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Abstract 
In multi-input systems, it is often necessary to quantify the contribution of each input to an output. Such 
contribution analysis is frequently performed using a family of measures known collectively as coherence. 
However, when correlation is present between inputs, existing coherence measures do not accurately quantify 
the contribution of individual inputs, except in special cases. Here we propose an expanded coherence 
framework that enables contribution analysis in any multi-input system, regardless of input correlation.  
 
We bridged the gap by defining three new coherence measures: component, excluded, and isolated coherence. 
Component coherence is an intermediate measure that decomposes measured output power into components 
attributable to inputs directly vs to interference between inputs. Strategically summing component coherence 
terms yields contributions from individual inputs, defined as either excluded coherence (the portion of the 
output that would be removed if a given input were excluded) or isolated coherence (the portion of the output 
that would remain if a given input were isolated). To demonstrate, we simulated a three-input mechanical 
system and compared both existing and novel coherence measures to the known contributions at varying levels 
of input correlation. 
 
Only excluded and isolated coherence accurately estimated the true contributions at all levels of input 
correlation. Even when existing coherence measures accurately estimated true contributions, novel measures 
did the same, but with less random error. These new coherence measures represent a generalization of the 
existing framework; together with existing coherence measures, they enable accurate contribution analysis in 
multi-input systems regardless of input correlation. 
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1 Introduction 
Multiple-input systems are common in nature and engineering, and it is often desirable to understand how 
much each input contributes to an output. Examples of such systems include vibrations of various vehicle 
components generating observable acoustic noise for the driver [1], seismic ground motions causing rhythmic 
deformation of a structure [2], tremorogenic activity in multiple muscles producing tremor at the hand [3], and 
more [4-11]. In such situations, it is often of interest to identify how much each input contributes to the output 
to aid in targeted intervention that will maximally reduce the output response. In sum, estimating the 
contribution of individual inputs (frequently referred to as contribution analysis [1, 4, 5]) is a common problem. 
 
In the simple case of uncorrelated inputs, contribution analysis can be accomplished in a straightforward 
manner using ordinary coherence [12]. Ordinary coherence is essentially a correlation performed in the 
frequency domain, returning a value between 0 and 1 that quantifies how linearly related two signals are as a 
function of frequency [13, 14]. If the two signals are (a) the input and output of a single-input system or (b) an 
input and output of a multi-input system with uncorrelated inputs, ordinary coherence between the two signals 
further represents the portion of the output that can be attributed to (i.e. caused by) the input [12]. In many 
multi-input systems, inputs are either naturally uncorrelated at a given frequency or, as is the case with most 
engineering systems, inputs can be controlled and made to be uncorrelated. In such systems, ordinary 
coherence is an obvious choice for contribution analysis. However, when inputs are mutually correlated, 
contribution analysis becomes significantly more challenging. 

When inputs to a multiple-input system are correlated, special cases of contribution analysis can be performed 
using existing coherence measures. First, ordinary coherence provides an upper bound for the portion of the 
output that could be attributed to a given input [15]. Second, if correlation between inputs is thought to be the 
result of causal relationships between inputs, then partial coherence, which utilizes an iterative conditioning 
approach to redistribute the correlated portions of each input to their assumed sources, can be used to 
decompose the output into distinct contributions from each input [12]. Third, virtual coherence transforms the 
measured inputs into a set of “virtual” uncorrelated inputs and decomposes the output into contributions from 
each of these new inputs, but these contributions cannot be related back to the original inputs, so this method 
is primarily used simply to determine how many uncorrelated sources contribute significantly to the output [16]. 
Fourth, multiple coherence, which describes the frequency-dependent correlation between the full set of inputs 
and the output, can be used to determine the contribution of all inputs collectively [12]. 

Although useful in special cases, none of these existing measures is able to estimate the true contribution of a 
given input in the general case of correlated inputs. Existing coherence methods either ignore correlation 
between inputs (ordinary coherence), mathematically remove correlation between inputs, creating new inputs 
(partial/virtual coherence), or make no attempt to distinguish between correlated inputs (multiple coherence). 
Therefore, existing coherence measures cannot be used to perform contribution analysis for a multiple-input 
system with correlated inputs if (1) inputs cannot be controlled, (2) an upper limit on contribution is not 
sufficient, (3) contributions must be identified for individual inputs, and (4) contributions must be identified in 
terms of the original measured inputs.  

Hence, the purpose of this work was to develop a new method of contribution analysis that accounts for 
correlation between the original, measured inputs and decomposes the output into contributions that can be 
directly attributed to each input. To this end, we have created a set of novel coherence measures as well as a 
generalized coherence framework to understand the relationships between existing and novel coherence 
measures. This framework allows for general contribution analysis of multiple-input systems with correlated 
inputs.  



2 Analytical Methods 
Throughout this paper, in keeping with the standard terminology of the field [12, 17], the term “input 
correlation” always refers to inter-input coherence. This clarification is necessary because correlation in the 
time domain does not imply coherence in the frequency domain, nor does a lack of correlation imply a lack of 
coherence [18].1 When a robust quantification of input correlation is required, we use inter-input multiple 
coherence, which describes the coherence between a given input and the full set of other inputs (excluding the 
given input), i.e. the portion of the given input that can be recreated as a linear combination of all other inputs.2  
 
2.1 Existing coherence measures and their interpretations in multiple-input systems with correlated 

inputs 
To demonstrate how novel coherence measures relate to existing measures, we first describe existing 
coherence measures.  
 
2.1.1 Ordinary Coherence 
Ordinary coherence can be defined and interpreted in at least two ways [12]. First, ordinary coherence (𝛾𝛾𝑥𝑥𝑥𝑥2 ) 
between two signals (𝑥𝑥 and 𝑦𝑦) is most often calculated at a given frequency (𝑓𝑓) as the magnitude-squared cross-
power spectral density (CPSD) of the two signals (𝐺𝐺𝑥𝑥𝑥𝑥) normalized by the auto-power spectral densities (PSDs) 
of both signals (𝐺𝐺𝑥𝑥𝑥𝑥 and 𝐺𝐺𝑦𝑦𝑦𝑦) [12]: 

𝛾𝛾𝑥𝑥𝑥𝑥2 (𝑓𝑓) =
�𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)�
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𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
  (1) 

Alternatively, and perhaps more intuitively for describing input-output relationships (with 𝑥𝑥 representing the 
input signal and 𝑦𝑦 representing the output signal), ordinary coherence can be expressed as a ratio of estimated 
to measured output power, where the estimated portion is found by passing the measured input through a 
single-input (SI) optimum frequency response function (FRF) denoted as 𝐿𝐿𝑥𝑥𝑥𝑥 (Figure 1A): 

𝛾𝛾𝑥𝑥𝑥𝑥2 (𝑓𝑓) =
�𝐿𝐿𝑥𝑥𝑥𝑥(𝑓𝑓)�
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 (2)  

For this formulation to equal the standard formulation, the estimated FRF must be the SI optimum FRF that 
minimizes the error between estimated and measured output power, often referred to as the 𝐻𝐻1 estimator [12, 
14]: 

𝐿𝐿𝑥𝑥𝑥𝑥(𝑓𝑓) =
𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)
𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)

 (3) 

Under this formulation it is clear that ordinary coherence describes the portion of the measured output 
optimally3 caused by the measured input, assuming that input and output are related via a SI linear system. 
 

 
1 Because coherence analysis is performed in the frequency domain, input correlation must be determined independently for all 
frequencies, such that a single set of inputs may be considered uncorrelated at some frequencies and correlated at others. For a set 
of inputs to be considered uncorrelated at a given frequency, ordinary coherence at that frequency must be zero between all input 
pairings. 
2 Inter-input multiple coherence is calculated in the same way as multiple coherence between inputs and an output (see section 2.1.4) 
but with the given input removed from the input set and treated as the output. 
3 Here and throughout the remainder of the paper, any reference to optimality refers to the definition of an optimum frequency 
response function, i.e. the linear system that minimizes error between the estimated and measured output power for a given set of 
measured input(s) and output. The optimum FRF is equivalent to the true system to the extent that the true system is linear and time-
invariant, there are no unmeasured inputs that are correlated with measured inputs, output noise is uncorrelated with all inputs, and 
input noise is negligible [12].  



Ordinary coherence can still be calculated for each input to a multiple-input (MI) system by applying Equation 
(1) or Equation (2) to each input, but if correlation is present between inputs, then ordinary coherence only 
provides an upper bound for the contribution of a given input to the output [15]. Ordinary coherence is always 
calculated assuming a SI relationship, even when a system is known to have multiple inputs. If an input is 
uncorrelated with all other inputs, then ordinary coherence between that input and the output describes a 
distinct portion of the output power that can only be attributed to the given input, and the ordinary coherence 
value can still be interpreted as the portion of the output caused by that input [12]. If all inputs are mutually 
uncorrelated, then ordinary coherence describes the distinct contribution of each input, and the set of ordinary 
coherence values will sum collectively to a value less than or equal to one, resulting in an ideal output 
decomposition4 (Figure 1B) [12]. On the other hand, if correlation exists between the given input and other 
inputs, the SI optimum FRF does not take the possible contributions of other inputs into account; the error 
between power estimated from the given input and the measured output power is minimized, thereby 
maximizing ordinary coherence and providing an upper bound on the contribution from that input. In this case, 
the collective sum of ordinary coherence values is no longer constrained to be less than one, and the true output 
decomposition remains unknown (Figure 1C). In other words, in a MI system with correlated inputs, ordinary 
coherence describes the portion of the measured output optimally caused by the measured input and anything 
correlated with it. 
 
2.1.2 Partial Coherence 
Partial coherence addresses the issue of correlated inputs by assuming that correlation is the result of causal 
relationships between inputs [12]. If it is believed that correlation between inputs is present because causal 
relationships exist between inputs, then a conditioning approach can be employed to obtain a new set of 
uncorrelated inputs, where all original correlation has been attributed to its assumed source. This conditioning 
is accomplished by assigning an order to the inputs and progressively removing the portion of each subsequent 
input that is correlated with any previous input [12, 19]. Partial coherence (𝛾𝛾𝑖𝑖𝑖𝑖∙(𝑖𝑖−1)!

2 ) is then calculated as the 
ratio of estimated to measured output power, where the estimated portion is found by passing a conditioned 
input through its SI optimum FRF: 

𝛾𝛾𝑖𝑖𝑖𝑖∙(𝑖𝑖−1)!
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Following the notation in [12], the " ∙ " symbol is read as “conditioned on” or “uncorrelated with”, and (𝑖𝑖 − 1)! 
represents “all previous inputs”, such that 𝛾𝛾𝑖𝑖𝑖𝑖∙(𝑖𝑖−1)!

2  indicates the coherence between input 𝑖𝑖 and output 𝑦𝑦, 
where input 𝑖𝑖 has been conditioned on all previous inputs. In general, partial coherence describes the portion 
of the measured output optimally caused by the measured input and anything correlated with it, excluding 
anything already correlated with previous inputs. 
 
The results of a partial coherence analysis are highly dependent on the selected ordering of inputs, particularly 
if input correlation is high. Various methods have been proposed for selecting the ordering of inputs. Ideally, 
causality between inputs can be determined simply based on an understanding of the physical nature of the 
system itself [12]. Other proposed methods to estimate causal relationships include investigating phase 
relationships using the Hilbert transform [20] or signal lead/lag via cross-correlation in the time domain [12], or 
ordering inputs from largest to smallest ordinary coherence [12]. Importantly, if the input order does not 

 
4 We define an output decomposition as any breakdown, as a function of frequency, of the measured output PSD into portions that 
can be attributed to different sources (measured inputs, conditioned inputs, noise, etc.). Contribution analysis performed using 
coherence measures always results in an output decomposition. An ideal output decomposition is one whose individual components 
are distinct (i.e., each component can be attributed exclusively to a single source) and sum collectively to the multiple coherence 
(2.1.4). Partial coherence (2.1.2) and virtual coherence (2.1.3) both yield ideal output decompositions, but ordinary coherence (2.1.1) 
only provides an ideal output decomposition if inputs are uncorrelated. 



correctly represent true causal relationships, then partial 
coherence results represent simply a mathematical 
convenience rather than the true output decomposition. 
 
2.1.3 Virtual Coherence 
Virtual coherence (sometimes called fractional 
coherence) uses eigenvalue decomposition or singular 
value decomposition to transform the set of correlated 
measured inputs into a new set of “virtual” uncorrelated 
inputs (for details, see [16, 21]). The output power can 
then be decomposed into distinct contributions from 
each of these virtual inputs using the same formulation as 
ordinary coherence. However, virtual inputs do not retain 
information regarding the original correlated inputs, so 
the resulting contributions cannot be interpreted in terms 
of the measured inputs [20]. As such, the primary use of 
virtual coherence is simply to identify the number of 
distinct, uncorrelated sources that contribute to the 
output [16, 20]. Because virtual coherence does not 
perform contribution analysis in terms of the original 
inputs, no further discussion of this measure is included 
here.  
 
2.1.4 Multiple Coherence 
Multiple coherence describes the portion of the output 
collectively caused by all inputs [12]. It can be calculated 
using MI optimum FRFs, which are the FRFs that minimize 
the error between estimated and measured output 
power while taking the contribution of all inputs into 
account simultaneously. These MI optimum FRFs (𝐻𝐻𝑖𝑖𝑖𝑖) 
are calculated for a 𝑞𝑞-input system as the MI extension of 
the 𝐻𝐻1 estimator presented in Equation (3) [12, 14]: 

𝐻𝐻��⃑ 𝑥𝑥𝑥𝑥(𝑓𝑓) = �
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Importantly, if inputs are uncorrelated, all off-diagonal 
cross-power terms are zero, such that each MI optimum 
FRF calculated using Equation (5) is equivalent to the 
corresponding SI optimum FRF (i.e., 𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑓𝑓) if 
inputs are uncorrelated) [12]. Whether or not inputs are 
correlated, multiple coherence (𝛾𝛾𝑦𝑦:𝑥𝑥

2 ) can be calculated as 
the ratio of estimated to measured output power, where 
the estimated power is found by passing all inputs 
through their respective MI optimum FRFs and calculating 

Figure 1. Graphical representation of ordinary coherence in systems 
with one input (A) or two inputs (B-C).  A) In a single-input system, 
ordinary coherence describes the portion of the measured output 
power caused by the input via a single-input frequency response 
function (SI FRF). B) In a multiple-input system with uncorrelated 
inputs, the ordinary coherence associated with each input describes 
the distinct portion of the measured output power caused by each 
input. C) In a multiple-input system with correlated inputs, ordinary 
coherence cannot decompose output power into distinct contributions 
from each input, instead providing an upper bound on the 
contribution from each input. The area within each black-bordered 
box represents the total measured power of an output, and each 
colored shaded region represents the portion of the output power 
attributed to a given input by ordinary coherence. The sideways 
hourglass symbol represents the calculation of power for the given 
signal.  



the power of the result (Figure 2A). Equivalently, to 
highlight the various components that make up this 
estimated power in terms of the original inputs, multiple 
coherence can be calculated as the sum of the power of 
the output of each FRF plus the sum of cross power 
between all possible pairings of these outputs (Figure 2B) 
[12]: 

𝛾𝛾𝑦𝑦:𝑥𝑥
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Alternatively, multiple coherence can also be calculated 
indirectly as the sum of all ordinary coherence terms for 
a set of uncorrelated inputs or as the sum of all partial or 
virtual coherence terms (even for correlated inputs) [12]. 
Multiple coherence describes the portion of the 
measured output optimally caused by the full set of 
measured inputs. 
 
The primary drawback to multiple coherence is that it 
provides no insight into the contributions of individual 
inputs. The output decomposition accomplished by 
multiple coherence divides the output into two parts: the 
portion that could be linearly caused by the measured 
inputs and the portion that cannot [12]. As such, it is a 
useful measure in identifying system nonlinearities or 
noise [17] and provides an upper bound on all other 
existing coherence measures, but these are largely the 
extent of its applications. 
 
2.2 Novel Coherence Measures 
Given the limitations of existing coherence measures in 
systems with correlated inputs, we propose a set of new 
coherence measures that account for correlation between the original measured inputs and estimate the true 
contribution of each input. To provide an intuitive understanding, we first present a conceptual explanation of 
these novel coherence measures, including a graphical representation of the simple 2-input case (Figure 3). We 
then expand this explanation to the general 𝑞𝑞-input case, with mathematical derivation and definition of each 
coherence measure. 
 
2.2.1 Conceptual explanation 
In a 2-input system with correlated inputs, the output can be decomposed into distinct components using a 
novel coherence measure which we propose to call component coherence. In such a system, each input passes 
through an FRF to generate a component of the output; these components then combine to create the total 
output. However, because the inputs are correlated these output components are also correlated, so 
interference between them affects the power of the resulting output. As a result, the total output power can 

Figure 2. Graphical representation of multiple coherence in a system 
with two inputs. Multiple coherence describes the portion of the 
output power caused by all inputs collectively. It is calculated by 
passing each input through its respective multiple-input frequency 
response function (MI FRF), followed by either (A) summing the 
outputs and then calculating the power of the resulting sum, or (B) 
calculating the power of each output and the cross power between 
them and then summing all terms. Thus, A and B are equivalent 
representations. The power symbol (sideways hourglass, see Figure 1) 
with two input signals represents the calculation of both cross power 
terms between the two signals.  



be decomposed into three distinct portions: power directly from input 1, power directly from input 2, and power 
due to interference between them (Figure 3; blue, red, and purple shaded regions, respectively). Dividing the 
portions of power that come directly from a given input by the total measured output power defines a first type 
of component coherence which we call ordinary component coherence (Figure 3; blue and red shaded regions). 
Similarly, dividing the portion of power due to interference between the inputs by the total measured output 
power defines the second type of component coherence, called cross component coherence (Figure 3; purple 
shaded regions). Because interference can be constructive (power increases when signals are combined) or 
destructive (power decreases when signals are combined), the contribution due to interference, described by 
cross component coherence, may be positive or negative. Similarly, because destructive interference decreases 
the total power of the output, it is possible for the power contributed directly by a single input to be greater 
than the total resulting output power, indicated by an ordinary component coherence value greater than one. 
 
Using component coherence, we can estimate the full contribution of each input using two additional novel 
coherence measures, which we will call excluded coherence and isolated coherence (Figure 3; brackets). Since 
a portion of the output power cannot be attributed exclusively to one of the inputs, but rather must be 
attributed to interference between them, we must more clearly define what is meant by contribution. A first 
possible definition of contribution, estimated using excluded coherence, is the portion of the total output power 
that would be removed if a given input were excluded. In the 2-input case, excluding a given input would remove 
the power it contributed directly to the output and the power it contributed through interference with the other 
input; as such, excluded coherence for a given input is calculated as the sum of the ordinary component 
coherence for that input and the cross component coherence between the inputs (importantly, the same cross 
component coherence portion is included in the excluded coherence for both inputs). Alternatively, another 
definition of contribution, estimated using isolated coherence, is the portion of the total output power that 
would remain if a given input were isolated (i.e. without all other inputs). If a single input were isolated, no 
interference would occur, so isolated coherence in this case is equivalent to ordinary component coherence 
(the more general case, in which isolated coherence differs from ordinary component coherence, is 
demonstrated in 2.2.2.3). 
 

Figure 3. Graphical representation of novel coherence measures in a system with two inputs. Component coherence describes the portion of the 
output power that can be attributed to an input directly (ordinary component) or to interference between inputs (cross component) after the inputs 
pass through their respective multiple-input frequency response functions (MI FRFs). Isolated coherence describes the contribution that an input 
would make in isolation (i.e., in the absence of other inputs) and is equivalent to ordinary component coherence in this case. Excluded coherence 
describes the contribution that an input would make if it were excluded (i.e., the output power that would be removed if the input were removed) 
and is the sum of ordinary and cross component coherence in this case. Summing all component coherence terms gives multiple coherence. 



2.2.2 Mathematical derivation 
Before presenting the details of these novel measures, we must highlight an important deviation from the 
standard concept of magnitude-squared coherence. All existing coherence measures are considered magnitude-
squared coherence measures [12, 13, 22]. The concept of magnitude-squared coherence stems from the most 
common formulation of coherence as the magnitude-squared CPSD of the two signals, normalized by the PSD 
of both signals (Equation (1)) [13]. This definition of coherence is emphasized by the use of a lowercase gamma 
squared (𝛾𝛾2) to denote all existing coherence measures. One of the most useful properties of magnitude-
squared coherence is that these measures are bounded between zero and one [17]. However, for the purposes 
of estimating contributions in MI systems, magnitude-squared coherence is a limiting notion. In practice, as 
demonstrated in the following sections, it is not only useful, but also physically correct to consider contributions 
greater than one (where a given input contributes more power than that present in the measured output) and 
contributions less than zero (where the net effect of an input is to decrease power in the output). To avoid 
confusion, we present these novel coherence measures as contribution coherence measures (as opposed to 
magnitude-squared coherence measures) and denote them using a capital gamma without the square (Γ). 
Contribution coherence relies on the formulation of coherence used throughout this paper as a ratio of 
estimated output power to measured output power, where estimated output power may be larger or smaller 
than the measured power, positive or negative, and either real or complex. Note that, as demonstrated in 2.1, 
all existing coherence measures may also be considered contribution coherence measures when calculated for 
input-output relationships. 
2.2.2.1 Component Coherence 
Output power can be decomposed into components of power and cross power, associated with inputs and pairs 
of inputs respectively [12]. In the frequency domain, the value of the output of a 𝑞𝑞-input system at a given 
frequency can be calculated as the sum of each input (𝑋𝑋𝑖𝑖(𝑓𝑓)) passed through its FRF (𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)), plus a noise term 
(𝑁𝑁(𝑓𝑓)) that accounts for any deviation from the ideal linear model (including nonlinearities, unmeasured inputs, 
and measurement noise) [12]: 

𝑌𝑌(𝑓𝑓) =  �𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)𝑋𝑋𝑖𝑖(𝑓𝑓)
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+ 𝑁𝑁(𝑓𝑓) (7) 

To calculate the power of the output at each frequency and the corresponding output power decomposition, 
each side of Equation (7) is multiplied by its conjugate to yield the following, where dependence on 𝑓𝑓 has been 
omitted to simplify notation: 
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𝑞𝑞

𝑖𝑖=1

+ �𝐻𝐻𝑖𝑖𝑖𝑖∗ 𝑋𝑋𝑖𝑖∗𝑁𝑁
𝑞𝑞

𝑖𝑖=1

+ �𝐻𝐻𝑗𝑗𝑗𝑗𝑋𝑋𝑗𝑗𝑁𝑁∗

𝑞𝑞

𝑗𝑗=1

+ 𝑁𝑁∗𝑁𝑁 (8) 

At this point, each instance of a conjugate signal multiplied by another signal can be replaced with the 
corresponding PSD or CPSD to result in a decomposition of the output PSD in terms of PSDs and CPSDs of and 
between inputs and the noise term (dependence on 𝑓𝑓 is again omitted): 

𝐺𝐺𝑦𝑦𝑦𝑦 = ��𝐻𝐻𝑖𝑖𝑖𝑖∗ 𝐻𝐻𝑗𝑗𝑗𝑗𝐺𝐺𝑖𝑖𝑖𝑖

𝑞𝑞

𝑗𝑗=1

𝑞𝑞

𝑖𝑖=1

+ �𝐻𝐻𝑖𝑖𝑖𝑖∗ 𝐺𝐺𝑖𝑖𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ �𝐻𝐻𝑗𝑗𝑗𝑗𝐺𝐺𝑛𝑛𝑛𝑛

𝑞𝑞

𝑗𝑗=1

+ 𝐺𝐺𝑛𝑛𝑛𝑛 (9) 

This result can be further simplified if the FRFs in the formulation represent optimum FRFs (Equation (5)), which 
guarantee that 𝑁𝑁(𝑓𝑓) will be uncorrelated with all inputs [12], making any cross-power term between 𝑁𝑁(𝑓𝑓) and 
an input go to zero and eliminating the two single summations from Equation (9): 

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓) = ��𝐻𝐻𝑖𝑖𝑖𝑖∗ (𝑓𝑓)𝐻𝐻𝑗𝑗𝑗𝑗(𝑓𝑓)𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)
𝑞𝑞

𝑗𝑗=1

𝑞𝑞

𝑖𝑖=1

+ 𝐺𝐺𝑛𝑛𝑛𝑛(𝑓𝑓) (10) 



Here, the double summation represents the portion of the measured output that can be linearly attributed to 
the full set of measured inputs, which if normalized by the total measured output power (𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)) provides the 
formulation for multiple coherence (Equation (6)): 

𝛾𝛾𝑦𝑦:𝑥𝑥
2 (𝑓𝑓) =  

∑ ∑ 𝐻𝐻𝑖𝑖𝑖𝑖∗ (𝑓𝑓)𝐻𝐻𝑗𝑗𝑗𝑗(𝑓𝑓)𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)𝑞𝑞
𝑗𝑗=1

𝑞𝑞
𝑖𝑖=1

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
 (11) 

An ideal output decomposition now becomes evident, consisting of 𝑞𝑞 real power terms (𝑖𝑖 = 𝑗𝑗) that each 
represent power associated with a single input, and 𝑞𝑞(𝑞𝑞 − 1) complex cross-power terms (𝑖𝑖 ≠ 𝑗𝑗) that each 
represent cross-power associated with interference between a pair of inputs; we will refer to these terms, each 
normalized by the output PSD, as ordinary component coherence and cross component coherence, respectively. 
 
Ordinary component coherence (Γ𝑖𝑖𝑖𝑖𝑖𝑖) describes the portion of the measured output power contributed directly 
by an input. It is defined as the ratio of estimated to measured output power, where the estimation is made by 
passing the input through a MI optimum FRF: 

Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) =
�𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)�

2
𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
 (12) 

The value of this measure is always greater than zero (because power is positive) but has no upper bound. 
Ordinary component coherence describes the portion of the measured output optimally caused by power 
directly from an input.  
 
Cross component coherence (Γ𝑖𝑖𝑖𝑖𝑖𝑖) can be used to describe the portion of the measured output power that can 
be attributed to interference between a pair of inputs. It is defined as the ratio of estimated output cross power 
to measured output power, where the estimation is made by passing a pair of inputs through their respective 
MI optimum FRFs and then calculating the cross power between them: 

Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) =
𝐻𝐻𝑖𝑖𝑖𝑖∗ (𝑓𝑓)𝐻𝐻𝑗𝑗𝑗𝑗(𝑓𝑓)𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
 (13) 

Individual cross component coherence terms are complex, and therefore do not have a clear physical 
interpretation. However, when conjugate cross component coherence pairs (i.e., Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) and Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)) are 
summed, the result is a real-valued term describing the portion of the measured output optimally caused by 
interference between a pair of inputs. As mentioned previously, the value of this sum may be positive or negative 
to describe constructive or destructive interference, respectively. The magnitude of this sum is always less than 
or equal to the sum of ordinary component coherence for the two inputs involved (constructive interference 
can increase power no more than double and destructive interference cannot decrease power below zero, see 
Supplemental Materials): 

�Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) + Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)� ≤ Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) + Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓) (14) 

2.2.2.2 Excluded Coherence 
By summing component coherence terms, we can define excluded coherence, which describes the portion of 
the measured output power that would be removed if a given input were excluded. For a given input, excluded 
coherence (Γ−𝑖𝑖𝑖𝑖) is calculated as the sum of all component coherence terms that would go to zero if the input 
were removed; this includes the ordinary component coherence for the input, plus all cross component 
coherence terms involving the input: 

Γ−𝑖𝑖𝑖𝑖2 (𝑓𝑓)  = ��Γ𝑗𝑗𝑗𝑗𝑗𝑗2 (𝑓𝑓)
𝑞𝑞

𝑘𝑘=1

𝑞𝑞

𝑗𝑗=1

,     (𝑗𝑗 = 𝑖𝑖)⋁(𝑘𝑘 = 𝑖𝑖) (15) 



where the symbol ∨ represents the logical “inclusive or” operator, indicating that terms are summed if 𝑗𝑗 = 𝑖𝑖 or 
𝑘𝑘 = 𝑖𝑖 or 𝑗𝑗 = 𝑘𝑘 = 𝑖𝑖. Excluded coherence describes the portion of the measured output power that would 
optimally be removed if the input were excluded. 
 
Excluded coherence can also be defined for a subset of inputs. The definition remains unchanged but is now 
expressed in terms of any subset of inputs, 𝑋𝑋𝑆𝑆 = {𝑋𝑋𝑎𝑎,𝑋𝑋𝑏𝑏 ,𝑋𝑋𝑐𝑐, … }: 

Γ−𝑆𝑆𝑆𝑆2 (𝑓𝑓) =  ��Γ𝑗𝑗𝑗𝑗𝑗𝑗2 (𝑓𝑓),
𝑞𝑞

𝑘𝑘=1

𝑞𝑞

𝑗𝑗=1

     (𝑗𝑗 ∈ 𝑆𝑆)⋁(𝑘𝑘 ∈ 𝑆𝑆),     𝑆𝑆 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, … } (16) 

Excluded coherence for a subset of inputs represents the portion of the measured output power that would 
optimally be removed if the subset of inputs were removed.  
 
There is no lower bound for excluded coherence, but excluded coherence can be no greater than one. 
Conceptually, excluded coherence can be no greater than one because removing a given input or subset of 
inputs can remove no more than 100% of the output power (i.e., the resulting output power must still be 
positive). In general, multiple coherence serves as the upper bound for excluded coherence (see Supplemental 
Materials). However, when excluded coherence is calculated for a single input, ordinary coherence serves as a 
more restrictive upper bound (see Supplemental Materials). A negative excluded coherence value indicates that 
output power would increase if the given input were removed (because of destructive interference). 
 
2.2.2.3 Isolated Coherence 
Like excluded coherence, isolated coherence is defined as a summation of component coherence terms, 
describing the portion of the output power that would remain if an input were isolated. Isolated coherence 
(Γ+𝑖𝑖𝑖𝑖) for a single input is equivalent to ordinary component coherence, as this is the only component of output 
power that would remain if a single input were isolated: 

Γ+𝑖𝑖𝑖𝑖(𝑓𝑓) = Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) (17) 

For a subset of inputs, isolated coherence is calculated as the sum of all component coherence terms that would 
remain if that subset of inputs were isolated; this includes ordinary component coherence for each input plus 
all cross component coherence terms between inputs within the subset: 

Γ+𝑆𝑆𝑆𝑆2 (𝑓𝑓) =  ��Γ𝑗𝑗𝑗𝑗𝑗𝑗2 (𝑓𝑓),
𝑞𝑞

𝑘𝑘=1

𝑞𝑞

𝑗𝑗=1

     (𝑗𝑗 ∈ 𝑆𝑆)⋀(𝑘𝑘 ∈ 𝑆𝑆),     𝑆𝑆 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, … } (18) 

Here, the symbol ⋀ represents the logical “and” operator, indicating that terms are summed if 𝑗𝑗 ∈ 𝑆𝑆 and 𝑖𝑖 ∈ 𝑆𝑆. 
In all cases, isolated coherence is greater than zero (because isolated coherence describes power remaining 
when inputs are isolated, which is always positive), with no upper bound. Isolated coherence represents the 
portion of the measured output power that would optimally be contributed by the given input or set of inputs 
if no other inputs were present.  

 
2.3 Generalized Coherence Framework 

These novel coherence measures represent more than just an alternative toolset for analyzing correlated MI 
systems; they stand as a generalization of the existing coherence framework (Figure 4). 

 
ALL coherence measures can be expressed as a ratio of estimated to measured output power (the most general 
definition of coherence):  

𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (19) 



This formulation highlights the fact that all coherence measures share the same fundamental interpretation, 
describing the portion of output power contributed by an input. Differences between measures arise in the 
types of inputs, types of FRFs, and types of power used for estimation (Table 1). 
 
Component coherence is the general coherence measure from which all other coherence measures can be 
derived (Figure 4). Within component coherence, ordinary component coherence can be derived from cross 
component coherence by simply calculating cross power between a signal and itself (i.e., auto power). When 
conditioned inputs are substituted in place of measured inputs, ordinary component coherence becomes partial 
or virtual coherence, depending on which conditioning method is used. If measured inputs are uncorrelated to 
begin with, then ordinary component, partial, and virtual coherence are all equal to ordinary coherence. 
Summing component coherence terms (ordinary and cross) relevant to a single input or subset of inputs yields 
excluded or isolated coherence, depending on which summation scheme is used. Isolated coherence for a single 
input is equivalent to ordinary component coherence. Excluded coherence and isolated coherence are both 
equivalent to multiple coherence when calculated for the full set of inputs. In other words, multiple coherence 

Figure 4. Generalized coherence framework, including relationships between existing coherence measures (black) and novel coherence measures 
(red). Cross component coherence can be used to derive all other coherence measures. Cross component coherence calculated between an input and 
itself gives ordinary component coherence, which further simplifies to ordinary coherence if inputs are naturally uncorrelated, or to partial or virtual 
coherence if inputs are mathematically uncorrelated via a conditioning process. Excluded and isolated coherence are obtained via strategic 
summation of component coherence terms, both of which simplify to multiple coherence when calculated for the full set of inputs. Multiple 
coherence can also be obtained by summing ordinary (if inputs are uncorrelated), partial, or virtual coherence across the full set of inputs. 

Coherence Type Number 
of Inputs Input Type Power Type FRF 

Type Notation Bounds 
Ordinary Single Measured Auto SI 𝛾𝛾𝑖𝑖𝑖𝑖2  0 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖2 ≤ 1 

Partial Single Conditioned Auto SI 𝛾𝛾𝑖𝑖𝑖𝑖∙(𝑖𝑖−1)!
2  0 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖∙(𝑖𝑖−1)!

2 ≤ 1 

Virtual Single Virtual Auto SI 𝛾𝛾𝑖𝑖′:𝑦𝑦
2  0 ≤ 𝛾𝛾𝑖𝑖′:𝑦𝑦

2 ≤ 1 

Ordinary Component* Single Measured Auto MI Γ𝑖𝑖𝑖𝑖𝑖𝑖 0 ≤ Γ𝑖𝑖𝑖𝑖𝑖𝑖 ≤ ∞ 

Cross Component* Pair Measured Cross MI Γ𝑖𝑖𝑖𝑖𝑖𝑖 0 ≤ |2Re(Γ𝑖𝑖𝑖𝑖𝑖𝑖)| ≤ Γ𝑖𝑖𝑖𝑖𝑖𝑖 + Γ𝑗𝑗𝑗𝑗𝑗𝑗 

Excluded* Single Measured Combined MI Γ−𝑖𝑖𝑖𝑖 −∞ ≤ Γ−𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖2  

Excluded* Subset Measured Combined MI Γ−𝑆𝑆𝑆𝑆 −∞ ≤ Γ−𝑆𝑆𝑆𝑆 ≤ 𝛾𝛾𝑦𝑦:𝑥𝑥
2  

Isolated* Single Measured Auto MI Γ+𝑖𝑖𝑖𝑖 0 ≤ Γ+𝑖𝑖𝑖𝑖 ≤ ∞ 

Isolated* Subset Measured Combined MI Γ+𝑆𝑆𝑆𝑆 0 ≤ Γ+𝑆𝑆𝑆𝑆 ≤ ∞ 

Multiple Full Set Measured Combined MI 𝛾𝛾𝑦𝑦:𝑥𝑥
2  0 ≤ γ𝑦𝑦:𝑥𝑥

2 ≤ 1 

 

Table 1. Properties of existing and novel coherence measures (novel measures are marked with *). The novel coherence measures (ordinary 
component, cross component, excluded, and isolated coherence) bridge the gap between existing coherence measures (ordinary, partial, virtual, 
and multiple coherence). Frequency response function (FRF) type is either single input (SI) or multiple input (MI), calculated using Equation (3) or 
Equation (5), respectively. 



is calculated as the full sum of all component coherence terms for a given system; similarly, multiple coherence 
can be calculated as the sum of all partial or virtual coherence terms for a conditioned system or as the sum of 
all ordinary coherence terms if the original measured inputs are uncorrelated. If measured inputs are 
uncorrelated, cross component coherence terms all go to zero and all other coherence measures for an 
individual input simplify to ordinary coherence (including isolated and excluded coherence). 
 
Excluded and isolated coherence are the only measures that estimate all true contributions in any system, 
regardless of input correlation (Figure 4). Ordinary, partial, and virtual coherence can only describe the 
contribution of a single uncorrelated input; in the case of ordinary coherence, measured inputs must be 
uncorrelated to begin with, while partial and virtual coherence conditioning processes guarantee uncorrelated 
inputs (at the expense of interpretation). Multiple coherence can only describe the contribution of a full set of 
inputs, but this does hold regardless of input correlation. Excluded and isolated coherence bridge this gap by 
estimating the contribution of any input or subset of inputs in any system, regardless of input correlation. 

3 Simulation Methods 
3.1 System 
To demonstrate the performance of these novel 
coherence measures and compare with existing 
measures, we simulated the behavior of a known mass-
spring-damper model with three force inputs (Figure 5). 
The modeled system included four masses, three of which 
served as sites for force input, while the displacement of 
the fourth mass represented the system output. A parallel 
spring and damper were modeled between each possible 
pairing between masses and between each mass and 
ground. Parameter values for each mass, spring, and 
damper were randomly selected from a uniform 
distribution with limits selected based on parameter type 
to result in an underdamped system with natural 
frequencies below 50 Hz (masses: 0.1 to 1 kg, dampers: 3 
to 30 N∙s/m, springs: 1 to 10 kN/m). Parameter values 
used in the final model are shown in Table 2. The 
equations of motion for this system can be written in 
matrix form as: 

𝑀𝑀𝑍̈𝑍(𝑡𝑡) + 𝐶𝐶𝑍̇𝑍(𝑡𝑡) + 𝐾𝐾𝐾𝐾(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) (20) 

where 𝐹𝐹(𝑡𝑡) = [𝑓𝑓1(𝑡𝑡) 𝑓𝑓2(𝑡𝑡) 𝑓𝑓3(𝑡𝑡) 0]𝑇𝑇 and 𝑍𝑍(𝑡𝑡) = [𝑧𝑧1(𝑡𝑡) 𝑧𝑧2(𝑡𝑡) 𝑧𝑧3(𝑡𝑡) 𝑦𝑦(𝑡𝑡)]𝑇𝑇 are the forces on the 
masses (inputs) and displacements of the masses (outputs), respectively. The mass, damping, and stiffness of 
the system are: 
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Figure 5. Modeled mass-spring-damper system used in simulation. 
Masses, damping coefficients, and stiffnesses are denoted by m, c, 
and k, respectively. Force inputs (f) are shown in blue and 
displacement outputs are shown in green. The displacement denoted 
by y represents the output of interest, whereas those denoted by z 
are included for modeling purposes only.  



3.2 Inputs and output 
To highlight the performance of novel and existing 
coherence measures under varying levels of input 
correlation (inter-input multiple coherence), we designed 
four different sets of the three simulated force inputs, 
each set having a different level of input correlation: 
minimal correlation (Case 1), moderate correlation (Case 
2), high correlation (Case 3), and high correlation between 
inputs 1 and 2 but not 3 (Case 4). In addition, we wished 
to demonstrate the performance of novel and existing 
coherence measures under different levels of input-
output multiple coherence, so we designed the four cases 
to have high input-output multiple coherence 
(representing favorable measurement conditions) over 
one frequency band (below ~35Hz) and low input-output 
multiple coherence (representing poor measurement 
conditions) over another frequency band (above ~35 Hz). 
In each of the four cases, the inputs and output were 
created as follows (Figure 6). 
 
3.2.1 Generation of correlated inputs 
Four independent, white gaussian noise signals were generated using MATLAB’s randn function, each 40 
seconds in duration with a sampling frequency of 1000 Hz. Each signal was lowpass filtered using a 16th-order 
Butterworth filter with cutoff at 35 Hz so that the later addition of measurement noise (see below) would cause 
the 35-50 Hz band to be dominated by noise, resulting in low input-output multiple coherence in that band. The 
cutoff of 35 Hz was selected to ensure that high-quality signals were passed at the prominent natural 
frequencies of the system (below ~35 Hz) while still demonstrating the behavior of poor-quality signals at 
frequencies where inputs were not completely attenuated by the system (~35-50 Hz); the high filter order 
provided a steep cutoff to clearly distinguish these two bands (a 4th-order filter was also tested and results were 
unaffected). 
 
In each of the four cases, these four independent, filtered signals were then combined using a mixing matrix, 𝐴𝐴, 
to generate the three inputs to the system with the desired level of input correlation. Each parameter 𝑎𝑎𝑖𝑖 was 
selected as a number between zero and one describing 
the fraction of shared signal to be included in input 𝑖𝑖.  

𝐴𝐴 = �
1 − 𝑎𝑎1 0 0 𝑎𝑎1

0 1 − 𝑎𝑎2 0 𝑎𝑎2
0 0 1 − 𝑎𝑎3 𝑎𝑎3

�  

In each of the four cases, the correlation level was defined 
in terms of the desired level of mean inter-input multiple 
coherence below 35 Hz (the band of high-quality signal), 
and parameter values (𝑎𝑎𝑖𝑖) were selected to achieve the 
desired values (Table 3). Minimal correlation (Case 1) was 
obtained when no mixing occurred (all 𝑎𝑎𝑖𝑖 = 0), resulting 
in inter-input multiple coherence values of approximately 
0.14. Moderate correlation (Case 2) was defined as inter-
input multiple coherence of approximately 0.50 (all 𝑎𝑎𝑖𝑖 =
0.55), and high correlation (Case 3) was defined as inter-
input multiple coherence of approximately 0.90 (all 𝑎𝑎𝑖𝑖 =

𝑀𝑀 [𝑘𝑘𝑘𝑘] 𝐶𝐶 �𝑁𝑁 ∙ 𝑠𝑠 𝑚𝑚� � 𝐾𝐾 �𝑘𝑘𝑘𝑘 𝑚𝑚� � 

𝑚𝑚1 = 0.6 𝑐𝑐01 = 21 𝑘𝑘01 = 8.3 

𝑚𝑚2 = 1.0 𝑐𝑐02 = 24 𝑘𝑘02 = 2.4 

𝑚𝑚3 = 0.8 𝑐𝑐03 = 13 𝑘𝑘03 = 5.8 

𝑚𝑚4 = 0.9 𝑐𝑐04 = 20 𝑘𝑘04 = 3.5 
 𝑐𝑐12 = 6 𝑘𝑘12 = 5.0 
 𝑐𝑐13 = 7 𝑘𝑘13 = 6.5 
 𝑐𝑐14 = 14 𝑘𝑘14 = 9.8 
 𝑐𝑐23 = 6 𝑘𝑘23 = 5.6 
 𝑐𝑐24 = 5 𝑘𝑘24 = 2.0 
 𝑐𝑐34 = 8 𝑘𝑘34 = 8.4 

 

Table 2. Simulated system parameters. M, C, and K represent mass, 
damping, and stiffness, respectively. 

Figure 6. Simulation process. True correlated force input signals 
(𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) were generated (blue box) as gaussian white noise signals 
(W) passed through a low-pass filter (LPF), mixed according to 
mixing matrix A to generate desired levels of correlation, and 
combined with noise (𝜈𝜈) at a signal-to-noise ratio (SNR) of 100 to 
effectively eliminate correlation above the filter cutoff frequency. 
The true force inputs were passed through the system to generate 
the true output (𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). Measurement conditions were simulated by 
adding noise to both the inputs and output at a SNR of 10, 
generating measured inputs (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and output (𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚). 



0.79). Additionally, high correlation between inputs 1 and 2 but minimal correlation with input 3 (Case 4) was 
included (𝑎𝑎1 = 𝑎𝑎2 = 0.81,𝑎𝑎3 = 0) to analyze the performance of coherence measures when correlation is 
present between only some of the inputs. To effectively eliminate input correlation above 35 Hz, we added 
additional noise to each input at a signal-to-noise ratio of 100.  
 
3.2.2 True inputs and outputs 
In each of the four cases, we used MATLAB’s lsim function to find the true response (output signal, 𝑦𝑦) of the 
mass-spring-damper system to these three input signals (Figure 6). 
 
3.2.3 Addition of measurement noise 
Additional noise was added to the inputs and output to represent measurement noise, each resulting in a signal-
to-noise ratio of 10 (Figure 6). To remove the effects of transient response, the first 10 seconds of each input 
and output signal were discarded, leaving only the final 30 seconds for further analysis. 
 
3.3 Contributions 
The following processing steps were performed for each of the four cases of input correlation. 
 
3.3.1 True contributions 
True contribution values were found by selectively excluding or isolating inputs and comparing the resulting 
outputs to the original output, using the true (noise-free) input and output signals. Specifically, the excluded 
contribution was found by excluding the selected input in simulation (setting it to zero), re-running 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and 
calculating the difference between the original output PSD (𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)) and the PSD of the output simulated with 
input 𝑖𝑖 excluded (𝐺𝐺𝑦𝑦−𝑖𝑖𝑦𝑦−𝑖𝑖(𝑓𝑓)), normalized by the original output PSD: 
𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓) − 𝐺𝐺𝑦𝑦−𝑖𝑖𝑦𝑦−𝑖𝑖(𝑓𝑓)

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
  

To find the isolated contribution of each input, we isolated the selected input in simulation (set all other inputs 
to zero), re-ran lsim, and calculated the PSD of the output simulated with input 𝑖𝑖 isolated (𝐺𝐺𝑦𝑦+𝑖𝑖𝑦𝑦+𝑖𝑖(𝑓𝑓)), 
normalized by the PSD of the original output: 
𝐺𝐺𝑦𝑦+𝑖𝑖𝑦𝑦+𝑖𝑖(𝑓𝑓)
𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)

  

True contributions were expressed as fractional contributions (i.e., normalized by the full output PSD) to allow 
for direct comparison with coherence measures. All PSDs were calculated using MATLAB’s cpsd function with 
18 windows and 50% overlap.  
 
3.3.2 Coherence 
All coherence values (excluding virtual coherence, which cannot be interpreted in terms of the original inputs) 
were calculated from the noisy inputs and output using the formulas presented in Section 2. Again, all PSDs and 
CPSDs were calculated using MATLAB’s cpsd with 18 windows and 50% overlap. Multiple coherence was 
calculated for the full set of inputs (Equation (6)). Ordinary, excluded, and isolated coherence were calculated 
for each input individually (Equation (2), Equation (15), and Equation (17), respectively). Partial coherence was 
calculated for all three possible conditionings of each input (Equation (4)), e.g. input 3 conditioned on input 1, 
on input 2, and on inputs 1 & 2 (see [12] for details regarding the conditioning process). 

Input Correlation Level Mean Inter-Input Multiple Coherence (0-35 Hz) Parameters 
Case 1: Minimal Correlation ~0.14 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎3 = 0 
Case 2: Moderate Correlation ~0.50 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎3 = 0.55 
Case 3: High Correlation ~0.90  𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎3 = 0.79 
Case 4: High Correlation Between Inputs 1 & 2 Inputs 1 & 2: ~0.90, Input 3: 0.13 𝑎𝑎1 = 𝑎𝑎2 = 0.81,  𝑎𝑎3 = 0 

 

Table 3. Levels of inter-input correlation used in simulations 



 
3.3.3 Error 
Finally, we calculated the mean error and the root-mean-square (RMS) error for each coherence measure 
(excluding multiple coherence—see below) relative to each true contribution (excluded, isolated) in the band 
from 0 to 35 Hz. Mean error was calculated as the estimated contribution (coherence) minus the true 
contribution, averaged across the frequency band. RMS error was calculated using MATLAB’s rmse function. 
Mean error was used to quantify the bias error of a given coherence measure relative to each true contribution 
type. RMS error quantifies the total error of an estimator, capturing both bias error and random error [12]; as 
such, RMS error was used in cases when mean error indicated negligible bias error to quantify the random error 
of a given coherence measure.  
 
For each of the four cases of input correlation (minimal, moderate, high, and high between only two inputs), we 
reported the average and standard error of the mean error and RMS error across all three inputs (𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3) for 
each coherence measure (ordinary, partial, excluded, and isolated) relative to both contribution types (true 
excluded contribution and true isolated contribution). In the case when only two inputs were highly correlated 
(Case 4), only those two inputs were included in calculating the average and standard error. Mean error and 
RMS error were not calculated for input-output multiple coherence because it does not allow contributions of 
individual inputs to be estimated.  

4 Simulation Results 
4.1 General results 
As designed, the modeled system (Figure 5) was underdamped, with natural frequencies below 50 Hz (Figure 
7A-C). In each of the four cases (of specified level of input correlation), we calculated the true contributions and 
all coherence values for each input (Figure 7D-O). As planned, input-output multiple coherence was high below 
35 Hz and low above 35 Hz. When input-output multiple coherence was high (0-35 Hz), excluded coherence 
consistently estimated the excluded contribution and isolated coherence consistently estimated the isolated 
contribution, in every case. In contrast, ordinary and partial coherence estimated the true contribution only 
when input correlation was minimal (Figure 7D-F, also O). When multiple coherence was low (above 35 Hz), all 
coherence measures failed to estimate the true contributions. 
 
In some cases, the true excluded contribution and excluded coherence took on negative values at certain 
frequencies (see particularly Figure 7H and K); in these cases, the output power at those frequencies increased 
when the given input was excluded, indicating that the given input had interfered negatively with the other 
inputs.  
 
4.2 Mean error 
In the 0 to 35 Hz band, excluded coherence was the only measure that estimated the excluded contribution with 
negligible mean error at all levels of input correlation, and isolated coherence was the only measure that 
estimated the isolated contribution with negligible mean error at all levels of input correlation (Figure 8A-B). 
Ordinary coherence, which generally provides an upper bound on contribution (see details above), resulted in 
positive mean error relative to both contribution types at all input correlation levels. The mean error associated 
with ordinary coherence was lowest when inputs were minimally correlated (Case 1) and greatest when inputs 
were highly correlated (Case 3). Partial coherence, which reassigns portions of contribution to other coherent 
inputs, generally resulted in negative mean error relative to both contribution types, with lowest error for 
minimally correlated inputs (Case 1) while conditioning on only a single input and greatest error for highly 
correlated inputs (Case 3) while conditioning on both other inputs. Partial coherence resulted in positive mean 
error only when the given input was conditioned on a single uncorrelated input, in which case conditioning has 
little effect and partial coherence is comparable to ordinary coherence. 



 

Figure 7. Simulation Results. A-C) Magnitude ratio of the frequency response function (|𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)|) between each input, 𝑖𝑖, and the output, 𝑦𝑦. D-O) 
Coherence vs. frequency plots for all coherence types between the specified input (column) and the output at different levels of input correlation 
(row). The coherence types are indicated in the legend at the bottom of the figure. Each coherence vs. frequency plot includes three lines for partial 
coherence: two thin yellow lines each representing partial coherence for the input conditioned on one of the two other inputs (e.g. input 1 
conditioned on input 2, and input 1 conditioned on input 3), and one thin orange line representing partial coherence for the input conditioned on 
both other inputs (e.g. input 1 conditioned on both input 2 and input 3). 



4.3 Root-mean-square error 
In the 0 to 35 Hz band, excluded coherence estimated the excluded contribution with the lowest RMS error, and 
isolated coherence estimated the isolated contribution with the lowest RMS error, both regardless of input 
correlation (Figure 8C-D). When bias is negligible (which is always the case for excluded and isolated coherence 
with respect to their corresponding contribution types, but is true for other coherence measures only when 
input correlation is minimal), the RMS error can be used as a quantification of the random error in the estimation 
[12]. RMS error between excluded coherence and the excluded contribution increased with increasing input 
correlation. Similarly, RMS error between isolated coherence and the isolated contribution increased with 
increasing input correlation. Even in Case 1, where input correlation was minimal (and the errors associated 
with existing coherence measures were smallest), the RMS error relative to the excluded contribution was still 
lowest for excluded coherence, and the RMS error relative to the isolated contribution was still lowest for 
isolated coherence. 

5 Discussion 
5.1 Interpretation of Results 
The results of our simulations demonstrate four main principles regarding the estimation of input contribution 
using coherence measures.  
 

Figure 8: Simulated error between true 
contributions and coherence measures. 
Bars represent ±1 standard error. Each 
value represents the mean error (A-B) or 
RMS error (C-D) between the specified 
true contribution type (column) and the 
given coherence measure averaged 
across all three inputs for the indicated 
level of input correlation, except for the 
“High Pair” case. In this case (in which 
inputs 1 and 2 were correlated, but not 
input 3), input 3 was excluded in 
calculating the average error values; 
also, mean error was calculated 
separately for partial coherence 
conditioned only on the correlated input 
(solid line) and for partial coherence 
conditioned only on the uncorrelated 
input (dashed line).  



(1) Multiple coherence defines the region where other coherence measures may accurately estimate the true 
contribution of each input (Figure 7). When multiple coherence was high, at least one coherence measure was 
able to consistently estimate each true contribution in every case. When multiple coherence was low, no linear 
relationship existed between the measured inputs and outputs, so the true contribution could not be estimated 
using coherence measures. Given that, in practice, multiple coherence may be less than unity due to any of 
several possible factors (e.g., noise, nonlinearities, unmeasured inputs), it is unhelpful to define a threshold (at 
which multiple coherence is too low) based on these simulations, in which low multiple coherence is due 
exclusively to measurement noise; thoroughly defining such a threshold in relation to all possible factors is 
beyond the scope of this paper. Where needed, a rough multiple-coherence threshold of 0.5 or greater may be 
useful, as suggested in [12]. 
 
(2) Excluded and isolated coherence are the only coherence measures that consistently estimate the true 
contributions when a given input is correlated with other inputs (Figure 7). In every case, excluded coherence 
consistently estimated the true excluded contribution with negligible bias (Figure 8A). Similarly, in every case, 
isolated coherence consistently estimated the true isolated contribution with negligible bias (Figure 8B). As an 
upper bound on the excluded contribution, ordinary coherence always overestimated the true excluded 
contribution. Ordinary coherence also, on average, overestimated the true isolated contribution, though not 
always; at some specific frequencies, the isolated contribution was greater than the ordinary coherence. Partial 
coherence conditioned on correlated inputs tended to underestimate the true contributions because it assigns 
too much contribution to other inputs (except when the true excluded contribution is negative). Partial 
coherence conditioned on an uncorrelated input was comparable to ordinary coherence (see Figure 7M-N). 
 
(3) Though smaller than for existing coherence measures, random error (quantified as RMS error) in the 
estimates of excluded and isolated coherence for a given input increases with higher correlation between inputs 
(Figure 8C-D). When correlation between inputs increased, excluded and isolated coherence estimated the true 
contributions with increased random error. This increase was more pronounced from moderate to high input 
correlation than it was from minimal to moderate input correlation, suggesting a more than linear increase in 
random error with increasing input correlation. In the theoretical limiting case of perfectly correlated inputs, 
the input spectral density matrix (the 𝑞𝑞-by-𝑞𝑞 matrix in Equation (5)) becomes singular and cannot be inverted 
to estimate the system FRFs, so no estimate of excluded or isolated coherence can be made (essentially, infinite 
error).  
 
Random error for excluded and isolated coherence also depends on the number of correlated inputs, even when 
total input correlation (quantified by inter-input multiple coherence) remains the same. For excluded 
coherence, the random error decreased when fewer inputs were correlated, even when the level of input 
correlation remained the same (Figure 8C). For isolated coherence, the random error increased slightly when 
fewer inputs were correlated, but this increase was not significant (Figure 8D). Future work is needed to 
investigate this principle more thoroughly. 
 
(4) When a given input is minimally correlated with other inputs (a) the true excluded and isolated contributions 
are comparable and (b) ordinary, partial, excluded, and isolated coherence all estimate the true contribution, 
though excluded and isolated coherence still estimate most accurately (Figure 7D-F and O). In the case of 
minimally correlated inputs, there was no visually noticeable distinction in coherence vs. frequency plots (Figure 
7) between excluded and isolated contribution schemes. Ordinary, partial, isolated, and excluded coherence all 
estimated the true contribution in this case. This is because cross power becomes negligible in the absence of 
input correlation, causing all coherence measures to simplify to the special case of ordinary coherence, which 
accurately represents the true contribution in such a case. If the inputs were perfectly uncorrelated and 
measurement noise removed, then all coherence measures would be identical. However, given that some 



coherence was still present between inputs, excluded coherence still estimated the excluded contribution most 
accurately and isolated coherence still estimated the isolated contribution most accurately (Figure 8). 
5.2 Limitations 
The simulations shown here represented only the simple case of a purely linear, 3-input system with 
uncorrelated noise on the input and output. Not included were the effects of system nonlinearities, feedback, 
unmeasured correlated inputs, correlated noise, or system size (number of measured inputs), all of which may 
adversely affect the performance of these novel coherence measures. Future work is needed to investigate how 
the proposed coherence measures behave under such conditions. 
 
5.3 Conclusions 
We have proposed a novel framework of contribution coherence for contribution analysis of multiple-input 
systems with correlated inputs. This framework stands as a generalization of existing coherence measures. 
Additionally, we have demonstrated that, when inputs are correlated, excluded and isolated coherence are the 
only coherence measures that consistently estimate the true contribution of a given input. 
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7 Supplemental Materials 
7.1 Cross Component Coherence Bounds 
Here we prove the inequality given in Equation (14) in the text: 

�Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) + Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)� ≤ Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) + Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)  

 
We begin with the well-known cross-spectrum inequality [12], an application of the Cauchy-Schwarz inequality, 
which guarantees that the squared magnitude of cross-power spectral density between two signals at a given 
frequency (𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)) is always less than or equal to the product of the power spectral densities of the two signals 
at that same frequency (𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓) and 𝐺𝐺𝑗𝑗𝑗𝑗(𝑓𝑓)): 

�𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)�
2
≤ 𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)𝐺𝐺𝑗𝑗𝑗𝑗(𝑓𝑓) (SM.1) 

 
A similar inequality can be constructed using ordinary and cross component coherence, namely, that the 
squared magnitude of cross component coherence between two input signals at a given frequency (Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓)) is 
less than or equal to the product of the ordinary component coherence of the two input signals at the same 
frequency (Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) and Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)): 

�Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓)�
2
≤ Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓)Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓) (SM.2) 

 
To prove this inequality, we substitute in the definitions for ordinary and cross component coherence (Equation 
(12)and Equation (13), respectively): 

�𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)�
2
�𝐻𝐻𝑗𝑗𝑗𝑗(𝑓𝑓)�

2
�𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)�

2

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)2 ≤
�𝐻𝐻𝑖𝑖𝑖𝑖(𝑓𝑓)�

2
𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
�𝐻𝐻𝑗𝑗𝑗𝑗(𝑓𝑓)�

2
𝐺𝐺𝑗𝑗𝑗𝑗(𝑓𝑓)

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
 

 

Dividing out all terms repeated on both sides of the inequality simplifies this inequality down to the simple cross-
spectrum inequality (Equation (SM.1)), proving that Equation (SM.2) is always true.  
 
Though true, this inequality is not necessarily useful. For purposes of interpretation, we are interested in the 
sum of a cross component coherence pair, not the magnitude of a single cross component coherence term. To 
express this bound in terms of such a pair we first clarify that, as a conjugate pair, the sum of a cross component 
coherence pair is equal to twice the real part of either term in the pair: 

Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) + Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓) = 2𝑅𝑅𝑅𝑅 �Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓)� = 2𝑅𝑅𝑅𝑅 �Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)� (SM.3) 

Furthermore, the magnitude of the real part of a complex number is always less than or equal to the magnitude 
of the complex number. Combining this fact with Equation (SM.3) and twice the square root of (SM.2) gives the 
result: 

�Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) + Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)� = �2𝑅𝑅𝑅𝑅 �Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓)�� ≤ 2�Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓)� ≤ 2�Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓)Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)  

Or more simply: 

�Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) + Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)� ≤ 2�Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓)Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓) (SM.4) 

 
Although the inequality is now formulated in terms of an interpretable quantity of interest, the upper bound 
itself is not easily interpreted. To remedy this, we now prove that twice the square root of a product of two 
numbers is always less than or equal the sum of the two numbers: 



2√𝐴𝐴𝐴𝐴 ≤ 𝐴𝐴 + 𝐵𝐵 (SM.5) 

Squaring both sides of the inequality  gives: 

4𝐴𝐴𝐴𝐴 ≤ 𝐴𝐴2 + 2𝐴𝐴𝐴𝐴 + 𝐵𝐵2  

Grouping like terms yields:  

0 ≤ 𝐴𝐴2 − 2𝐴𝐴𝐴𝐴 + 𝐵𝐵2  

which simplifies to: 

0 ≤ (𝐴𝐴 − 𝐵𝐵)2  

which is always true, proving that the inequality in Equation (SM.5) can be applied to Equation (SM.4) to get a 
final form for a bound on cross component coherence: 

�Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) + Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)� ≤ Γ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) + Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)  

This is the bound presented in the text as Equation (14).  
 
7.2 Excluded Coherence Upper Bound - General 
Here we prove that excluded coherence (Γ−𝑆𝑆𝑆𝑆(𝑓𝑓)) is always less than or equal to multiple coherence (𝛾𝛾𝑦𝑦:𝑥𝑥

2 (𝑓𝑓)): 

Γ−𝑆𝑆𝑆𝑆(𝑓𝑓) ≤ 𝛾𝛾𝑦𝑦:𝑥𝑥
2 (𝑓𝑓) (SM. 6) 

 

In a 𝑞𝑞-input system, multiple coherence can be expressed as the sum of all component coherence terms for the 
full set of inputs: 

𝛾𝛾𝑦𝑦:𝑥𝑥
2 (𝑓𝑓) =  ��Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)

𝑞𝑞

𝑘𝑘=1

 
𝑞𝑞

𝑗𝑗=1

 
 

For a given subset of inputs, 𝑋𝑋𝑆𝑆, and the compliment to that subset, 𝑋𝑋𝑆𝑆′ , this summation can be split into two 
parts: the summation of all components associated with any element of the subset (i.e., 𝑗𝑗 or 𝑘𝑘 included in 𝑆𝑆) 
plus the summation of all components associated only with the complement subset (i.e.,  𝑗𝑗 and 𝑘𝑘 included in 
𝑆𝑆′): 

𝛾𝛾𝑦𝑦:𝑥𝑥
2 (𝑓𝑓) =  ��Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)

𝑞𝑞

𝑘𝑘=1

, (𝑗𝑗 ∈ 𝑆𝑆) ∨ (𝑘𝑘 ∈ 𝑆𝑆) 
𝑞𝑞

𝑗𝑗=1

+ ��Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)
𝑞𝑞

𝑘𝑘=1

, (𝑗𝑗 ∈ 𝑆𝑆′) ∧ (𝑘𝑘 ∈ 𝑆𝑆′) 
𝑞𝑞

𝑗𝑗=1

 
 

The first summation is equivalent to the excluded coherence for the given subset (Γ−𝑆𝑆𝑆𝑆(𝑓𝑓)), and the second 
summation is equivalent to the isolated coherence for the compliment subset (Γ+𝑆𝑆′𝑦𝑦(𝑓𝑓)): 

𝛾𝛾𝑦𝑦:𝑥𝑥
2 (𝑓𝑓) = Γ−𝑆𝑆𝑆𝑆(𝑓𝑓) + Γ+𝑆𝑆′𝑦𝑦(𝑓𝑓) (SM. 7) 

Because isolated coherence is always greater than or equal to zero, excluded coherence must always be less 
than or equal to multiple coherence. 

7.3 Excluded Coherence Upper Bound – Single Input 
Here we prove that in the special case where excluded coherence is calculated for a single input (Γ−𝑖𝑖𝑖𝑖(𝑓𝑓)), its 
value is further bounded by the ordinary coherence for that input (𝛾𝛾𝑖𝑖𝑖𝑖2 (𝑓𝑓)): 



Γ−𝑖𝑖𝑖𝑖(𝑓𝑓) ≤ 𝛾𝛾𝑖𝑖𝑖𝑖2 (𝑓𝑓) (SM. 8) 

 
This relationship is proved using an alternate formulation of the SI optimum FRF derived using principles of input 
conditioning presented in [12]. In a system with 𝑞𝑞 inputs, the SI optimum FRF (𝐿𝐿𝑖𝑖𝑖𝑖(𝑓𝑓)) between an input and 
the output can be expressed as the sum across all inputs of the product of the SI optimum FRF between the 
given input and another input (𝐿𝐿𝑖𝑖𝑖𝑖(𝑓𝑓), Equation (3)) times the MI optimum FRF between that other input and 
the output (𝐻𝐻𝑗𝑗𝑗𝑗(𝑓𝑓), Equation (5)): 

𝐿𝐿𝑖𝑖𝑖𝑖(𝑓𝑓) =  �𝐿𝐿𝑖𝑖𝑖𝑖(𝑓𝑓)𝐻𝐻𝑗𝑗𝑗𝑗(𝑓𝑓)
𝑞𝑞

𝑗𝑗=1

 
 

 
Substituting this definition into the formula for ordinary coherence (Equation (2)) yields: 

𝛾𝛾𝑖𝑖𝑖𝑖2 (𝑓𝑓) =
�∑ 𝐿𝐿𝑖𝑖𝑖𝑖(𝑓𝑓)𝐻𝐻𝑗𝑗𝑗𝑗(𝑓𝑓)𝑞𝑞

𝑗𝑗=1 �
2
𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
 

 

The magnitude-squared term can be decomposed into the product of the summation and its conjugate, which 
can be expressed as a double summation: 

𝛾𝛾𝑖𝑖𝑖𝑖2 (𝑓𝑓) =
∑ ∑ 𝐻𝐻𝑗𝑗𝑗𝑗∗ (𝑓𝑓)𝑞𝑞

𝑘𝑘=1 𝐻𝐻𝑘𝑘𝑘𝑘(𝑓𝑓)𝑞𝑞
𝑗𝑗=1 𝐿𝐿𝑖𝑖𝑖𝑖∗ (𝑓𝑓)𝐿𝐿𝑖𝑖𝑖𝑖(𝑓𝑓)𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
  

The original definition of an SI optimum FRF (Equation (3)) can then be substituted in, yielding: 

𝛾𝛾𝑖𝑖𝑖𝑖2 (𝑓𝑓) =
∑ ∑ 𝐻𝐻𝑗𝑗𝑗𝑗∗ (𝑓𝑓)𝑞𝑞

𝑘𝑘=1 𝐻𝐻𝑘𝑘𝑘𝑘(𝑓𝑓)𝑞𝑞
𝑗𝑗=1

𝐺𝐺𝑖𝑖𝑖𝑖∗ (𝑓𝑓)
𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)

𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)
𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓) 𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)

𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
 

 

which simplifies to: 

𝛾𝛾𝑖𝑖𝑖𝑖2 (𝑓𝑓) =
∑ ∑ 𝐻𝐻𝑗𝑗𝑗𝑗∗ (𝑓𝑓)𝑞𝑞

𝑘𝑘=1 𝐻𝐻𝑘𝑘𝑘𝑘(𝑓𝑓)𝑞𝑞
𝑗𝑗=1 𝐺𝐺𝑖𝑖𝑖𝑖∗ (𝑓𝑓)𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)

𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
  

Whenever 𝑗𝑗 = 𝑖𝑖 or 𝑘𝑘 = 𝑖𝑖, the given term simplifies to a component coherence term, such that the double 
summation can be split into two parts: 

𝛾𝛾𝑖𝑖𝑖𝑖2 (𝑓𝑓) = ��Γ𝑗𝑗𝑗𝑗𝑗𝑗(𝑓𝑓)
𝑞𝑞

𝑘𝑘=1

, (𝑗𝑗 = 𝑖𝑖) ∧ (𝑘𝑘 = 𝑖𝑖) 
𝑞𝑞

𝑗𝑗=1

+
∑ ∑ 𝐻𝐻𝑗𝑗𝑗𝑗∗ (𝑓𝑓)𝑞𝑞

𝑘𝑘=1 𝐻𝐻𝑘𝑘𝑘𝑘(𝑓𝑓)𝑞𝑞
𝑗𝑗=1 𝐺𝐺𝑖𝑖𝑖𝑖∗ (𝑓𝑓)𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓), (𝑗𝑗 ≠ 𝑖𝑖) ∨ (𝑘𝑘 ≠ 𝑖𝑖)

𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
 

 

where terms in the first summation are summed if 𝑗𝑗 or 𝑘𝑘 equal 𝑖𝑖 and terms second are summed if 𝑗𝑗 and 𝑘𝑘 are 
not equal to 𝑖𝑖. The first summation matches the definition for excluded coherence of input 𝑖𝑖 (Equation (15)), 
and the second can be expressed as the squared magnitude of a single summation: 

𝛾𝛾𝑖𝑖𝑖𝑖2 (𝑓𝑓) = Γ−𝑖𝑖𝑖𝑖(𝑓𝑓) +
�∑ 𝐻𝐻𝑗𝑗𝑗𝑗(𝑓𝑓)𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓), 𝑗𝑗 ≠ 𝑖𝑖𝑞𝑞

𝑗𝑗=1 �
2

𝐺𝐺𝑖𝑖𝑖𝑖(𝑓𝑓)𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
 

 

Thus, ordinary coherence is equal to excluded coherence for that input, plus some additional term. This 
additional term is always greater than or equal to zero (because numerator and denominator are non-negative), 
guaranteeing that excluded coherence for a single input will always be less than or equal to ordinary coherence 
for that input. 
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