.

This research constitutes a first attempt to understand the behavior of this structure. It also
provides another experimental example of applying the Hilbert transform to assess the nonlinear
behavior of a jointed structure, supplementing the lessons learned in prior studies [3], [9], [10].
However, the riveted beam exhibits stronger nonlinearity than most, if not all, of the systems
studied in previous works of this type. The results of this experiment reveal interesting dynamic



behavior of the riveted beam, as well as limitations in the Hilbert transform’s ability to
characterize a system with significant contact nonlinearity.

2. Method

The riveted beam is pictured in Figure 1 (a). The specimen was hung from bungees placed
approximately at the nodes of the first mode of the beam to simulate free-free boundary
conditions. Two uniaxial accelerometers were placed in the corners at one end of the beam as
shown in Figure 1 (b). No accelerometers were attached to the top edge of the beam, because
each half of the beam is too narrow to individually support an accelerometer without it touching
the other half (see Figure 1 (c)). Although a triaxial accelerometer could have measured the
vibration in the y-direction, the triaxial accelerometer available was significantly more massive
and has a stiffer, more massive cable, both of which would potentially shift the modal properties
of the beam. Thus, the stiff-direction (y-direction) bending modes were not captured in these
measurements. Further, adding several more accelerometers to the beam to enable modal
filtering, as has been done in similar works [3], [11], [12] would add significant cable damping
to this lightweight structure; thus modal filtering is not employed in this work.
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Figure 1. (a) Riveted beam hung from bungees, (b) accelerometer setup at right end of beam,
and (c) top view of beam showing both halves riveted together.

First, the linear natural frequencies and mode shapes were obtained from a roving hammer test at
very light impact levels, to identify modes of interest for nonlinear testing and select appropriate
drive points to excite the desired modes. The rigid body modes of the beam-bungee setup were
also measured to confirm that they do not interfere with the flexural modes; the highest rigid
body mode was at 23% of the first bending mode frequency, low enough to easily separate with a
bandpass filter but not quite low enough to meet Carne’s 10x separation rule [13] which ensures
that it does not affect the accuracy with which one can measure the bending mode. Hence, the



bungees were placed at the nodes of the first bending mode in an attempt to further decouple it
from the rigid body motions.

Following the linear test, nonlinear impact testing was performed at higher excitation forces to
record the nonlinear transient decay. The drive points shown in Figure 2 were chosen to excite
the first 6 modes of the beam, all of which were found to exhibit significant nonlinearity. Table 1
summarizes the drive points used for each mode. A wide range of impact force levels was used,
from about 1 N to 300 N. This is because the nonlinearity of each mode is excited at very
different amplitudes. As will be shown later, an impact force that causes significant shifts in
damping and frequency for the sixth mode will barely affect the first and second modes.

Figure 2. Drive point locations for nonlinear impact tests are indicated by the red dots.

Table 1. Drive points used for each mode
Mode Drive Points Used
1 201, 301, 302
201, 301, 303
201, 301, 302, 303
201, 202, 302, 303
201, 202, 302, 303
201, 203
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The amplitude-dependent frequency and damping for each mode was obtained using a Hilbert
transform algorithm as set forth in detail in [10], [14] and summarized here. One exception is
that modal filtering is not employed, as mentioned previously, because only two accelerometers
are used. Instead, the torsion modes are separated from the bending modes by combining the
accelerometer signals appropriately. If a; and a, are the top and bottom accelerometers
respectively, then the torsion modes are suppressed by averaging the two signals as in Equation 1
and are accentuated by taking the difference of the two signals as in Equation 2.
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This is especially helpful when the torsion modes are close in frequency to the bending modes.
Once the bending and torsion modes are separated, the modes are well-spaced enough to isolate
by applying a third or fourth-order bandpass filter to the signals. For example, Figure 3 shows



the FFT of the response after a filter was applied to Mode 2, with the blue showing the measured,
average accelerometer response (Eqn. 1) and the red showing the same after applying the filter.
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Figure 3. Bandpass filter (red) applied to the FFT (blue) to isolate bending Mode 2.

The Hilbert transform was then applied to the filtered signal to obtain the time-varying amplitude
and phase during ringdown. The phase and amplitude envelope were then manually curve-fit by
choosing time values along the envelope (shown by the “endpoints” in Figure 4) and applying a
piecewise linear fit (green lines in Figure 4) where each linear line segments falls between a pair
of “endpoints”. The piecewise linear functions can be differentiated to obtain the frequency and
damping versus time (as elaborated in [15]). These can then be used to obtain the frequency and
damping ratio as a function of vibration amplitude for this mode (blue curves in Fig. 4).

© —
3 3
2 .0 N
S 10 . ® 10"k 4
E . £
§ I Signal g
3 Hilbert o
] PWL Fit =
g +  endpoints 14
§ 10°® O midpoints g’

; ! . . . . . . | B 100F Impact07DP201, F =87 3

0 5 10 15 20 25 30 35 40 45 ,E\, L L T
Time [s] a 10’ 10° 10 102 108
Normalized Amplitude
800
P Hilbert 0 T
B 600 PWL Fit
T +  endpoints 01 1
g O midpoints g
400
N Z .02} -
E o
w
5 200
o - = N
=z <-03
Oo 5 11) 15 2‘0 2% 50 3‘5 4‘0 4‘5 04 :
_ 107 10° 10° 102 10°
Time [s]

Normalized Amplitude

Figure 4. Piecewise linear fit (PWL) applied to the amplitude envelope and phase of the signal
(left), and the resulting frequency shift and normalized damping ratio vs normalized amplitude

(right).



3. Results & Discussion

The acceleration response from a single impact reveals several modes, most of which are well-
spaced. The first seven are shown in the frequency response function (FRF) in Figure 5 and
listed in Table 2. This work focuses on only the first 6 modes. One can see that as mode order
increases, the amount of nonlinearity and damping increases as well. Therefore, higher impact
forces are needed to investigate the nonlinear range of the first couple modes, and lower force
levels are needed for the fourth through sixth modes. The FRF shown here was obtained from an
impact force of 23 N, which excites minimal nonlinearity in the first three modes and
significantly affects everything above Mode 4. The curve shown comes from only the bottom
accelerometer (a,) where both bending and torsion are visible. The first five modes captured are
out-of-plane bending modes. This excludes the first stiff-direction (or in-plane) bending mode,
which was not measured, but falls between the third and fourth out-of-plane bending modes. The
sixth mode is the first torsion mode; however, this mode swaps order with the fifth bending
mode at forcing levels of greater than about 10 N, due to a strong stiffness nonlinearity that
causes a large frequency shift. Thus, in Figure 5 the sixth mode shows up as the fifth peak.
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Figure 5. FRF (H1 estimate) calculated from the response of the bottom accelerometer (a,) and
the impact force from a 23 N impact, showing the first seven modes of the beam. The frequency
is normalized by the first mode frequency.

Table 2. First seven modes of riveted beam with their deflection type and normalized linear

frequency.
Mode # | Normalized Linear Frequency | Mode Type
1 1.00 Bending
2 2.75 Bending
3 5.32 Bending
~8.46 Stiff Bending




4 8.69 Bending
5 12.80 Bending
6 13.41 Torsion
7 17.46 Bending

Figure 6 shows the relative position of the fifth bending and first torsion modes for three impact
force levels: 7 N, 16 N, and 198 N. The dramatic frequency shift of the first torsion mode means
that at some amplitudes, Modes and 5 and 6 are very close or exactly on top of each other,
making them impossible to separate with a bandpass filter. Although these modes can be
separated by either averaging or differencing the accelerometer signals, the torsion signal still
contains a small response at the frequencies of the bending modes. The frequency range of the
bandpass filter must also be monitored and adjusted to account for the large frequency shifts in
these modes. This makes the process less automated and more time-consuming.
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Figure 6. FFTs showing the first 5 modes visible in the bending mode signal y,, in Egn. (1) and
first torsion mode from the torsion signal y, in Eqn. (2) for three different excitation levels.

As mentioned, after isolating the torsion mode per Eqn. (2), there is still some energy from the
bending modes left in the signal, showing up as small peaks at the frequencies of the bending
modes (see Figure 6). Although small, these small peaks can have a significant effect on the
Hilbert transform analysis of the sixth mode if they are not eliminated by the bandpass filter. The
bending modes are not as heavily damped as the torsion mode and have longer decay times.
Thus, even though they show up at relatively small amplitudes, at some point in the transient
ringdown they will dominate the decay envelope after the torsion mode has decayed to a low
enough amplitude. This becomes an issue when Modes 5 and 6 are close enough that they cannot



be separated with a bandpass filter. Figure 7 shows what the decay envelope looks like in this
case and the resulting frequency and damping curves. The decay rate of the envelope changes
abruptly when the fifth bending mode (denoted by the green arrow) becomes dominant, and the
resulting damping and frequency see a corresponding jump. The frequency jumps from the value
of the fifth bending mode at low amplitudes (shown in green), to the value for the first torsion
mode at high amplitudes (yellow). When this occurs, the jump in the frequency and damping is
avoided by only curve-fitting the higher-amplitude end of the envelope (the yellow section)
where the mode of interest is dominant. This limits the low end of the amplitude range for which
the frequency and damping of this mode can be extracted.
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Figure 7. (a) Bandpass filter picking up more than one mode, (b) the amplitude envelope of the
filtered signal, and (c) the corresponding damping and frequency extracted from the amplitude
and phase. The first torsion mode is pointed out by the yellow arrows, and the fifth bending
mode by the green arrows.

The amplitude range that can be obtained is also limited on the high end. At high vibration
amplitudes, many of the peaks become heavily damped, as depicted in Figure 8(a). These highly
damped peaks are not large compared to nearby modes and other noisy artifacts in the signal.
The high damping also results in very quick decay times, insomuch that the startup transient
introduced by the filter is present for the majority of the decay, adding error to the estimated
damping. The filter effect shows up as small ripples at the beginning of the amplitude envelope
(before 29s) in Figure 8(b). Both the filter effects and other sources of noise make this mode
difficult or impossible to curve-fit without capturing too much of the noise, which greatly
impacts the estimated damping.
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Figure 8. (a) Bandpass filters of two different widths applied to a highly damped Mode 5, and
(b) the resulting amplitude envelopes.

Despite the above-mentioned limitations, the Hilbert Transform method was able to produce the
frequency and damping versus amplitude for each of the first 6 modes, which are shown in
Figure 9. Each curve in Fig. 9 comes from a different impact, with the color denoting the drive
point used. Each mode shows a softening linearity with a downward frequency shift that
increases with mode order. For example, for an impact force of 198 N, the frequency shift
increases from less than 1 Hz for Mode 1, to 14 Hz for Mode 5. Mode 6 has a much more
dramatic frequency shift, which is greater than 50 Hz for the same impact force level. Frequency
shifts this large do not show up in Fig. 9(I) because no impacts of this force level were able to be
processed successfully using the Hilbert transform, due to the limitations discussed earlier in this
section. However, larger frequency shifts show up in the FFT (see Fig. 6). The damping ratio
increases with amplitude, with a uniform shift of about one order of magnitude across the first 6
modes. However, the baseline, or linear, damping increases about an order of magnitude between
Modes 1 and 6 as well.

The results for Mode 1 are quite good (see Fig. 9(a-b)), showing consistency over a wide range
of impact force levels (from 20 to 167 N). The curves start to spread apart at their high-amplitude
end however. Mode 2 exhibits significantly more spread, where the frequency and damping of
the individual curves converge to different values, and Modes 3 through 6 continue to show a
large spread as well as a considerable amount of noise.

The noise is a direct result of trying to extract damping and frequency from a noisy phase and
amplitude envelope, such as that shown in Figure 8(b). Compare Mode 3 with Mode 2 in Figure
9, where Mode 3 is much noisier than Mode 2. Also notice that the noisier curves tend to come
from higher amplitude impacts, when the modes become heavily damped and decay quickly, as



discussed earlier. For example, in Fig. 9(g), the curves coming from impact forces of less than 11
N appear cleaner (less jagged) than those from the higher impact levels.

Even more noticeable is the spread in the frequency and damping, where each curve decays to a
different value, giving the curves the appearance of being stacked on top of one another. The
variation in damping levels between the curves can be up to half the damping shift seen in an
individual curve. A similar comparison exists for the frequency curves. One potential cause for
this spread is modal coupling, a nonlinear phenomenon where the modes influence each other.
Because the force in the joints depends on the deflection shapes of all the modes, each mode’s
effective frequency and damping can change due to the other modes. This is evidenced by the
fact that Mode 1 shows very little coupling, except at the ends. Mode 1 takes much longer to
decay than the higher modes, as shown in Figure 10. In fact, each consecutive mode decays more
quickly than the previous mode. Because Mode 1 has a much longer decay time, at some point
all of the modes except for Mode 1 will have decayed to a low enough amplitude and not
contribute any more to the frequency and damping of Mode 1 (for example, after 7s in Fig. 10).
At this point, the spread in Mode 1 disappears. Mode 2 shows significantly more coupling (Fig. 9
(c-d)), as Mode 1 is active during the entire decay period of Mode 2. However, when the drive
point is chosen to be on the nodal line of Mode 1, suppressing Mode 1, the spread in Mode 2
almost entirely disappears. The blue curves in Figure 9 correspond to this drive point. For Modes
3 and above, no drive point was able to suppress Modes 1-2 when testing Mode 3, nor Modes 1-3
when testing Mode 4, and so on. If one were to plot the modes of a free-free beam, which this
structure approximates, one could show that there is no single point that suppresses both Modes
1 and 2, or any combination of the first 3 modes. However, some drive points are still able to
reduce the coupling more than others, i.e. the blue curves in the Mode 3 plots and the pink curves
in the Mode 4 and 5 plots.

Another clue pointing to modal coupling is that the height of each curve appears to depend on
impact force level. The harder impacts tend to produce the curves with higher levels of damping
and greater downward frequency shifts; thus the individual curves become sorted in order of
impact force level, even though the impacts were delivered in no particular order with respect to
force level. Higher impact forces not only put more energy into the mode of interest, but into the
other modes as well, which collectively increase the force in the joint and consequently, increase
the damping and frequency shift observed in the mode of interest.

It is also known that jointed structures can exhibit variability when the joint slips and then sticks
again in slightly different positions from test to test so that the contact stresses change between
tests. This is referred to as residual tractions [16], [17], and is a potential contributor to the
variability seen in the results here.

The purpose of these measurements is to provide accurate experimental data to update and
validate a finite element model of the riveted beam [8]. It is far easier to simulate an uncoupled
response, for example by using QSMA [11] which solves for each mode individually. Thus, it is
desirable to provide experimental data with minimal modal coupling. Looking again at Figure 9,
the curves with the lowest damping or highest frequency presumably are the least affected by
mode coupling. Unfortunately, these curves usually come from the lightest impacts, and thus are
limited to lower amplitudes where less nonlinearity is present.
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for the first 3 bending modes.
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4. Conclusion

This study used a Hilbert-transform based system identification method to calculate the
amplitude-dependent frequency and damping of six modes on a riveted beam. The beam
response was found to contain several modes with greatly varying levels of nonlinearity, as well
as frequency shifts large enough for modes to swap order. Large variation was observed in the
damping and frequency of almost all the modes, likely due to modal coupling. System
identification on this beam highlights some of the challenges associated with applying the
Hilbert transform method to a system exhibiting highly nonlinear modes, modal interactions, and
closely-spaced modes. Despite these challenges, the amplitude-dependent frequency and
damping were calculated for all six modes. However, as mode order increases, the amplitude
range that can be analyzed becomes increasingly limited. At high excitation levels, many of the
modes become so highly damped that they are difficult to distinguish from noise and are
dominated by filter effects; higher excitation levels also cause more modal interactions, which is
not ideal for model updating. For some modes, the lower amplitude end of the ring-down
becomes dwarfed by more dominant modes nearby. This is a limitation introduced by using a
bandpass filter to separate modes.

Future work includes trying new measurement techniques and postprocessing strategies.
Measurement methods based on shaker excitation can target a single mode and may be able to
reduce modal interactions significantly. A more rigorous filtering process, such as that proposed
in [7] may help to reduce the influence of the filter, allowing data with very sharp decay rates to
be extracted more accurately. A system identification method that can fit multiple modes at once,
such as simultaneous time-fitting [18] may be more successful at dealing with the closely-spaced
modes observed in this work.
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