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Abstract 

Structures with mechanical joints display complicated, hysteretic behavior that can be difficult to 

characterize using existing nonlinear system identification techniques. However, methods based 

on the Hilbert Transform have been successful in several previous works. In this work, a Hilbert 

Transform-based approach is used with impact measurements to determine the amplitude-

dependent modal parameters of a slender riveted beam which has similar features to a component 

on an aircraft engine. An impact at almost any point on the beam excites several modes, most of 

which exhibit varying levels of nonlinearity and decay at varying rates. Additionally, because the 

structure is light, one cannot apply a large number of accelerometers and use a modal filter 

because this would add significant cable damping to the structure. This paper presents the results 

of system identification on this structure, in the presence of these features that push the limits of 

the Hilbert Transform method. 
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1. Introduction 

Mechanical joints are of great interest in dynamics research because they are widely used and are 

usually the main source of damping and nonlinearity in built-up structures. This nonlinearity is a 

result of slip within the joint interface, which changes the stiffness of the joint and adds damping 

from friction. The amount of slip depends on the deflection shape of the modes and their 

amplitudes of vibration. Thus, jointed structures exhibit a type of nonlinearity where the modal 

frequencies and damping ratios shift as a function of vibration amplitude. It is useful to quantify 

this behavior to better understand the dynamics of the system and to enable more accurate 

prediction of the stresses experienced by the system, thereby allowing one to develop more 

efficient designs. For example, one could take advantage of the added damping from joint 

friction instead of assuming linearity and over-building the structure to provide sufficient 

strength. 

Many nonlinear system identification methods have been proposed and are often validated on 

simple benchmark structures or models. However, most system identification techniques have 
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weaknesses that make them difficult to use or unreliable when applied to structures with joints. 

Thus, the selection of a proper method for a given system is a challenge in and of itself. One 

method that has been particularly useful is Feldman’s “Freevib” method [1], which uses the 

Hilbert transform of the transient ringdown of a system to extract the amplitude-dependent 

frequency and damping of each mode. This method has proven effective in several studies [2]. It 

does not require extensive measurements; the instantaneous modal parameters can be extracted 

from a single ring-down. No previous knowledge of the system is required, and it can be applied 

to a wide variety of linear and nonlinear systems. However, a major drawback of the Hilbert 

transform approach is that it is only valid for mono-component signals. Thus, the individual 

modes must first be isolated. This becomes difficult in highly nonlinear systems where there are 

significant interactions between modes and other features such as nonlinear harmonics. Popular 

techniques for separating out modes for Hilbert processing are bandpass filtering, modal filtering 

[3] and empirical modal decomposition [4]. The latter is combined with the Hilbert transform in 

the Hilbert-Huang transform. 

However, this class of techniques does have limitations. Jin et. al. found evidence that the Hilbert 

transform method performs more poorly for systems with greater nonlinearity; in a numerical 

study with a duffing oscillator, the Hilbert transform showed greater error in identifying the 

stiffness and damping as the amplitude of the nonlinear stiffness term increased relative to the 

linear stiffness [5]. Prior studies that used it successfully [3] treated systems with damping 

nonlinearities rather than the stiffness nonlinearity studied by Jin et al.  The Hilbert transform is 

known to be sensitive to noise because it involves taking derivatives of the amplitude and phase; 

thus, smoothing or curve-fitting are usually applied to the signal and the way that this is done 

certainly affects the results. The algorithm also introduces end effects into the signal, often 

requiring truncation of the beginning and end of the signal. Other similar methods are the zero-

crossing method [6] and the peak finding and fitting algorithm [7], both of which estimate the 

instantaneous frequency and damping of a single mode from a ring-down measurement, and thus 

share the requirement to isolate an individual mode. 

In this work, a system identification approach based on the “Freevib” method is used to identify 

the amplitude-dependent frequency and damping of a riveted beam. The results are used in a 

companion paper [8] to update and validate a finite element model of the structure.  

The riveted beam is comprised of two long, thin steel beams connected along their length by 24 

rivets in two offset rows, such that the contact area extends along the entire length of the 

structure. The beam offers a unique challenge for system identification; the contact area plays a 

larger role in the beam dynamics than many benchmark structures or industrial equipment, and 

its thin, lightweight frame requires a measurement setup that does not add significant mass or 

damping to the structure. 

This research constitutes a first attempt to understand the behavior of this structure. It also 

provides another experimental example of applying the Hilbert transform to assess the nonlinear 

behavior of a jointed structure, supplementing the lessons learned in prior studies [3], [9], [10]. 

However, the riveted beam exhibits stronger nonlinearity than most, if not all, of the systems 

studied in previous works of this type. The results of this experiment reveal interesting dynamic 
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behavior of the riveted beam, as well as limitations in the Hilbert transform’s ability to 

characterize a system with significant contact nonlinearity.  

 

2. Method 

The riveted beam is pictured in Figure 1 (a). The specimen was hung from bungees placed 

approximately at the nodes of the first mode of the beam to simulate free-free boundary 

conditions. Two uniaxial accelerometers were placed in the corners at one end of the beam as 

shown in Figure 1 (b). No accelerometers were attached to the top edge of the beam, because 

each half of the beam is too narrow to individually support an accelerometer without it touching 

the other half (see Figure 1 (c)). Although a triaxial accelerometer could have measured the 

vibration in the y-direction, the triaxial accelerometer available was significantly more massive 

and has a stiffer, more massive cable, both of which would potentially shift the modal properties 

of the beam. Thus, the stiff-direction (y-direction) bending modes were not captured in these 

measurements. Further, adding several more accelerometers to the beam to enable modal 

filtering, as has been done in similar works [3], [11], [12] would add significant cable damping 

to this lightweight structure; thus modal filtering is not employed in this work. 

 

 

 

 

 

Figure 1. (a) Riveted beam hung from bungees, (b) accelerometer setup at right end of beam, 

and (c) top view of beam showing both halves riveted together. 

First, the linear natural frequencies and mode shapes were obtained from a roving hammer test at 

very light impact levels, to identify modes of interest for nonlinear testing and select appropriate 

drive points to excite the desired modes. The rigid body modes of the beam-bungee setup were 

also measured to confirm that they do not interfere with the flexural modes; the highest rigid 

body mode was at 23% of the first bending mode frequency, low enough to easily separate with a 

bandpass filter but not quite low enough to meet Carne’s 10x separation rule [13] which ensures 

that it does not affect the accuracy with which one can measure the bending mode. Hence, the 
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bungees were placed at the nodes of the first bending mode in an attempt to further decouple it 

from the rigid body motions. 

Following the linear test, nonlinear impact testing was performed at higher excitation forces to 

record the nonlinear transient decay. The drive points shown in Figure 2 were chosen to excite 

the first 6 modes of the beam, all of which were found to exhibit significant nonlinearity. Table 1 

summarizes the drive points used for each mode. A wide range of impact force levels was used, 

from about 1 N to 300 N. This is because the nonlinearity of each mode is excited at very 

different amplitudes. As will be shown later, an impact force that causes significant shifts in 

damping and frequency for the sixth mode will barely affect the first and second modes. 

 

Figure 2. Drive point locations for nonlinear impact tests are indicated by the red dots. 

 

      Table 1. Drive points used for each mode 

Mode Drive Points Used 

1 201, 301, 302 

2 201, 301, 303 

3 201, 301, 302, 303 

4 201, 202, 302, 303 

5 201, 202, 302, 303 

6 201, 203 

 

The amplitude-dependent frequency and damping for each mode was obtained using a Hilbert 

transform algorithm as set forth in detail in [10], [14] and summarized here. One exception is 

that modal filtering is not employed, as mentioned previously, because only two accelerometers 

are used. Instead, the torsion modes are separated from the bending modes by combining the 

accelerometer signals appropriately. If 𝑎1 and 𝑎2 are the top and bottom accelerometers 

respectively, then the torsion modes are suppressed by averaging the two signals as in Equation 1 

and are accentuated by taking the difference of the two signals as in Equation 2. 

                                                               𝑦𝑏 =
𝑎1∗𝑎2

2
                                                          (1) 

                                                               𝑦𝑡 =
𝑎1−𝑎2

2
                                                          (2) 

This is especially helpful when the torsion modes are close in frequency to the bending modes. 

Once the bending and torsion modes are separated, the modes are well-spaced enough to isolate 

by applying a third or fourth-order bandpass filter to the signals. For example, Figure 3 shows 
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the FFT of the response after a filter was applied to Mode 2, with the blue showing the measured, 

average accelerometer response (Eqn. 1) and the red showing the same after applying the filter. 

 

Figure 3. Bandpass filter (red) applied to the FFT (blue) to isolate bending Mode 2. 

The Hilbert transform was then applied to the filtered signal to obtain the time-varying amplitude 

and phase during ringdown. The phase and amplitude envelope were then manually curve-fit by 

choosing time values along the envelope (shown by the “endpoints” in Figure 4) and applying a 

piecewise linear fit (green lines in Figure 4) where each linear line segments falls between a pair 

of “endpoints”. The piecewise linear functions can be differentiated to obtain the frequency and 

damping versus time (as elaborated in [15]). These can then be used to obtain the frequency and 

damping ratio as a function of vibration amplitude for this mode (blue curves in Fig. 4).  

 

 

Figure 4. Piecewise linear fit (PWL) applied to the amplitude envelope and phase of the signal 

(left), and the resulting frequency shift and normalized damping ratio vs normalized amplitude 

(right). 

 

 

 



3. Results & Discussion 

The acceleration response from a single impact reveals several modes, most of which are well-

spaced. The first seven are shown in the frequency response function (FRF) in Figure 5 and 

listed in Table 2. This work focuses on only the first 6 modes. One can see that as mode order 

increases, the amount of nonlinearity and damping increases as well. Therefore, higher impact 

forces are needed to investigate the nonlinear range of the first couple modes, and lower force 

levels are needed for the fourth through sixth modes. The FRF shown here was obtained from an 

impact force of 23 N, which excites minimal nonlinearity in the first three modes and 

significantly affects everything above Mode 4. The curve shown comes from only the bottom 

accelerometer (𝑎2) where both bending and torsion are visible. The first five modes captured are 

out-of-plane bending modes. This excludes the first stiff-direction (or in-plane) bending mode, 

which was not measured, but falls between the third and fourth out-of-plane bending modes. The 

sixth mode is the first torsion mode; however, this mode swaps order with the fifth bending 

mode at forcing levels of greater than about 10 N, due to a strong stiffness nonlinearity that 

causes a large frequency shift. Thus, in Figure 5 the sixth mode shows up as the fifth peak.  

 

 
Figure 5. FRF (H1 estimate) calculated from the response of the bottom accelerometer (𝑎2) and 

the impact force from a 23 N impact, showing the first seven modes of the beam. The frequency 

is normalized by the first mode frequency. 

 

 

Table 2. First seven modes of riveted beam with their deflection type and normalized linear 

frequency. 

Mode # Normalized Linear Frequency Mode Type 

1 1.00 Bending 

2 2.75 Bending 

3 5.32 Bending 

--- ~8.46 Stiff Bending 

1 

7 
5 6 

4 
3 

2 



4 8.69 Bending 

5 12.80 Bending 

6 13.41 Torsion 

7 17.46 Bending 

 

 

Figure 6 shows the relative position of the fifth bending and first torsion modes for three impact 

force levels: 7 N, 16 N, and 198 N. The dramatic frequency shift of the first torsion mode means 

that at some amplitudes, Modes and 5 and 6 are very close or exactly on top of each other, 

making them impossible to separate with a bandpass filter. Although these modes can be 

separated by either averaging or differencing the accelerometer signals, the torsion signal still 

contains a small response at the frequencies of the bending modes. The frequency range of the 

bandpass filter must also be monitored and adjusted to account for the large frequency shifts in 

these modes. This makes the process less automated and more time-consuming. 

 

 
Figure 6. FFTs showing the first 5 modes visible in the bending mode signal 𝑦𝑏 in Eqn. (1) and 

first torsion mode from the torsion signal 𝑦𝑡 in Eqn. (2) for three different excitation levels. 

 

As mentioned, after isolating the torsion mode per Eqn. (2), there is still some energy from the 

bending modes left in the signal, showing up as small peaks at the frequencies of the bending 

modes (see Figure 6). Although small, these small peaks can have a significant effect on the 

Hilbert transform analysis of the sixth mode if they are not eliminated by the bandpass filter. The 

bending modes are not as heavily damped as the torsion mode and have longer decay times. 

Thus, even though they show up at relatively small amplitudes, at some point in the transient 

ringdown they will dominate the decay envelope after the torsion mode has decayed to a low 

enough amplitude. This becomes an issue when Modes 5 and 6 are close enough that they cannot 



be separated with a bandpass filter. Figure 7 shows what the decay envelope looks like in this 

case and the resulting frequency and damping curves. The decay rate of the envelope changes 

abruptly when the fifth bending mode (denoted by the green arrow) becomes dominant, and the 

resulting damping and frequency see a corresponding jump. The frequency jumps from the value 

of the fifth bending mode at low amplitudes (shown in green), to the value for the first torsion 

mode at high amplitudes (yellow).  When this occurs, the jump in the frequency and damping is 

avoided by only curve-fitting the higher-amplitude end of the envelope (the yellow section) 

where the mode of interest is dominant. This limits the low end of the amplitude range for which 

the frequency and damping of this mode can be extracted.  

 

 

 

 
Figure 7. (a) Bandpass filter picking up more than one mode, (b) the amplitude envelope of the 

filtered signal, and (c) the corresponding damping and frequency extracted from the amplitude 

and phase. The first torsion mode is pointed out by the yellow arrows, and the fifth bending 

mode by the green arrows. 

 

 

The amplitude range that can be obtained is also limited on the high end. At high vibration 

amplitudes, many of the peaks become heavily damped, as depicted in Figure 8(a). These highly 

damped peaks are not large compared to nearby modes and other noisy artifacts in the signal. 

The high damping also results in very quick decay times, insomuch that the startup transient 

introduced by the filter is present for the majority of the decay, adding error to the estimated 

damping. The filter effect shows up as small ripples at the beginning of the amplitude envelope 

(before 29s) in Figure 8(b). Both the filter effects and other sources of noise make this mode 

difficult or impossible to curve-fit without capturing too much of the noise, which greatly 

impacts the estimated damping. 

 

(a) 

(b) 

(c) 

(c) 



 
Figure 8. (a) Bandpass filters of two different widths applied to a highly damped Mode 5, and 

(b) the resulting amplitude envelopes. 

 

Despite the above-mentioned limitations, the Hilbert Transform method was able to produce the 

frequency and damping versus amplitude for each of the first 6 modes, which are shown in 

Figure 9. Each curve in Fig. 9 comes from a different impact, with the color denoting the drive 

point used. Each mode shows a softening linearity with a downward frequency shift that 

increases with mode order. For example, for an impact force of 198 N, the frequency shift 

increases from less than 1 Hz for Mode 1, to 14 Hz for Mode 5. Mode 6 has a much more 

dramatic frequency shift, which is greater than 50 Hz for the same impact force level. Frequency 

shifts this large do not show up in Fig. 9(l) because no impacts of this force level were able to be 

processed successfully using the Hilbert transform, due to the limitations discussed earlier in this 

section. However, larger frequency shifts show up in the FFT (see Fig. 6). The damping ratio 

increases with amplitude, with a uniform shift of about one order of magnitude across the first 6 

modes. However, the baseline, or linear, damping increases about an order of magnitude between 

Modes 1 and 6 as well.  

 

The results for Mode 1 are quite good (see Fig. 9(a-b)), showing consistency over a wide range 

of impact force levels (from 20 to 167 N). The curves start to spread apart at their high-amplitude 

end however. Mode 2 exhibits significantly more spread, where the frequency and damping of 

the individual curves converge to different values, and Modes 3 through 6 continue to show a 

large spread as well as a considerable amount of noise.  

 

The noise is a direct result of trying to extract damping and frequency from a noisy phase and 

amplitude envelope, such as that shown in Figure 8(b). Compare Mode 3 with Mode 2 in Figure 

9, where Mode 3 is much noisier than Mode 2. Also notice that the noisier curves tend to come 

from higher amplitude impacts, when the modes become heavily damped and decay quickly, as 

(a) 

(b) 



discussed earlier. For example, in Fig. 9(g), the curves coming from impact forces of less than 11 

N appear cleaner (less jagged) than those from the higher impact levels.  

 

Even more noticeable is the spread in the frequency and damping, where each curve decays to a 

different value, giving the curves the appearance of being stacked on top of one another. The 

variation in damping levels between the curves can be up to half the damping shift seen in an 

individual curve. A similar comparison exists for the frequency curves. One potential cause for 

this spread is modal coupling, a nonlinear phenomenon where the modes influence each other. 

Because the force in the joints depends on the deflection shapes of all the modes, each mode’s 

effective frequency and damping can change due to the other modes. This is evidenced by the 

fact that Mode 1 shows very little coupling, except at the ends. Mode 1 takes much longer to 

decay than the higher modes, as shown in Figure 10. In fact, each consecutive mode decays more 

quickly than the previous mode. Because Mode 1 has a much longer decay time, at some point 

all of the modes except for Mode 1 will have decayed to a low enough amplitude and not 

contribute any more to the frequency and damping of Mode 1 (for example, after 7s in Fig. 10). 

At this point, the spread in Mode 1 disappears. Mode 2 shows significantly more coupling (Fig. 9 

(c-d)), as Mode 1 is active during the entire decay period of Mode 2. However, when the drive 

point is chosen to be on the nodal line of Mode 1, suppressing Mode 1, the spread in Mode 2 

almost entirely disappears. The blue curves in Figure 9 correspond to this drive point. For Modes 

3 and above, no drive point was able to suppress Modes 1-2 when testing Mode 3, nor Modes 1-3 

when testing Mode 4, and so on. If one were to plot the modes of a free-free beam, which this 

structure approximates, one could show that there is no single point that suppresses both Modes 

1 and 2, or any combination of the first 3 modes. However, some drive points are still able to 

reduce the coupling more than others, i.e. the blue curves in the Mode 3 plots and the pink curves 

in the Mode 4 and 5 plots.  

 

Another clue pointing to modal coupling is that the height of each curve appears to depend on 

impact force level. The harder impacts tend to produce the curves with higher levels of damping 

and greater downward frequency shifts; thus the individual curves become sorted in order of 

impact force level, even though the impacts were delivered in no particular order with respect to 

force level. Higher impact forces not only put more energy into the mode of interest, but into the 

other modes as well, which collectively increase the force in the joint and consequently, increase 

the damping and frequency shift observed in the mode of interest. 

 

It is also known that jointed structures can exhibit variability when the joint slips and then sticks 

again in slightly different positions from test to test so that the contact stresses change between 

tests. This is referred to as residual tractions [16], [17], and is a potential contributor to the 

variability seen in the results here.  

 

The purpose of these measurements is to provide accurate experimental data to update and 

validate a finite element model of the riveted beam [8]. It is far easier to simulate an uncoupled 

response, for example by using QSMA [11] which solves for each mode individually. Thus, it is 

desirable to provide experimental data with minimal modal coupling. Looking again at Figure 9, 

the curves with the lowest damping or highest frequency presumably are the least affected by 

mode coupling. Unfortunately, these curves usually come from the lightest impacts, and thus are 

limited to lower amplitudes where less nonlinearity is present.  



 

 

 

 
 

 
Figure 9 Part I. Normalized damping ratio and frequency shift (in Hz) vs normalized amplitude 

for the first 3 bending modes. 

(a) Mode 1 (b) Mode 1 

(c) Mode 2 (d) Mode 2 

(e) Mode 3 (f) Mode 3 



 

 

 
 

Figure 9 Part II. Normalized damping ratio and frequency shift (in Hz) vs normalized 

amplitude for Modes 4-6. 

 

(g) Mode 4 (h) Mode 4 

(i) Mode 5 (j) Mode 5 

(k) Mode 6 (l) Mode 6 



 
Figure 10. Filtered time response of the first five modes in a single impact. 

 

4. Conclusion 

This study used a Hilbert-transform based system identification method to calculate the 

amplitude-dependent frequency and damping of six modes on a riveted beam. The beam 

response was found to contain several modes with greatly varying levels of nonlinearity, as well 

as frequency shifts large enough for modes to swap order. Large variation was observed in the 

damping and frequency of almost all the modes, likely due to modal coupling. System 

identification on this beam highlights some of the challenges associated with applying the 

Hilbert transform method to a system exhibiting highly nonlinear modes, modal interactions, and 

closely-spaced modes. Despite these challenges, the amplitude-dependent frequency and 

damping were calculated for all six modes. However, as mode order increases, the amplitude 

range that can be analyzed becomes increasingly limited. At high excitation levels, many of the 

modes become so highly damped that they are difficult to distinguish from noise and are 

dominated by filter effects; higher excitation levels also cause more modal interactions, which is 

not ideal for model updating. For some modes, the lower amplitude end of the ring-down 

becomes dwarfed by more dominant modes nearby. This is a limitation introduced by using a 

bandpass filter to separate modes.   

 

Future work includes trying new measurement techniques and postprocessing strategies. 

Measurement methods based on shaker excitation can target a single mode and may be able to 

reduce modal interactions significantly. A more rigorous filtering process, such as that proposed 

in [7] may help to reduce the influence of the filter, allowing data with very sharp decay rates to 

be extracted more accurately. A system identification method that can fit multiple modes at once, 

such as simultaneous time-fitting [18] may be more successful at dealing with the closely-spaced 

modes observed in this work.  
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