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Abstract

In multi-input systems, it is often necessary to quantify the contribution of each input to an output. Such
contribution analysis is frequently performed using a family of measures known collectively as coherence.
However, when correlation is present between inputs, existing coherence measures do not accurately quantify
the contribution of individual inputs, except in special cases. Here we propose an expanded coherence
framework that enables contribution analysis in any multi-input system, regardless of input correlation.

We bridged the gap by defining three new coherence measures: component, excluded, and isolated coherence.
Component coherence is an intermediate measure that decomposes measured output power into components
attributable to inputs directly vs to interference between inputs. Strategically summing component coherence
terms yields contributions from individual inputs, defined as either excluded coherence (the portion of the
output that would be removed if a given input were excluded) or isolated coherence (the portion of the output
that would remain if a given input were isolated). To demonstrate, we simulated a three-input mechanical
system and compared both existing and novel coherence measures to the known contributions at varying levels
of input correlation.

Only excluded and isolated coherence accurately estimated the true contributions at all levels of input
correlation. Even when existing coherence measures accurately estimated true contributions, novel measures
did the same, but with less random error. These new coherence measures represent a generalization of the
existing framework; together with existing coherence measures, they enable accurate contribution analysis in
multi-input systems regardless of input correlation.
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1 Introduction

Multiple-input systems are common in nature and engineering, and it is often desirable to understand how
much each input contributes to an output. Examples of such systems include vibrations of various vehicle
components generating observable acoustic noise for the driver [1], seismic ground motions causing rhythmic
deformation of a structure [2], tremorogenic activity in multiple muscles producing tremor at the hand [3], and
more [4-11]. In such situations, it is often of interest to identify how much each input contributes to the output
to aid in targeted intervention that will maximally reduce the output response. In sum, estimating the
contribution of individual inputs (frequently referred to as contribution analysis [1, 4, 5]) is a common problem.

In the simple case of uncorrelated inputs, contribution analysis can be accomplished in a straightforward
manner using ordinary coherence [12]. Ordinary coherence is essentially a correlation performed in the
frequency domain, returning a value between 0 and 1 that quantifies how linearly related two signals are as a
function of frequency [13, 14]. If the two signals are (a) the input and output of a single-input system or (b) an
input and output of a multi-input system with uncorrelated inputs, ordinary coherence between the two signals
further represents the portion of the output that can be attributed to (i.e. caused by) the input [12]. In many
multi-input systems, inputs are either naturally uncorrelated at a given frequency or, as is the case with most
engineering systems, inputs can be controlled and made to be uncorrelated. In such systems, ordinary
coherence is an obvious choice for contribution analysis. However, when inputs are mutually correlated,
contribution analysis becomes significantly more challenging.

When inputs to a multiple-input system are correlated, special cases of contribution analysis can be performed
using existing coherence measures. First, ordinary coherence provides an upper bound for the portion of the
output that could be attributed to a given input [15]. Second, if correlation between inputs is thought to be the
result of causal relationships between inputs, then partial coherence, which utilizes an iterative conditioning
approach to redistribute the correlated portions of each input to their assumed sources, can be used to
decompose the output into distinct contributions from each input [12]. Third, virtual coherence transforms the
measured inputs into a set of “virtual” uncorrelated inputs and decomposes the output into contributions from
each of these new inputs, but these contributions cannot be related back to the original inputs, so this method
is primarily used simply to determine how many uncorrelated sources contribute significantly to the output [16].
Fourth, multiple coherence, which describes the frequency-dependent correlation between the full set of inputs
and the output, can be used to determine the contribution of all inputs collectively [12].

Although useful in special cases, none of these existing measures is able to estimate the true contribution of a
given input in the general case of correlated inputs. Existing coherence methods either ignore correlation
between inputs (ordinary coherence), mathematically remove correlation between inputs, creating new inputs
(partial/virtual coherence), or make no attempt to distinguish between correlated inputs (multiple coherence).
Therefore, existing coherence measures cannot be used to perform contribution analysis for a multiple-input
system with correlated inputs if (1) inputs cannot be controlled, (2) an upper limit on contribution is not
sufficient, (3) contributions must be identified for individual inputs, and (4) contributions must be identified in
terms of the original measured inputs.

Hence, the purpose of this work was to develop a new method of contribution analysis that accounts for
correlation between the original, measured inputs and decomposes the output into contributions that can be
directly attributed to each input. To this end, we have created a set of novel coherence measures as well as a
generalized coherence framework to understand the relationships between existing and novel coherence
measures. This framework allows for general contribution analysis of multiple-input systems with correlated
inputs.



2 Analytical Methods

Throughout this paper, in keeping with the standard terminology of the field [12, 17], the term “input
correlation” always refers to inter-input coherence. This clarification is necessary because correlation in the
time domain does not imply coherence in the frequency domain, nor does a lack of correlation imply a lack of
coherence [18].! When a robust quantification of input correlation is required, we use inter-input multiple
coherence, which describes the coherence between a given input and the full set of other inputs (excluding the
given input), i.e. the portion of the given input that can be recreated as a linear combination of all other inputs.?

2.1 Existing coherence measures and their interpretations in multiple-input systems with correlated
inputs

To demonstrate how novel coherence measures relate to existing measures, we first describe existing

coherence measures.

2.1.1 Ordinary Coherence

Ordinary coherence can be defined and interpreted in at least two ways [12]. First, ordinary coherence (y,?y)
between two signals (x and y) is most often calculated at a given frequency (f) as the magnitude-squared cross-
power spectral density (CPSD) of the two signals (G,,,) normalized by the auto-power spectral densities (PSDs)
of both signals (Gyx and G, [12]:
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Alternatively, and perhaps more intuitively for describing input-output relationships (with x representing the
input signal and y representing the output signal), ordinary coherence can be expressed as a ratio of estimated

to measured output power, where the estimated portion is found by passing the measured input through a
single-input (SI) optimum frequency response function (FRF) denoted as Ly, (Figure 1A):
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For this formulation to equal the standard formulation, the estimated FRF must be the SI optimum FRF that
minimizes the error between estimated and measured output power, often referred to as the H; estimator [12,
14]:

y)?y(f) = (1)
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Under this formulation it is clear that ordinary coherence describes the portion of the measured output
optimally® caused by the measured input, assuming that input and output are related via a Sl linear system.

Lyy(f) = (3)

1 Because coherence analysis is performed in the frequency domain, input correlation must be determined independently for all
frequencies, such that a single set of inputs may be considered uncorrelated at some frequencies and correlated at others. For a set
of inputs to be considered uncorrelated at a given frequency, ordinary coherence at that frequency must be zero between all input
pairings.

2 |Inter-input multiple coherence is calculated in the same way as multiple coherence between inputs and an output (see section 2.1.4)
but with the given input removed from the input set and treated as the output.

3 Here and throughout the remainder of the paper, any reference to optimality refers to the definition of an optimum frequency
response function, i.e. the linear system that minimizes error between the estimated and measured output power for a given set of
measured input(s) and output. The optimum FRF is equivalent to the true system to the extent that the true system is linear and time-
invariant, there are no unmeasured inputs that are correlated with measured inputs, output noise is uncorrelated with all inputs, and
input noise is negligible [12].



Ordinary coherence can still be calculated for each input to a multiple-input (MI) system by applying Equation
(1) or Equation (2) to each input, but if correlation is present between inputs, then ordinary coherence only
provides an upper bound for the contribution of a given input to the output [15]. Ordinary coherence is always
calculated assuming a Sl relationship, even when a system is known to have multiple inputs. If an input is
uncorrelated with all other inputs, then ordinary coherence between that input and the output describes a
distinct portion of the output power that can only be attributed to the given input, and the ordinary coherence
value can still be interpreted as the portion of the output caused by that input [12]. If all inputs are mutually
uncorrelated, then ordinary coherence describes the distinct contribution of each input, and the set of ordinary
coherence values will sum collectively to a value less than or equal to one, resulting in an ideal output
decomposition? (Figure 1B) [12]. On the other hand, if correlation exists between the given input and other
inputs, the SI optimum FRF does not take the possible contributions of other inputs into account; the error
between power estimated from the given input and the measured output power is minimized, thereby
maximizing ordinary coherence and providing an upper bound on the contribution from that input. In this case,
the collective sum of ordinary coherence values is no longer constrained to be less than one, and the true output
decomposition remains unknown (Figure 1C). In other words, in a Ml system with correlated inputs, ordinary
coherence describes the portion of the measured output optimally caused by the measured input and anything
correlated with it.

2.1.2 Partial Coherence

Partial coherence addresses the issue of correlated inputs by assuming that correlation is the result of causal
relationships between inputs [12]. If it is believed that correlation between inputs is present because causal
relationships exist between inputs, then a conditioning approach can be employed to obtain a new set of
uncorrelated inputs, where all original correlation has been attributed to its assumed source. This conditioning
is accomplished by assigning an order to the inputs and progressively removing the portion of each subsequent
input that is correlated with any previous input [12, 19]. Partial coherence (yizy_(i_l)!) is then calculated as the
ratio of estimated to measured output power, where the estimated portion is found by passing a conditioned
input through its SI optimum FRF:

|Liy.(i_1)!(f)|ZGii-(i—1)!(f) (4)
Gyy (f)

Following the notation in [12], the " - " symbol is read as “conditioned on” or “uncorrelated with”, and (i — 1)!
represents “all previous inputs”, such that Vizy-(i—1)! indicates the coherence between input i and output y,
where input i has been conditioned on all previous inputs. In general, partial coherence describes the portion
of the measured output optimally caused by the measured input and anything correlated with it, excluding
anything already correlated with previous inputs.

)/izy-(i—l)! (f) =

The results of a partial coherence analysis are highly dependent on the selected ordering of inputs, particularly
if input correlation is high. Various methods have been proposed for selecting the ordering of inputs. Ideally,
causality between inputs can be determined simply based on an understanding of the physical nature of the
system itself [12]. Other proposed methods to estimate causal relationships include investigating phase
relationships using the Hilbert transform [20] or signal lead/lag via cross-correlation in the time domain [12], or
ordering inputs from largest to smallest ordinary coherence [12]. Importantly, if the input order does not

4 We define an output decomposition as any breakdown, as a function of frequency, of the measured output PSD into portions that
can be attributed to different sources (measured inputs, conditioned inputs, noise, etc.). Contribution analysis performed using
coherence measures always results in an output decomposition. An ideal output decomposition is one whose individual components
are distinct (i.e., each component can be attributed exclusively to a single source) and sum collectively to the multiple coherence
(2.1.4). Partial coherence (2.1.2) and virtual coherence (2.1.3) both yield ideal output decompositions, but ordinary coherence (2.1.1)
only provides an ideal output decomposition if inputs are uncorrelated.



correctly represent true causal relationships, then partial
coherence results represent simply a mathematical
convenience rather than the true output decomposition.

2.1.3 Virtual Coherence

Virtual coherence (sometimes called fractional
coherence) uses eigenvalue decomposition or singular
value decomposition to transform the set of correlated
measured inputs into a new set of “virtual” uncorrelated
inputs (for details, see [16, 21]). The output power can
then be decomposed into distinct contributions from
each of these virtual inputs using the same formulation as
ordinary coherence. However, virtual inputs do not retain
information regarding the original correlated inputs, so
the resulting contributions cannot be interpreted in terms
of the measured inputs [20]. As such, the primary use of
virtual coherence is simply to identify the number of
distinct, uncorrelated sources that contribute to the
output [16, 20]. Because virtual coherence does not
perform contribution analysis in terms of the original
inputs, no further discussion of this measure is included
here.

2.1.4 Multiple Coherence

Multiple coherence describes the portion of the output
collectively caused by all inputs [12]. It can be calculated
using Ml optimum FRFs, which are the FRFs that minimize
the error between estimated and measured output
power while taking the contribution of all inputs into
account simultaneously. These MI optimum FRFs (H;,)
are calculated for a g-input system as the Ml extension of
the H; estimator presented in Equation (3) [12, 14]:
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Importantly, if inputs are uncorrelated, all off-diagonal
cross-power terms are zero, such that each Ml optimum
FRF calculated using Equation (5) is equivalent to the
corresponding SI optimum FRF (i.e., Hy, (f) = Ly, (f) if
inputs are uncorrelated) [12]. Whether or not inputs are
correlated, multiple coherence (y;.,) can be calculated as
the ratio of estimated to measured output power, where
the estimated power is found by passing all inputs
through their respective Ml optimum FRFs and calculating
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Figure 1. Graphical representation of ordinary coherence in systems
with one input (A) or two inputs (B-C). A) In a single-input system,
ordinary coherence describes the portion of the measured output
power caused by the input via a single-input frequency response
function (SI FRF). B) In a multiple-input system with uncorrelated
inputs, the ordinary coherence associated with each input describes
the distinct portion of the measured output power caused by each
input. C) In a multiple-input system with correlated inputs, ordinary
coherence cannot decompose output power into distinct contributions
from each input, instead providing an upper bound on the
contribution from each input. The area within each black-bordered
box represents the total measured power of an output, and each
colored shaded region represents the portion of the output power
attributed to a given input by ordinary coherence. The sideways
hourglass symbol represents the calculation of power for the given
signal.



the power of the result (Figure 2A). Equivalently, to
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inputs and the portion that cannot [12]. As SUCh, it is a Figure 2. Graphical representation of multiple coherence in a system

with two inputs. Multiple coherence describes the portion of the

useful measure in identifying system nonlinearities or
noise [17] and provides an upper bound on all other
existing coherence measures, but these are largely the
extent of its applications.

2.2 Novel Coherence Measures
Given the limitations of existing coherence measures in

output power caused by all inputs collectively. It is calculated by
passing each input through its respective multiple-input frequency
response function (Ml FRF), followed by either (A) summing the
outputs and then calculating the power of the resulting sum, or (B)
calculating the power of each output and the cross power between
them and then summing all terms. Thus, A and B are equivalent
representations. The power symbol (sideways hourglass, see Figure 1)
with two input signals represents the calculation of both cross power
terms between the two signals.

systems with correlated inputs, we propose a set of new

coherence measures that account for correlation between the original measured inputs and estimate the true
contribution of each input. To provide an intuitive understanding, we first present a conceptual explanation of
these novel coherence measures, including a graphical representation of the simple 2-input case (Figure 3). We
then expand this explanation to the general g-input case, with mathematical derivation and definition of each
coherence measure.

2.2.1 Conceptual explanation

In a 2-input system with correlated inputs, the output can be decomposed into distinct components using a
novel coherence measure which we propose to call component coherence. In such a system, each input passes
through an FRF to generate a component of the output; these components then combine to create the total
output. However, because the inputs are correlated these output components are also correlated, so
interference between them affects the power of the resulting output. As a result, the total output power can
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Figure 3. Graphical representation of novel coherence measures in a system with two inputs. Component coherence describes the portion of the
output power that can be attributed to an input directly (ordinary component) or to interference between inputs (cross component) after the inputs
pass through their respective multiple-input frequency response functions (Ml FRFs). Isolated coherence describes the contribution that an input
would make in isolation (i.e., in the absence of other inputs) and is equivalent to ordinary component coherence in this case. Excluded coherence
describes the contribution that an input would make if it were excluded (i.e., the output power that would be removed if the input were removed)
and is the sum of ordinary and cross component coherence in this case. Summing all component coherence terms gives multiple coherence.

be decomposed into three distinct portions: power directly from input 1, power directly from input 2, and power
due to interference between them (Figure 3; blue, red, and purple shaded regions, respectively). Dividing the
portions of power that come directly from a given input by the total measured output power defines a first type
of component coherence which we call ordinary component coherence (Figure 3; blue and red shaded regions).
Similarly, dividing the portion of power due to interference between the inputs by the total measured output
power defines the second type of component coherence, called cross component coherence (Figure 3; purple
shaded regions). Because interference can be constructive (power increases when signals are combined) or
destructive (power decreases when signals are combined), the contribution due to interference, described by
cross component coherence, may be positive or negative. Similarly, because destructive interference decreases
the total power of the output, it is possible for the power contributed directly by a single input to be greater
than the total resulting output power, indicated by an ordinary component coherence value greater than one.

Using component coherence, we can estimate the full contribution of each input using two additional novel
coherence measures, which we will call excluded coherence and isolated coherence (Figure 3; brackets). Since
a portion of the output power cannot be attributed exclusively to one of the inputs, but rather must be
attributed to interference between them, we must more clearly define what is meant by contribution. A first
possible definition of contribution, estimated using excluded coherence, is the portion of the total output power
that would be removed if a given input were excluded. In the 2-input case, excluding a given input would remove
the power it contributed directly to the output and the power it contributed through interference with the other
input; as such, excluded coherence for a given input is calculated as the sum of the ordinary component
coherence for that input and the cross component coherence between the inputs (importantly, the same cross
component coherence portion is included in the excluded coherence for both inputs). Alternatively, another
definition of contribution, estimated using isolated coherence, is the portion of the total output power that
would remain if a given input were isolated (i.e. without all other inputs). If a single input were isolated, no
interference would occur, so isolated coherence in this case is equivalent to ordinary component coherence
(the more general case, in which isolated coherence differs from ordinary component coherence, is
demonstrated in 2.2.2.3).



2.2.2  Mathematical derivation

Before presenting the details of these novel measures, we must highlight an important deviation from the
standard concept of magnitude-squared coherence. All existing coherence measures are considered magnitude-
squared coherence measures [12, 13, 22]. The concept of magnitude-squared coherence stems from the most
common formulation of coherence as the magnitude-squared CPSD of the two signals, normalized by the PSD
of both signals (Equation (1)) [13]. This definition of coherence is emphasized by the use of a lowercase gamma
squared (y?) to denote all existing coherence measures. One of the most useful properties of magnitude-
squared coherence is that these measures are bounded between zero and one [17]. However, for the purposes
of estimating contributions in Ml systems, magnitude-squared coherence is a limiting notion. In practice, as
demonstrated in the following sections, it is not only useful, but also physically correct to consider contributions
greater than one (where a given input contributes more power than that present in the measured output) and
contributions less than zero (where the net effect of an input is to decrease power in the output). To avoid
confusion, we present these novel coherence measures as contribution coherence measures (as opposed to
magnitude-squared coherence measures) and denote them using a capital gamma without the square (I').
Contribution coherence relies on the formulation of coherence used throughout this paper as a ratio of
estimated output power to measured output power, where estimated output power may be larger or smaller
than the measured power, positive or negative, and either real or complex. Note that, as demonstrated in 2.1,
all existing coherence measures may also be considered contribution coherence measures when calculated for
input-output relationships.

2.2.2.1 Component Coherence

Output power can be decomposed into components of power and cross power, associated with inputs and pairs
of inputs respectively [12]. In the frequency domain, the value of the output of a g-input system at a given
frequency can be calculated as the sum of each input (X;(f)) passed through its FRF (H;, (f)), plus a noise term
(N(f)) that accounts for any deviation from the ideal linear model (including nonlinearities, unmeasured inputs,
and measurement noise) [12]:

q
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To calculate the power of the output at each frequency and the corresponding output power decomposition,
each side of Equation (7) is multiplied by its conjugate to yield the following, where dependence on f has been
omitted to simplify notation:

q
Z Hi,X; +N*
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At this point, each instance of a conjugate signal multiplied by another signal can be replaced with the
corresponding PSD or CPSD to result in a decomposition of the output PSD in terms of PSDs and CPSDs of and
between inputs and the noise term (dependence on f is again omitted):
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This result can be further simplified if the FRFs in the formulation represent optimum FRFs (Equation (5)), which
guarantee that N(f) will be uncorrelated with all inputs [12], making any cross-power term between N(f) and
an input go to zero and eliminating the two single summations from Equation (9):
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Gy () = ). Y Hiy(DH iy (G () + Gan () (10)

i=1j=1



Here, the double summation represents the portion of the measured output that can be linearly attributed to
the full set of measured inputs, which if normalized by the total measured output power (G,,, (f)) provides the
formulation for multiple coherence (Equation (6)):

X HY (DH (DG ()
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An ideal output decomposition now becomes evident, consisting of q real power terms (i = j) that each
represent power associated with a single input, and g(q — 1) complex cross-power terms (i # j) that each
represent cross-power associated with interference between a pair of inputs; we will refer to these terms, each
normalized by the output PSD, as ordinary component coherence and cross component coherence, respectively.

Vyx(f) = (11)

Ordinary component coherence (I};,,) describes the portion of the measured output power contributed directly
by an input. It is defined as the ratio of estimated to measured output power, where the estimation is made by
passing the input through a Ml optimum FRF:
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The value of this measure is always greater than zero (because power is positive) but has no upper bound.
Ordinary component coherence describes the portion of the measured output optimally caused by power
directly from an input.

(12)

iy (f) =

Cross component coherence (I};,,) can be used to describe the portion of the measured output power that can
be attributed to interference between a pair of inputs. It is defined as the ratio of estimated output cross power
to measured output power, where the estimation is made by passing a pair of inputs through their respective
MI optimum FRFs and then calculating the cross power between them:

Hy, (f)Hjy ()G (f)
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Individual cross component coherence terms are complex, and therefore do not have a clear physical
interpretation. However, when conjugate cross component coherence pairs (i.e., Fijy(f) and [}iy(f)) are
summed, the result is a real-valued term describing the portion of the measured output optimally caused by
interference between a pair of inputs. As mentioned previously, the value of this sum may be positive or negative
to describe constructive or destructive interference, respectively. The magnitude of this sum is always less than
or equal to the sum of ordinary component coherence for the two inputs involved (constructive interference
can increase power no more than double and destructive interference cannot decrease power below zero, see
Supplemental Materials):

Ty (F) + Ty (| < Ty () + Ty () (14)

2.2.2.2 Excluded Coherence

By summing component coherence terms, we can define excluded coherence, which describes the portion of
the measured output power that would be removed if a given input were excluded. For a given input, excluded
coherence (I'_;,) is calculated as the sum of all component coherence terms that would go to zero if the input
were removed; this includes the ordinary component coherence for the input, plus all cross component

coherence terms involving the input:
a q
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where the symbol V represents the logical “inclusive or” operator, indicating that terms are summed if j = i or
k=1 or j=k =i. Excluded coherence describes the portion of the measured output power that would
optimally be removed if the input were excluded.

Excluded coherence can also be defined for a subset of inputs. The definition remains unchanged but is now
expressed in terms of any subset of inputs, X¢ = {X,, X, X,, ... }:
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Excluded coherence for a subset of inputs represents the portion of the measured output power that would
optimally be removed if the subset of inputs were removed.

There is no lower bound for excluded coherence, but excluded coherence can be no greater than one.
Conceptually, excluded coherence can be no greater than one because removing a given input or subset of
inputs can remove no more than 100% of the output power (i.e., the resulting output power must still be
positive). In general, multiple coherence serves as the upper bound for excluded coherence (see Supplemental
Materials). However, when excluded coherence is calculated for a single input, ordinary coherence serves as a
more restrictive upper bound (see Supplemental Materials). A negative excluded coherence value indicates that
output power would increase if the given input were removed (because of destructive interference).

2.2.2.3 Isolated Coherence

Like excluded coherence, isolated coherence is defined as a summation of component coherence terms,
describing the portion of the output power that would remain if an input were isolated. Isolated coherence
(I+y) for asingle input is equivalent to ordinary component coherence, as this is the only component of output
power that would remain if a single input were isolated:

Lyiy (F) = Ly (f) (17)

For a subset of inputs, isolated coherence is calculated as the sum of all component coherence terms that would
remain if that subset of inputs were isolated; this includes ordinary component coherence for each input plus
all cross component coherence terms between inputs within the subset:
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Here, the symbol A represents the logical “and” operator, indicating that terms are summed if j € Sand i € S.
In all cases, isolated coherence is greater than zero (because isolated coherence describes power remaining
when inputs are isolated, which is always positive), with no upper bound. Isolated coherence represents the
portion of the measured output power that would optimally be contributed by the given input or set of inputs
if no other inputs were present.

2.3 Generalized Coherence Framework

These novel coherence measures represent more than just an alternative toolset for analyzing correlated Ml
systems; they stand as a generalization of the existing coherence framework (Figure 4).

ALL coherence measures can be expressed as a ratio of estimated to measured output power (the most general

definition of coherence):

Estimated Output Power

Coh =
ONETENCe = Measured Output Power (19)




Table 1. Properties of existing and novel coherence measures (novel measures are marked with *). The novel coherence measures (ordinary
component, cross component, excluded, and isolated coherence) bridge the gap between existing coherence measures (ordinary, partial, virtual,
and multiple coherence). Frequency response function (FRF) type is either single input (SI) or multiple input (M), calculated using Equation (3) or
Equation (5), respectively.

Coherence Type (l::t:nmpbuetl; Input Type Power Type :ylre Notation Bounds
Ordinary Single Measured Auto SI yizy 0< yizy <1
Partial Single Conditioned Auto S| yizy.(i_l)! 0= yizy-(i—l)! <1
Virtual Single Virtual Auto SI yi%:y 0< )/L-zr:y <1
Ordinary Component* Single Measured Auto Ml iy 0<Ty <o
Cross Component* Pair Measured Cross Ml Lijy 0 < [2Re(T}jy)| < Ty + Ty
Excluded* Single Measured Combined Ml Iy —0 <[ < yizy
Excluded* Subset Measured Combined Mmi [y —00 < T_gy < ¥
Isolated* Single Measured Auto Ml Ly 0<Tyy <o
Isolated* Subset Measured Combined Ml Fysy 0<Tg <o
Multiple Full Set Measured Combined Ml yyz;x 0< yi;x <1

This formulation highlights the fact that all coherence measures share the same fundamental interpretation,
describing the portion of output power contributed by an input. Differences between measures arise in the
types of inputs, types of FRFs, and types of power used for estimation (Table 1).

Component coherence is the general coherence measure from which all other coherence measures can be
derived (Figure 4). Within component coherence, ordinary component coherence can be derived from cross
component coherence by simply calculating cross power between a signal and itself (i.e., auto power). When
conditioned inputs are substituted in place of measured inputs, ordinary component coherence becomes partial
or virtual coherence, depending on which conditioning method is used. If measured inputs are uncorrelated to
begin with, then ordinary component, partial, and virtual coherence are all equal to ordinary coherence.
Summing component coherence terms (ordinary and cross) relevant to a single input or subset of inputs yields
excluded or isolated coherence, depending on which summation scheme is used. Isolated coherence for a single
input is equivalent to ordinary component coherence. Excluded coherence and isolated coherence are both
equivalent to multiple coherence when calculated for the full set of inputs. In other words, multiple coherence

Contribution from a single  Contribution from the

Contribution from a input or subset of inputs full set of inputs
single uncorrelated input (regardless of correlation) (regardless of correlation)
T T ™ ST TT T T y T T T T T T \
Uncorrelated
. Input i
Ordinary je——2= Ordinary o
ry Component Xxclude
Uncorrelated R Same @ | (Sum over input subset) Multiple
Inputs " ;
- Conditioned crosh;put Isolated (Sum over all inputs)
Partial |  inputs c (Sum over input subset)
. < omponent
Virtual P 1
——

®

Figure 4. Generalized coherence framework, including relationships between existing coherence measures (black) and novel coherence measures
(red). Cross component coherence can be used to derive all other coherence measures. Cross component coherence calculated between an input and
itself gives ordinary component coherence, which further simplifies to ordinary coherence if inputs are naturally uncorrelated, or to partial or virtual
coherence if inputs are mathematically uncorrelated via a conditioning process. Excluded and isolated coherence are obtained via strategic
summation of component coherence terms, both of which simplify to multiple coherence when calculated for the full set of inputs. Multiple
coherence can also be obtained by summing ordinary (if inputs are uncorrelated), partial, or virtual coherence across the full set of inputs.



is calculated as the full sum of all component coherence terms for a given system; similarly, multiple coherence
can be calculated as the sum of all partial or virtual coherence terms for a conditioned system or as the sum of
all ordinary coherence terms if the original measured inputs are uncorrelated. If measured inputs are
uncorrelated, cross component coherence terms all go to zero and all other coherence measures for an
individual input simplify to ordinary coherence (including isolated and excluded coherence).

Excluded and isolated coherence are the only measures that estimate all true contributions in any system,
regardless of input correlation (Figure 4). Ordinary, partial, and virtual coherence can only describe the
contribution of a single uncorrelated input; in the case of ordinary coherence, measured inputs must be
uncorrelated to begin with, while partial and virtual coherence conditioning processes guarantee uncorrelated
inputs (at the expense of interpretation). Multiple coherence can only describe the contribution of a full set of
inputs, but this does hold regardless of input correlation. Excluded and isolated coherence bridge this gap by
estimating the contribution of any input or subset of inputs in any system, regardless of input correlation.

3 Simulation Methods

k
3.1 System 2 vy
7 Yyyy
To demonstrate the performance of these novel 7 [E
coherence measures and compare with existing 5 f_"’zl Co4 f‘m
measures, we simulated the behavior of a known mass- ﬁ ! var:v
spring-damper model with three force inputs (Figure 5). ? ﬁo& —Z7 €14 K4
The modeled system included four masses, three of which 4 W' | m, fo AL my
L
served as sites for force input, while the displacement of ; Co1 ks — 73 Ca4
the fourth mass represented the system output. A parallel 4 MWW f3=
Y, —F—{ ™2
spring and damper were modeled between each possible 2 ko2 L L C12 ks Kss
pairing between masses and between each mass and 5‘\.‘\,‘»,‘, ) AW MW
ground. Parameter values for each mass, spring, and 5'{[ LE L
g ‘A Coz k13 €23 ms €34 b=y
damper were randomly selected from a uniform 5 W
distribution with limits selected based on parameter type % ko3 C'C"-?:
. . 1
to result in an underdamped system with natural /, W
frequencies below 50 Hz (masses: 0.1 to 1 kg, dampers: 3 S—CE[
03

to 30 N:s/m, springs: 1 to 10 kN/m). Parameter values

used in the final model are shown in Table 2. The Figure 5. Modetled mass‘—fprmg—damp‘er system used in simulation.
. . . . . Masses, damping coefficients, and stiffnesses are denoted by m, c,

equations of motion for this system can be written in and k, respectively. Force inputs (f) are shown in blue and

matrix form as: displacement outputs are shown in green. The displacement denoted
. . by y represents the output of interest, whereas those denoted by z
MZ(t)+ CZ(t) + KZ(t) = F(t) (20) are included for modeling purposes only.

where F(t) = [f;(t) fo(t) f;(&) 0]7 and Z(t) = [z,(t) 2z,(t) 2z3(t) y(t)]T are the forces on the
masses (inputs) and displacements of the masses (outputs), respectively. The mass, damping, and stiffness of
the system are:

m; 0 0 O €1 —Ci2 —Ci3 —Cia ki —kiz —kiz —ki
M= 0 m, O 0 C= —Ci2 €2 —C3 —Cp4 _ —kiz ks —kaz —koy
0 0 mgy O} —Ci3 —C3 €3 —Cauf’ —ki3 —kyzs ks —ksy
0 0 0 my —Cia TCq (3 Gy —kis —kys —kzs ks
C1 Cor +C12 +C13 +C14 kq ko1 + kiz + kq3 + kqg
C2 Coz T C12 + Ca3 + Cay k;, koz + kiz + ka3 + kas
where = and = .
C3 Coz + C13 + Ca3 + C3y & kos + ki3 + ko3 + ksy
Ca Cog T C14 t Coa + C34 k4 kos + kia + Koy + K3y



3.2 Inputs and output
To highlight the performance of novel and existing Table 2. Simulated system parameters. M, C, and K represent mass,
coherence measures under varying levels of input @@mping, and stiffness, respectively.

correlation (inter-input multiple coherence), we designed N-s kN/
. . . M [kg] [N 5/n] K [N /]
four different sets of the three simulated force inputs,
each set having a different level of input correlation: my = 0.6 o1 = 21 ko = 8.3
minimal correlation (Case 1), moderate correlation (Case m, = 1.0 Cop = 24 ko, = 2.4
2), high correlation (Case 3), and high correlation between
. . . m3 = 0.8 C03 =13 k03 = 58
inputs 1 and 2 but not 3 (Case 4). In addition, we wished
to demonstrate the performance of novel and existing m, = 0.9 Coq =20 kos = 3.5
coherence measures under different levels of input- C1, =6 ki, = 5.0
output multiple coherence, so we designed the four cases R Kon = 6.5
. . . 13 — 13 — Y-
to have high input-output multiple coherence
(representing favorable measurement conditions) over C1a = 14 ks =98
one frequency band (below ~35Hz) and low input-output C3 =6 ks =56
multiple coherence (representing poor measurement Cpa =5 Ky, = 2.0
conditions) over another frequency band (above ~35 Hz).
C34 = 8 k34 = 8.4‘

In each of the four cases, the inputs and output were
created as follows (Figure 6).

3.2.1 Generation of correlated inputs

Four independent, white gaussian noise signals were generated using MATLAB’s randn function, each 40
seconds in duration with a sampling frequency of 1000 Hz. Each signal was lowpass filtered using a 16%-order
Butterworth filter with cutoff at 35 Hz so that the later addition of measurement noise (see below) would cause
the 35-50 Hz band to be dominated by noise, resulting in low input-output multiple coherence in that band. The
cutoff of 35 Hz was selected to ensure that high-quality signals were passed at the prominent natural
frequencies of the system (below ~35 Hz) while still demonstrating the behavior of poor-quality signals at
frequencies where inputs were not completely attenuated by the system (~35-50 Hz); the high filter order
provided a steep cutoff to clearly distinguish these two bands (a 4"-order filter was also tested and results were
unaffected).

In each of the four cases, these four independent, filtered signals were then combined using a mixing matrix, 4,
to generate the three inputs to the system with the desired level of input correlation. Each parameter a; was
selected as a number between zero and one describing
the fraction of shared signal to be included in input i.

vV
1 _ a1 0 O a1 SNR100 .
A= 0 1-a, 0 a W —| LPF || A F~——5 System 1—> Yerue
\1l/
0 0 1—a3 a3
In each of the four cases, the correlation level was defined 4 Y
in terms of the desired level of mean inter-input multiple VSNR10 69 VSNR10 69
coherence below 35 Hz (the band of high-quality signal), Fpoas Yynons

and parameter values (a;) were selected to achieve the . . . ,

] o ) Figure 6. Simulation process. True correlated force input signals
desired values (Table 3). Minimal correlation (Case 1) was (F,,,,.) were generated (blue box) as gaussian white noise signals
obtained when no mixing occurred (a|| a; = 0)’ resulting (W) passed through a low-pass filter (LPF), mixed according to
in inter-inout multiole coherence values of approximatel mixing matrix A to generate desired levels of correlation, and

P P ] I_Op . y combined with noise (v) at a signal-to-noise ratio (SNR) of 100 to
0.14. Moderate correlation (Case 2) was defined as inter- effectively eliminate correlation above the filter cutoff frequency.
input multiple coherence of approximately 0.50 (a|| a; = The true force inputs were passed through the system to generate

. . . . the true output (Yi,0). Measurement conditions were simulated by
0.55), and high correlation (Case 3) was defined as inter adding noise to both the inputs and output at a SNR of 10,

input multiple coherence of approximately 0.90 (all a; = generating measured inputs (Eyeqs) and output (Yimeas)-



Table 3. Levels of inter-input correlation used in simulations

Input Correlation Level Mean Inter-Input Multiple Coherence (0-35 Hz) Parameters
Case 1: Minimal Correlation ~0.14 a,=a,=az=0
Case 2: Moderate Correlation ~0.50 a; =a, =asz = 0.55
Case 3: High Correlation ~0.90 a; =a, =as3=0.79
Case 4: High Correlation Between Inputs 1 & 2 Inputs 1 & 2: ~0.90, Input 3: 0.13 a, =a, =081, a; =0

0.79). Additionally, high correlation between inputs 1 and 2 but minimal correlation with input 3 (Case 4) was
included (a; = a, = 0.81,a; = 0) to analyze the performance of coherence measures when correlation is
present between only some of the inputs. To effectively eliminate input correlation above 35 Hz, we added
additional noise to each input at a signal-to-noise ratio of 100.

3.2.2 True inputs and outputs
In each of the four cases, we used MATLAB’s Isim function to find the true response (output signal, y) of the
mass-spring-damper system to these three input signals (Figure 6).

3.2.3 Addition of measurement noise

Additional noise was added to the inputs and output to represent measurement noise, each resulting in a signal-
to-noise ratio of 10 (Figure 6). To remove the effects of transient response, the first 10 seconds of each input
and output signal were discarded, leaving only the final 30 seconds for further analysis.

3.3 Contributions
The following processing steps were performed for each of the four cases of input correlation.

3.3.1 True contributions
True contribution values were found by selectively excluding or isolating inputs and comparing the resulting
outputs to the original output, using the true (noise-free) input and output signals. Specifically, the excluded
contribution was found by excluding the selected input in simulation (setting it to zero), re-running Lsim, and
calculating the difference between the original output PSD (G,,,,(f)) and the PSD of the output simulated with
input i excluded (Gy,_,,_,(f)), normalized by the original output PSD:

ny(f) B GY—iy—i(f)

Gyy(f)

To find the isolated contribution of each input, we isolated the selected input in simulation (set all other inputs
to zero), re-ran Isim, and calculated the PSD of the output simulated with input iisolated (Gy,,y,,(f)),
normalized by the PSD of the original output:

GJ’+iy+i(f)

Gyy ()

True contributions were expressed as fractional contributions (i.e., normalized by the full output PSD) to allow
for direct comparison with coherence measures. All PSDs were calculated using MATLAB’s cpsd function with
18 windows and 50% overlap.

3.3.2 Coherence

All coherence values (excluding virtual coherence, which cannot be interpreted in terms of the original inputs)
were calculated from the noisy inputs and output using the formulas presented in Section 2. Again, all PSDs and
CPSDs were calculated using MATLAB’s cpsd with 18 windows and 50% overlap. Multiple coherence was
calculated for the full set of inputs (Equation (6)). Ordinary, excluded, and isolated coherence were calculated
for each input individually (Equation (2), Equation (15), and Equation (17), respectively). Partial coherence was
calculated for all three possible conditionings of each input (Equation (4)), e.g. input 3 conditioned on input 1,
oninput 2, and on inputs 1 & 2 (see [12] for details regarding the conditioning process).



3.3.3 Error

Finally, we calculated the mean error and the root-mean-square (RMS) error for each coherence measure
(excluding multiple coherence—see below) relative to each true contribution (excluded, isolated) in the band
from 0 to 35 Hz. Mean error was calculated as the estimated contribution (coherence) minus the true
contribution, averaged across the frequency band. RMS error was calculated using MATLAB’s rmse function.
Mean error was used to quantify the bias error of a given coherence measure relative to each true contribution
type. RMS error quantifies the total error of an estimator, capturing both bias error and random error [12]; as
such, RMS error was used in cases when mean error indicated negligible bias error to quantify the random error
of a given coherence measure.

For each of the four cases of input correlation (minimal, moderate, high, and high between only two inputs), we
reported the average and standard error of the mean error and RMS error across all three inputs (f1, f2, f3) for
each coherence measure (ordinary, partial, excluded, and isolated) relative to both contribution types (true
excluded contribution and true isolated contribution). In the case when only two inputs were highly correlated
(Case 4), only those two inputs were included in calculating the average and standard error. Mean error and
RMS error were not calculated for input-output multiple coherence because it does not allow contributions of
individual inputs to be estimated.

4  Simulation Results

4.1 General results

As designed, the modeled system (Figure 5) was underdamped, with natural frequencies below 50 Hz (Figure
7A-C). In each of the four cases (of specified level of input correlation), we calculated the true contributions and
all coherence values for each input (Figure 7D-0). As planned, input-output multiple coherence was high below
35 Hz and low above 35 Hz. When input-output multiple coherence was high (0-35 Hz), excluded coherence
consistently estimated the excluded contribution and isolated coherence consistently estimated the isolated
contribution, in every case. In contrast, ordinary and partial coherence estimated the true contribution only
when input correlation was minimal (Figure 7D-F, also O). When multiple coherence was low (above 35 Hz), all
coherence measures failed to estimate the true contributions.

In some cases, the true excluded contribution and excluded coherence took on negative values at certain
frequencies (see particularly Figure 7H and K); in these cases, the output power at those frequencies increased
when the given input was excluded, indicating that the given input had interfered negatively with the other
inputs.

4.2 Mean error

In the 0 to 35 Hz band, excluded coherence was the only measure that estimated the excluded contribution with
negligible mean error at all levels of input correlation, and isolated coherence was the only measure that
estimated the isolated contribution with negligible mean error at all levels of input correlation (Figure 8A-B).
Ordinary coherence, which generally provides an upper bound on contribution (see details above), resulted in
positive mean error relative to both contribution types at all input correlation levels. The mean error associated
with ordinary coherence was lowest when inputs were minimally correlated (Case 1) and greatest when inputs
were highly correlated (Case 3). Partial coherence, which reassigns portions of contribution to other coherent
inputs, generally resulted in negative mean error relative to both contribution types, with lowest error for
minimally correlated inputs (Case 1) while conditioning on only a single input and greatest error for highly
correlated inputs (Case 3) while conditioning on both other inputs. Partial coherence resulted in positive mean
error only when the given input was conditioned on a single uncorrelated input, in which case conditioning has
little effect and partial coherence is comparable to ordinary coherence.
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Figure 7. Simulation Results. A-C) Magnitude ratio of the frequency response function (|H;,, (f)|) between each input, i, and the output, y. D-O)
Coherence vs. frequency plots for all coherence types between the specified input (column) and the output at different levels of input correlation
(row). The coherence types are indicated in the legend at the bottom of the figure. Each coherence vs. frequency plot includes three lines for partial
coherence: two thin yellow lines each representing partial coherence for the input conditioned on one of the two other inputs (e.g. input 1
conditioned on input 2, and input 1 conditioned on input 3), and one thin orange line representing partial coherence for the input conditioned on
both other inputs (e.g. input 1 conditioned on both input 2 and input 3).



Figure 8: Simulated error between true
contributions and coherence measures.
A Bars represent +1 standard error. Each
value represents the mean error (A-B) or
RMS error (C-D) between the specified
true contribution type (column) and the
given coherence measure averaged
across all three inputs for the indicated
level of input correlation, except for the
1 “High Pair” case. In this case (in which
inputs 1 and 2 were correlated, but not
input 3), input 3 was excluded in
calculating the average error values;
also, mean error was calculated
separately for partial coherence
conditioned only on the correlated input
(solid line) and for partial coherence
conditioned only on the uncorrelated
input (dashed line).
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4.3 Root-mean-square error

In the 0 to 35 Hz band, excluded coherence estimated the excluded contribution with the lowest RMS error, and
isolated coherence estimated the isolated contribution with the lowest RMS error, both regardless of input
correlation (Figure 8C-D). When bias is negligible (which is always the case for excluded and isolated coherence
with respect to their corresponding contribution types, but is true for other coherence measures only when
input correlation is minimal), the RMS error can be used as a quantification of the random error in the estimation
[12]. RMS error between excluded coherence and the excluded contribution increased with increasing input
correlation. Similarly, RMS error between isolated coherence and the isolated contribution increased with
increasing input correlation. Even in Case 1, where input correlation was minimal (and the errors associated
with existing coherence measures were smallest), the RMS error relative to the excluded contribution was still
lowest for excluded coherence, and the RMS error relative to the isolated contribution was still lowest for
isolated coherence.

5 Discussion

5.1 Interpretation of Results
The results of our simulations demonstrate four main principles regarding the estimation of input contribution
using coherence measures.



(1) Multiple coherence defines the region where other coherence measures may accurately estimate the true
contribution of each input (Figure 7). When multiple coherence was high, at least one coherence measure was
able to consistently estimate each true contribution in every case. When multiple coherence was low, no linear
relationship existed between the measured inputs and outputs, so the true contribution could not be estimated
using coherence measures. Given that, in practice, multiple coherence may be less than unity due to any of
several possible factors (e.g., noise, nonlinearities, unmeasured inputs), it is unhelpful to define a threshold (at
which multiple coherence is too low) based on these simulations, in which low multiple coherence is due
exclusively to measurement noise; thoroughly defining such a threshold in relation to all possible factors is
beyond the scope of this paper. Where needed, a rough multiple-coherence threshold of 0.5 or greater may be
useful, as suggested in [12].

(2) Excluded and isolated coherence are the only coherence measures that consistently estimate the true
contributions when a given input is correlated with other inputs (Figure 7). In every case, excluded coherence
consistently estimated the true excluded contribution with negligible bias (Figure 8A). Similarly, in every case,
isolated coherence consistently estimated the true isolated contribution with negligible bias (Figure 8B). As an
upper bound on the excluded contribution, ordinary coherence always overestimated the true excluded
contribution. Ordinary coherence also, on average, overestimated the true isolated contribution, though not
always; at some specific frequencies, the isolated contribution was greater than the ordinary coherence. Partial
coherence conditioned on correlated inputs tended to underestimate the true contributions because it assigns
too much contribution to other inputs (except when the true excluded contribution is negative). Partial
coherence conditioned on an uncorrelated input was comparable to ordinary coherence (see Figure 7M-N).

(3) Though smaller than for existing coherence measures, random error (quantified as RMS error) in the
estimates of excluded and isolated coherence for a given input increases with higher correlation between inputs
(Figure 8C-D). When correlation between inputs increased, excluded and isolated coherence estimated the true
contributions with increased random error. This increase was more pronounced from moderate to high input
correlation than it was from minimal to moderate input correlation, suggesting a more than linear increase in
random error with increasing input correlation. In the theoretical limiting case of perfectly correlated inputs,
the input spectral density matrix (the g-by-q matrix in Equation (5)) becomes singular and cannot be inverted
to estimate the system FRFs, so no estimate of excluded or isolated coherence can be made (essentially, infinite
error).

Random error for excluded and isolated coherence also depends on the number of correlated inputs, even when
total input correlation (quantified by inter-input multiple coherence) remains the same. For excluded
coherence, the random error decreased when fewer inputs were correlated, even when the level of input
correlation remained the same (Figure 8C). For isolated coherence, the random error increased slightly when
fewer inputs were correlated, but this increase was not significant (Figure 8D). Future work is needed to
investigate this principle more thoroughly.

(4) When a given input is minimally correlated with other inputs (a) the true excluded and isolated contributions
are comparable and (b) ordinary, partial, excluded, and isolated coherence all estimate the true contribution,
though excluded and isolated coherence still estimate most accurately (Figure 7D-F and O). In the case of
minimally correlated inputs, there was no visually noticeable distinction in coherence vs. frequency plots (Figure
7) between excluded and isolated contribution schemes. Ordinary, partial, isolated, and excluded coherence all
estimated the true contribution in this case. This is because cross power becomes negligible in the absence of
input correlation, causing all coherence measures to simplify to the special case of ordinary coherence, which
accurately represents the true contribution in such a case. If the inputs were perfectly uncorrelated and
measurement noise removed, then all coherence measures would be identical. However, given that some



coherence was still present between inputs, excluded coherence still estimated the excluded contribution most
accurately and isolated coherence still estimated the isolated contribution most accurately (Figure 8).

5.2 Limitations

The simulations shown here represented only the simple case of a purely linear, 3-input system with
uncorrelated noise on the input and output. Not included were the effects of system nonlinearities, feedback,
unmeasured correlated inputs, correlated noise, or system size (number of measured inputs), all of which may
adversely affect the performance of these novel coherence measures. Future work is needed to investigate how
the proposed coherence measures behave under such conditions.

5.3 Conclusions

We have proposed a novel framework of contribution coherence for contribution analysis of multiple-input
systems with correlated inputs. This framework stands as a generalization of existing coherence measures.
Additionally, we have demonstrated that, when inputs are correlated, excluded and isolated coherence are the
only coherence measures that consistently estimate the true contribution of a given input.
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7 Supplemental Materials

7.1 Cross Component Coherence Bounds
Here we prove the inequality given in Equation (14) in the text:

|Tijy () + Ty (N < Tty () + Ty (F)

We begin with the well-known cross-spectrum inequality [12], an application of the Cauchy-Schwarz inequality,
which guarantees that the squared magnitude of cross-power spectral density between two signals at a given
frequency (G;;(f)) is always less than or equal to the product of the power spectral densities of the two signals
at that same frequency (G;; (f) and G;;(f)):

|Gij(f)|2 < G ()G (f) (SM.1)

A similar inequality can be constructed using ordinary and cross component coherence, namely, that the
squared magnitude of cross component coherence between two input signals at a given frequency (I, (f)) is
less than or equal to the product of the ordinary component coherence of the two input signals at the same
frequency (Fil-y(f) and [}-jy(f)):

|Fijy(f)|2 < Liiy (DTG (f) (SM.2)

To prove this inequality, we substitute in the definitions for ordinary and cross component coherence (Equation
(12)and Equation (13), respectively):

[y DI [ D165 O _ [Hy DI 6a ) [Hyy (DI 65
ny(f)z B ny(f) ny(f)

Dividing out all terms repeated on both sides of the inequality simplifies this inequality down to the simple cross-
spectrum inequality (Equation (SM.1)), proving that Equation (SM.2) is always true.

Though true, this inequality is not necessarily useful. For purposes of interpretation, we are interested in the
sum of a cross component coherence pair, not the magnitude of a single cross component coherence term. To
express this bound in terms of such a pair we first clarify that, as a conjugate pair, the sum of a cross component
coherence pair is equal to twice the real part of either term in the pair:

Ty (F) + iy (F) = 2Re (T (F) ) = 2Re (T () (SM.3)
Furthermore, the magnitude of the real part of a complex number is always less than or equal to the magnitude

of the complex number. Combining this fact with Equation (SM.3) and twice the square root of (SM.2) gives the
result:

Ty (D) + Gy (P)] = |2Re (T ()] < 2Ty (O] < 2 [Ty (A (D

Or more simply:

Ty (F) + Ty ()] < 2 /niy(f)rj,-y(n (SM.4)

Although the inequality is now formulated in terms of an interpretable quantity of interest, the upper bound
itself is not easily interpreted. To remedy this, we now prove that twice the square root of a product of two
numbers is always less than or equal the sum of the two numbers:



2VAB<A+B (SM.5)
Squaring both sides of the inequality gives:

4AB < A% + 2AB + B?
Grouping like terms yields:

0 < A* - 2AB + B*
which simplifies to:

0 < (A —B)?

which is always true, proving that the inequality in Equation (SM.5) can be applied to Equation (SM.4) to get a
final form for a bound on cross component coherence:

|Tijy () + Ty (D] < Tty () + Ty (F)

This is the bound presented in the text as Equation (14).

7.2 Excluded Coherence Upper Bound - General
Here we prove that excluded coherence (I_g, (f)) is always less than or equal to multiple coherence (yf:x(f)):

sy (f) < vix(f) (SM. 6)

In a g-input system, multiple coherence can be expressed as the sum of all component coherence terms for the
full set of inputs:

Vi (f) = Zirjkm

=

For a given subset of inputs, X, and the compliment to that subset, X/, this summation can be split into two
parts: the summation of all components associated with any element of the subset (i.e., j or k included in S)
plus the summation of all components associated only with the complement subset (i.e., j and k included in
S’):

ky(f),GES)A(kES"

e
hﬁg

q
VD= ) D TN, G ESHV(KES) +

j=1k=1 j=1k=1

The first summation is equivalent to the excluded coherence for the given subset (I_g, (f)), and the second
summation is equivalent to the isolated coherence for the compliment subset (I, ¢, (f)):

Vox () = T_sy (f) + Tygry, () (SM. 7)

Because isolated coherence is always greater than or equal to zero, excluded coherence must always be less
than or equal to multiple coherence.

7.3 Excluded Coherence Upper Bound —Single Input
Here we prove that in the special case where excluded coherence is calculated for a single input (I'_;, (f)), its
value is further bounded by the ordinary coherence for that input (yizy(f)):



iy (F) <vE () (SM. 8)

This relationship is proved using an alternate formulation of the Sl optimum FRF derived using principles of input
conditioning presented in [12]. In a system with g inputs, the SI optimum FRF (L;, (f)) between an input and
the output can be expressed as the sum across all inputs of the product of the SI optimum FRF between the
given input and another input (L;;(f), Equation (3)) times the MI optimum FRF between that other input and
the output (Hjy, (f), Equation (5)):

q

Ly (f) = z Lii(f)H;y (f)
=

Substituting this definition into the formula for ordinary coherence (Equation (2)) yields:
2
V2 () = |Z?=1 Lii(HH (O] G ()
Y Gyy (f)

The magnitude-squared term can be decomposed into the product of the summation and its conjugate, which
can be expressed as a double summation:

qﬂjiib%ﬁMMﬁ%mwm%m
Kol Gy ()

The original definition of an Sl optimum FRF (Equation (3)) can then be substituted in, yielding:

6 (PG
S Hy () B (D el S 6,

Gyy (f)

v, (f) =

which simplifies to:
V2 () = T Xh=1 Hy (F) Hiey (F) G35 () G (f)
Y Gii(f)Gyy (f)
Whenever j =i or k = i, the given term simplifies to a component coherence term, such that the double
summation can be split into two parts:

a q . . ., .
, o o S T Hy (D Hy () GG (), G # DV (k #1)
= ii(f)Gyy ()

where terms in the first summation are summed if j or k equal i and terms second are summed if j and k are
not equal to i. The first summation matches the definition for excluded coherence of input i (Equation (15)),
and the second can be expressed as the squared magnitude of a single summation:

q Y
V2 (F) = T () + |Zj=1ij(f)Gij(f): j# i

Y Y Gii (f)ny(f)
Thus, ordinary coherence is equal to excluded coherence for that input, plus some additional term. This
additional term is always greater than or equal to zero (because numerator and denominator are non-negative),

guaranteeing that excluded coherence for a single input will always be less than or equal to ordinary coherence
for that input.
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