
Chapter 4
Spider Configurations for Models with Discrete Iwan Elements

Aabhas Singh, Mitchell Wall, Matthew S. Allen, and Robert J. Kuether

Abstract Lacayo et al. (Mechanical Systems and Signal Processing, 118: 133–157, 2019) recently proposed a fast model
updating approach for finite element models that include Iwan models to represent mechanical joints. The joints are defined
by using RBE3 averaging constraints or RBAR rigid constraints to tie the contact surface nodes to a single node on each
side, and these nodes are then connected with discrete Iwan elements to capture tangential frictional forces that contribute to
the nonlinear behavior of the mechanical interfaces between bolted joints. Linear spring elements are used in the remaining
directions to capture the joint stiffness. The finite element model is reduced using a Hurty/Craig-Bampton approach such
that the physical interface nodes are preserved, and the Quasi-Static Modal Analysis approach is used to quickly predict
the effective natural frequency and damping ratio as a function of vibration amplitude for each mode of interest. Model
updating is then used to iteratively update the model such that it reproduces the correct natural frequency and damping at
each amplitude level of interest. In this paper, Lacayo’s updating approach is applied to the S4 Beam (Singh et al., IMAC
XXXVI, 2018) giving special attention to the size and type of the multi-point constraints used to connect the structures, and
their effect on the linear and nonlinear modal characteristics.

Keywords Iwan elements · Joints · Quasi-static modal analysis · Nonlinear updating · Model updating

4.1 Introduction

Mechanical structures with complicated geometry can be accurately modeled with finite element techniques if the structure
is monolithic and manufactured from a single piece of material. However, even with additive manufacturing, most structures
cannot be manufactured as such and therefore mechanical interfaces are introduced between sub-assemblies, which are
then jointed with bolts, rivets or welds. These joints introduce uncertainty and significant modeling challenges due to the
physics involved with frictional contact. While joints in general can introduce strong nonlinearity, resulting in complicated
phenomena such as modal coupling, response at higher harmonics, and even chaos, in many structures of practical interest
the nonlinearity is weak and is observed as a change in the effective natural frequency and damping of some of the structure’s
vibration modes as vibration amplitude increases.

While commercial finite element analysis or multi-body dynamics software can presumably solve contract problems with
friction [1], most practitioners do not appreciate the level to which the mesh must be refined near the interface in order
to obtain a predictive model. This was illustrated recently by Jewel et al. [2] who found that tens of hours were required
to obtain accurate solutions for the static response of a structure with only one or two joints when the joint was meshed
with adequate refinement and the solver settings were tuned to accurately solve the contact problem. It would be extremely
expensive to perform dynamic simulations with such a model, and even more so for realistic structures with hundreds of
joints. As a result, the majority of dynamic models use relatively coarse meshes and then spider regions of the structure to
connect different parts through linear springs, whose stiffnesses can be tuned when the model is updated to correlate with
test data.

In some cases, nonlinear hysteretic models are used in place of linear springs when using this whole-joint approach.
These models represent the nonlinearity through constitutive equations between the degrees of freedom of a single set of
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Fig. 4.1 The S4 Beam side view

nodes. When introduced into a reduced order model (ROM), such as a Hurty/Craig-Bampton (HCB) reduced model, they
can capture nonlinear behavior while maintaining tractable computational cost. An example of the whole-joint model is the
four parameter Iwan joint introduced by Segalman in 2006 [3], which was derived based on analytical solutions to contact
problems and empirical data to best capture the energy dissipation observed in joints. These joint models can often be used
to capture the amplitude dependent frequency or damping measured in experiments, so long as the joints remain in the
micro-slip regime.

The parameters of a whole-joint model such as an Iwan element cannot currently be predicted from first principles, so
measurements must be taken and model updating used to update the joint parameters until the model reproduces the measured
response. The Hilbert Transform can be used to extract the frequency and damping as a function of amplitude from transient
response measurements [4]. Then the recently developed Quasi-Static Modal Analysis (QSMA) approach [5, 6] can be used
to quickly compute these quantities. Lacayo et al. [6] recently demonstrated this workflow to update a reduced model of
the Brake-Reuss (BRB) beam. Similarly, this paper investigates the model updating procedure and applicability of the four
parameter Iwan joint with a new benchmark structure studied at Sandia’s Nonlinear Mechanics and Dynamics Institute in
2017 that is shown in Fig. 4.1.

The S4 Beam was studied experimentally by Singh et al. [7], and data from their study is used in this work. First, an HCB
model is made for each beam and linear springs are inserted and updated to match the measured linear frequencies. Then,
Iwan joints are inserted in place of some of the springs and QSMA is used to compute and iterate on the amplitude dependent
damping and frequency in an effort to reproduce the experimentally measured frequency and damping. The experimental
structure showed a high degree of nonlinearity in the first shearing mode (Mode 6), so the goal is to use the methodology to
calibrate the model to capture this mode. In doing so, prior works have shown that a pareto front is often observed, a case
in which the model cannot be updated to capture both the stiffness and damping. This work explores this issue by creating
models with various types of spiders, or various ways to define the Multi-Point Constraints (MPCs) used to reduce the contact
surfaces to a single node.

4.2 Modeling Approach

4.2.1 Hurty/Craig Bampton Reduction

To incorporate the high geometric detail of the structures of interest, finite element models can quickly become excessively
large and computationally expensive. As a result, ROMs are used to approximate the full-order model at a set of reduction
nodes between the mechanical interfaces. The approximation requires that these components remain linear and that the only
source of nonlinearity within in the joined system is at the contact interface [8]. Although many methods of model reduction
exist, this paper will focus on the HCB method as discussed in [9]. The FE discretized equations of motion for an undamped
multi-degree of freedom (MDOF) system are given by Eq. 4.1, where M is the mass matrix, K is the stiffness matrix, F is
the external forcing, FJ(u) is the joint force (either linear or nonlinear) and u is the physical displacement.

Mü + Ku + FJ (u) = F (4.1)

The system can be equivalently written with matrices partitioned between the boundary and interface DOFs as
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(4.2)

where subscripts b and i represent the boundary and interface DOF respectively. Note that only the boundary DOF are
assumed to be forced either externally or internally through the joint. Then, a small number of fixed interface modes,1 �, are

1Fixed interface modes are normal modes obtained by fixing the interface between two subcomponents.
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computed and that basis is augmented with constraint modes,2 �, as detailed [10] to obtain the HCB transformation matrix
in Eq. 4.3.
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(4.3)

This transformation then reduces the equations of motion to those shown in Eq. 4.4.
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The ROM can be used to analyze the dynamic response of a structure more efficiently than a dynamic simulation of a full
finite element model.

4.2.2 Spidering

In order to connect the contact surfaces with one-dimensional linear or nonlinear elements, two types of spider elements were
used in this work, which shall be referred to as RBAR and RBE3 elements (i.e. using NASTRAN’s naming convention). An
RBAR element is a rigid beam that rigidly constrains each node to a single node with 6 DOF, whereas an RBE3 is an
averaging element that ties the average displacement and rotation of the surface to that of the slave node [11]. Both are types
of MPCs (Fig. 4.2). Depicts an example of the MPC spiders on the S4B. Note that separate virtual and HCB reduction nodes
had to be created because the implementation of the HCB method within Sandia National Laboratories Sierra Structural
Dynamics (Sierra/SD) code doesn’t allow a virtual node to be used as an interface node in a HCB model [11]. These are
shown expanded for visualization, but in fact they are all concident.

The spiders reduce an area of nodes to a single point that can be used to connect the surfaces. These spiders can be used
to attach linear springs or Iwan elements to capture the linear/nonlinear dynamics of the system.

4.2.3 Whole-Joint Model

One of the most well-developed whole-joint models is Segalman’s 4-parameter Iwan element. It was developed as part of
a large research effort at Sandia National Laboratories that considered both analytical solutions for contact and empirical
evidence that showed that joints exhibit power-law energy dissipation versus force (or vibration amplitude) [3]. An Iwan

Fig. 4.2 Finite element model of
the S4B depicting the CS

RBAR/RBE3
Elements

“Virtual” Nodes
CB Reduction
Nodes

2Constraint modes are obtained by deflecting a single mode by a unit displacement while fixing the other DOF.
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Table 4.1 Definition of Iwan parameters (physical description)

Fs The force necessary to cause macroslip
KT The tangential stiffness of the Jenkins elements (i.e. the joint stiffness when no slip occurs)
χ The exponent that describes the slope of the energy dissipation curve
β The ratio of the number of Jenkins elements that slip before micro-slip and then at macroslip

element is simply a collection of slider or Jenkins elements in parallel, in which the slip force3 for each slider is chosen to
create an element that exhibits power-law energy dissipation. This approach simplifies joint modeling significantly; typical
joint models consider every point in the interface to be independent and goverened by several parameters, i.e. the friction
coefficient, normal force, etc. . . . When one multiplies these unknowns by the number of contact elements there may be
hundreds or thousands of free parameters. Segalman’s model recognizes that the net effect of all of these parameters must
be to produce power-law dissipation versus vibration amplitude, which is goverened by only two of the four parameters in
the Iwan model. The other two parameters control the transition to macro-slip when the joint slips completely. Macro-slip is
typically not observed in engineered joints if they are tightened properly, except perhaps under extreme loading.

The four parameter Iwan model can be represented by four parameters: Fs, KT , χ , and β, given in Table 4.1. For an
in-depth discussion of the Iwan element, refer to [3].

For the nonlinear analysis, the Iwan joint replaces a linear spring between two spiders, and the corresponding spring
constant becomes the KT parameter of the Iwan element.

4.2.4 Linear Model Updating

Between the single point reduced interfaces, six DOF springs are attached to calibrate the linear natural frequencies of the
model to the experimental data. Linear springs are attached with three translational and three rotational spring constants.
These constants were varied from 1e4 to 1e10 (lb/in or in-lb/rad) in a Monte Carlo study to minimize the difference between
the model and experimental frequencies as shown in Eq. 4.5.

Objective Function =
∑n

i=1

(
ωmodel,i − ωtest,i

ωtest,i

)2

(4.5)

The results of the Monte Carlo updating are presented in Sects. 4.3 and 4.4.

4.2.5 Nonlinear Model Updating

Quasi-Static Modal Analysis (QSMA) was originally proposed by Festjens et al. [5] as a method that replaces a dynamic
simulation of a joint with a quasi-static problem that can be solved to estimate the effective natural frequency and damping
of a single mode due to the joints in the structure. A quasi-static distributed force is applied that replicates the inertial loading
experienced during vibration in that mode and coupling between the vibration modes is ignored. Lacayo and Allen further
extended QSMA, developing an even faster algorithm for the case where the joints are represented by Iwan elements [14].
The theory is presented in depth in that paper and for brevity it will not be repeated here other than key points. The HCB
model still has the general form given in Eq. 4.1, and the nonlinear joints can be represented through a nonlinear force FJ(u)
as shown in Eq. 4.6.

Mü + Ku + FJ (u) = F (4.6)

QSMA consists of solving the equation above for a static case, i.e. ü = 0, where the forcing is F = α[M]ϕi. After solving
Eq. 4.6, one obtains the static response, u(α), from which the modal velocity amplitude, natural frequency, and damping
ratio can be written as function of α as shown in Eqs. 12–17 in [14]. The damping ratio is obtained from a load-displacement

3If all sliders have the same friction coefficient then the slip force is defined by the normal force for each slider.
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hysteresis curve that is derived using Masing’s Rules. Given that all three variables are functions of amplitude, the damping
and natural frequency can be plotted in terms of modal velocity amplitude and this is the convention that will be used in this
work.

4.3 Application to S4 Beam: Linear Updating

The finite element model used for the S4 Beam is shown in Fig. 4.3. This high-fidelity model incorporates two C shaped
beams that are held together by bolts. The bolts were modeled separately and glued to the top and bottom of the beam, but
with the contact interfaces between the beams left free to slide relative to each other or to penetrate.

Prior to adding the linear springs or nonlinear Iwan elements, the FEM was reduced by creating a HCB model in which
only the spider DOF were retained as interface nodes to create a compact and efficient model for the linear and nonlinear
structure. The resulting model had 24 interface DOF (a six DOF virtual node at each of the four interfaces) and 30 fixed
interface modes. This reduced the FEM to 54 DOF. The output transfer matrices were saved so that the response could be
computed at 22 observation nodes, which were spaced every 2.5′′ along the top and bottom of the beam.

For this paper, the spiders were defined over two different areas: the full interface and a reduced interface, both of which
are shown in Fig. 4.4. The full interface consists of all nodes on the flat portion where contact is possible whereas the reduced
interface consists of nodes that were found to be in contact in a nonlinear contact simulation that was performed in Abaqus.
The result of this contact simulation is also shown in Fig. 4.4. Note that this simulation approximates the surfaces as perfectly
smooth and flat, and there is some evidence, as reported in [7], that the surfaces were not truly flat. Nevertheless, these models
are in line with the typical approach, considering the information that might be available during the design of a structure. For
each of the interface areas, two models were created, one using RBAR elements and one using RBE3s, resulting in a total of
four candidate HCB models.

Bolts 

Beams 

X 

Y 
Z 

z
Y

X

Fig. 4.3 Finite element model of the S4B depicting the coordinate system. The beam is segmented into blocks with nodes corresponding to
measurement points

Fig. 4.4 (Left) Full contact area, (Middle) Reduced contact area, (Right) Abaqus Contact Simulation



30 A. Singh et al.

Table 4.2 Modes of a single beam (half of the S4 assembly) vs. model frequencies

Mode Description Experimental frequency (Hz) Single beam model frequency (Hz) Percent error (%)

1 1st Bending 177.87 177.29 −0.33
2 2nd Bending 497.84 498.09 0.05
3 1st Stiff Bending 576.00 576.84 0.14
4 2nd Stiff Bending 979.84 988.44 0.88
5 Torsion 1474.67 1471.22 −0.23
6 – 1556.46 – –
7 Torsion 1585.58 1595.47 0.62

Table 4.3 Single beam material
property updating

Nominal Optimal

Elastic Modulus 29,000 (ksi) 27,245 (ksi) (−6.05%)
Poisson Ratio 0.29 0.29 (0.00%)

4.3.1 Single Beam Calibration

Prior to calibrating the whole-joint models with linear springs, a finite element model for a single beam was used to calibrate
the material properties for steel. Table 4.2 lists the adjusted elastic modulus and Poisson ratio for the single beam and shows
the resulting agreement between the experimental natural frequencies and those of the model. All model frequencies were
within 1% of the experimental frequencies, with the highest error in a second stiff bending mode. The densities of the model
were calibrated by measuring the mass of the experimental beams and dividing by the volume of the FEM to ensure that the
FEM has correct mass. The first four elastic bending modes were used to tune the elastic modulus and the fifth and seventh
modes (torsion) were used to tune the Poisson ratio. Although, Mode 6 for the single beam was identified by the experimental
setup, it was not matched within the FEM and thus was not used in the calibration of the beam. These properties were then
used in all subsequent modeling (Table 4.3).

4.3.2 Whole-Joint Spring Calibration

Linear model updating was performed for all four candidate models, and after using a Monte Carlo Simulation to minimize
the objective function in Eq. 4.5, a set of values was found for each of the six spring constants. The springs on either end of
the S4 beam were assumed to be identical. Tables 4.4 and 4.5 depict the percent error natural frequencies of the assembly
after optimization and the spring stiffnesses for each of the cases respectively.

The S4 Beam has several different types of mode shapes, and each is influenced by different springs depending on how
the joint is loaded. The mode shapes shown in Table 4.4 can be used to deduce these differences. For example, Modes 1
and 5 involve opening of the joint and hence are most sensitive to the Z-direction translational stiffness, whereas Mode 4 is
completely insensitive to the joint stiffness.

While the overall agreement was similar for each candidate model, a few differences are noted between the results obtained
using RBE3 and RBAR elements. Most notably, the models with RBE3s were not able to capture Mode 2 as accurately; this
mode is sensitive to the axial stiffness of the joint, loading it in the fashion of the lap joints that have been studied in many
prior works [6, 12]. The RBE3 models have very high values for Tx and yet they still under-predict the frequency of this
mode. On the other hand, the RBE3 models do slightly better at predicting the frequencies of Mode 1, and this might have
been expected since the RBE3 doesn’t artificially rigidize the interface and Mode 1 would tend to be sensitive to this because
it bends the interface region.

In comparing the results with the reduced and full interfaces, one can see that the reduced interface typically required
higher spring stiffnesses than the full interface (e.g. consider RY in Table 4.5). This result makes sense, as reducing the
interface area effectively decreases the stiffness of the joint region, and so the spring constants must be increased to
compensate. To get a sense of how sensitive the natural frequencies are to the spring constants found in each case, the
constants for the full interface RBAR case were used in the three other models and the natural frequencies were computed.
As expected, the natural frequencies of modes 3 and 4 didn’t change significantly. However, the models gave frequency
errors ranging from 1 to 7% for the other modes. For conciseness, these results are presented in the Appendix.
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Table 4.4 Natural frequency errors for each of the candidate models

Full interface Full interface Reduced interface Reduced interface Reduced, bonded

Mode # Test [Hz] RBAR (%) RBE3 (%) RBAR (%) RBE3 (%) interface (%) Mode shape

1 258.0 0.60 0.43 0.63 0.29 3.65

2 331.7 0.37 −1.65 −0.47 −2.12 −0.48

3 478.6 −0.78 −0.98 −0.87 −0.99 −0.88

4 567.7 −2.20 −2.24 −2.22 −2.23 −2.25

5 708.3 −0.78 −0.05 −0.25 −0.12 3.71

6 851.5 −0.34 0.33 0.16 0.12 4.26

The four candidate models contain different spider areas (full vs. reduced) and different constraint elements (RBAR vs. RBE3)

Table 4.5 Linear spring stiffnesses for each candidate model

Spring Full interface RBAR spring Full interface RBE3 spring Reduced interface RBAR spring Reduced interface RBE3 spring

TX [lb/in] 1.00E+08 1.65E+10 6.71E+12 5.04E+11
TY [lb/in] 1.43E+12 1.68E+05 1.20E+05 1.43E+09
TZ [lb/in] 4.61E+03 1.64E+02 1.48E+03 3.00E+04

RX

[
in−lb
rad

]
2.55E+07 8.59E+04 1.25E+06 2.85E+06

RY

[
in−lb
rad

]
3.66E+05 1.89E+06 6.10E+05 1.04E+07

RZ

[
in−lb
rad

]
2.08E+06 7.72E+11 4.15E+07 1.82E+07

In the end, considering only the ability of the models to capture the linear natural frequencies, the best models contained
RBAR elements, as those were able to best capture Mode 2. Overall, the area of influence had a weaker effect than the choice
of spider elements (i.e. RBAR vs. RBE3). These effects are somewhat overshadowed by the errors in Modes 3 and 4, which
were not sensitive to any spring constants. All modes, apart from Mode 4, were correlated to below one percent error. Mode
4 is the only mode that involves bending in the y-direction (stiff direction), and the six springs all have negligible effect
on this mode since the joint is not loaded when the structure bends into this mode. It was thought that this mode may be
sensitive to the mass of the bolts or accelerometers, but those were included in the model and their values verified and even
then, the agreement shown is the best that could be obtained within the timeline of the project. Furthermore, since this mode
is linear, this mode was not one of interest and no further steps were taken to improve correlation and as a result, these spring
stiffnesses can be then applied as a basis for QSMA.

The uncertainty of these spring parameters must be evaluated prior to nonlinear updating, i.e. can different sets of
parameters produce the same linear natural frequencies? If so, there is additional uncertainty and these parameters must
be variable during nonlinear updating. Figure 4.5 shows the objective function for each iteration of the Monte Carlo study
versus each of the spring stiffnesses.

This figure illustrates that the objective function, and hence the percent error in each natural frequency, is governed
primarily by the Y rotation spring stiffness. The objective function can be small even when the other spring stiffnesses vary
by several orders of magnitude, but it is only small if Y is between about 2e5 and 8e5 in-lb/rad. In other words, there are no
other local minima that might produce similar results. Additionally, the X translation spring and the Z rotation spring must be
above about 106 in order to obtain good correlation. To further illustrate which parameters are important in linear updating
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Fig. 4.5 Monte Carlo study depicting the objective function as a function of the spring stiffnesses for the Full Interface RBAR model

Fig. 4.6 Frequency Error as each spring stiffness is varied separately for the full interface RBAR model

and what ranges for these parameters might be reasonable, Fig. 4.6 depicts the percent error in each natural frequency
(compared to the experimental) as each design variable changes relative to the values in Table 4.5.

Although the elastic modulus was established with the single beam study, it was varied in the parameter study to see if
the second beam affected the modulus of the system. It changes the frequencies of every mode in approximately the same
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way. Furthermore, no value of the X rotation spring stiffness can better correlate the model since the joints and modes do not
exercise this rotation within the frequency range of interest. For the other parameters, there exists an optimal value that can
improve the correlation of some modes, while not affecting the other modes. Mode 2 is only sensitive to X translation spring
stiffness but has a large range of applicable values that result in little change in the other linear frequencies. This allows the
freedom to vary the parameter in nonlinear updating in order to improve correlation. For Mode 6, a mode involving shearing
of the joint, the Y translation and Z rotation springs can be selected to minimize the error, while marginally affecting the other
modes. However, there is little freedom to vary the Z rotation spring stiffness before one begins to reduce the correlation of
the fifth and sixth natural frequencies.

4.4 Nonlinear Model Updating

This paper uses the methodology discussed in Sect. 4.2 to identify the Iwan parameters of the whole-joints. In the results that
follow, since only Mode 6 was considered, an Iwan element was only placed in the Z rotation direction since that affects the
shearing of the joint and is assumed to cause the nonlinearity observed in this mode. The tangential stiffness (Kt) of the joint
is chosen as the linear stiffness obtained from the linear model updating, while the other three parameters are free parameters
to be calibrated. In order to ensure that a global optimum is obtained, Monte Carlo simulation (MCS) is used to explore the
parameter space and find an optimal solution for unknown Iwan parameters. Before running MCS, it is informative to first
perform a sweep of some of the parameters to understand what effect they have and to define limits over which to vary the
parameters in the MCS. The power law exponent, χ , is measured from the slope of the experimental damping vs. amplitude
curve [3, 13], and therefore is treated as a known parameter in this study; however since Fs and β cannot be measured, they
are allowed to vary. To illustrate the effect of these parameters, using χ = − 0.12 and an arbitrary β = 1 for both of the joints
(in the z-rotation direction), and allowing Fs to vary over a large range, we see the behavior shown in Fig. 4.7. The model
predictions are compared with the measurement for Mode 6 at an impact level of 22.5 lbf and a torque levels of 25.1 N-m
(18.5 ft-lb).

This preliminary test shows excellent correlation between model and experiment for both damping and frequency trends
for Fs = 0.599, and gives an idea of how large of a change in Fs might be needed to probe the parameter space. This
was repeated for various values of β, revealing that β had a much weaker effect. This provided an initial guess for Fs and
established the range of these parameters to use in the Monte Carlo simulation.

Fig. 4.7 Frequency shift and Damping ratio amplitude dependency for different Fs values for the full interface RBAR model
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Fig. 4.8 RMS error for frequency shift and damping for the Monte Carlo simulations with (a) Full Interface RBAR, (b) Full Interface RBE3, (c)
Reduced Interface RBAR, and (d) Reduced Interface RBE3 models

Table 4.6 Iwan parameters and errors from the Monte Carlo simulations

Interface Fs Kt χ β RMS ωn shift error (Hz) RMS damping error

Full RBAR 0.4472 2.08e6 −0.1697 2.3521 0.023 2.62e−5
Reduced RBAR 0.0971 4.15e7 −0.1833 7.589e-5 0.274 1.567e−4
Full RBE3 0.0945 7.72e11 −0.112 0.00307 0.716 3.6975e−4
Reduced RBE3 0.1207 1.83e7 −0.1905 0.000951 0.113 1.155e−4

A large Monte Carlo simulation was then conducted for full/reduced interfaces and RBAR/RBE3 joint models where β

was uniformly distributed in a logarithmic sense over 6 orders of magnitude, centered on β = 0.1, and Fs as well over 2
orders of magnitude centered on Fs = 0.1, while χ was varied linearly between 0 and −0.2. Figure 4.8 depicts the root mean
square (RMS) error in damping and frequency shift for each iteration of the MCS, and Table 4.6 gives the numerical value
of the RMS errors and the Iwan parameters obtained for the optimal solution.

In the study in [14] a Pareto front was observed where one was forced to choose between low error in frequency or
damping. In contrast, in this study the RMS error in frequency and damping are found to tend to zero together. However, the
minimum errors obtained in each model vary quite significantly, with the Full Interface RBAR model obtaining an order of
magnitude smaller error in frequency and damping than the others (see Table 4.6). Furthermore, the maximum errors varied
greatly for each of the models, with the Full RBAR model having the least maximum RMS error in both frequency and
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Fig. 4.9 Experimental damping and frequency shift versus QSMA predictions for the candidate models after optimization for (a) Full Interface
RBAR, (b) Full Interface RBE3, (c) Reduced Interface RBAR, and (d) Reduced Interface RBE3 models

damping. So, in a sense, each of these models is limited in how well it can fit the measurements for any value of the Iwan
parameters, as was the model in [6].

The amplitude dependent frequency and damping for each set of optimal Iwan parameters are shown in Fig. 4.9, where
the best solution is obtained by the Full Interface RBAR model and the Full Interface RBE3 model gave very poor results.
The optimization routine was able to find reasonably good correlation for the other two models, however, the curve in the
damping vs. amplitude plots reveals that the parameters of the Iwan joints are tuned such that the models are nearing macro-
slip. As a result, the models do not agree very well at higher amplitudes, and if the model was forced a little too high then
it might exhibit macro-slip whereas the measurements show no sign that macro-slip is imminent. Interestingly, this same
behavior was observed in the study by Lacayo et al. [6], and was the primary deficiency in their reduced model. The authors
have had similar experiences with other models.

In an effort to understand why the Full Interface RBAR model was superior, a parameter study was conducted in the
spring stiffness was varied for the Full Interface RBAR model and the resulting frequency and damping curves are shown in
Fig. 4.10. In this case study, the optimal Fs, χ and β values were used, and the spring stiffness was varied from 1 to 10,000%
of the value obtained from linear updating. This parameter study shows that a small decrease in Kt leads to an increase in
damping. However, as Kt is decreased further, the damping begins to decrease. In other words, there is not a single, simple
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Fig. 4.10 Natural frequency and damping versus amplitude when the Iwan joint stiffness (Kt) is scaled and varied with the other parameters held
at their optimal values for the Full Interface RBAR model

Fig. 4.11 Error plot for the case study where the Iwan joint stiffness (Kt) is varied and Fs is held at the optimal value for the Full Interface RBAR
model

rule of thumb governing how Kt will affect the results. To explore this further, QSMA was performed for 1000 values of Kt

between 1 and 10,000% and the RMS Error in frequency and damping is shown in Fig. 4.11.
The results in Fig. 4.11 further show that the frequency shift and damping do not depend monotonically on Kt, and that

one might observe several Pareto fronts, depending on the range used for Kt. The arrows show the direction of increasing
stiffness. A solution in Region A will yield only excellent damping correlation, whereas a solution in region B will yield
only excellent frequency correlation. Region B will yield the optimal solution for both damping and frequency. Clearly the
quasi-static solution depends strongly on Kt, and yet, for a single spidering method one has little leeway in adjusting the
value of Kt, without impairing the model’s ability to capture the linear natural frequencies of the structure. Furthermore, this
case study was conducted with an Fs value that correlates to an optimal solution using the nominal Kt, and different results
might be obtained for other values of Fs.
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It is very interesting that, although these models all produced relatively similar results for linear updating, they produce
completely different results for the nonlinear damping. Furthermore, since the reduced interface of the S4B was established
through a nonlinear contact simulation, it was expected that the reduced interface would yield the most optimal results;
however, this was not the case as the full interface was most accurately able to capture the measured dynamic behavior.

4.5 Conclusion

This paper explored the applicability of linear and nonlinear model updating to a new nonlinear benchmark structure, the
S4 Beam. High fidelity models were created using RBAR and RBE3 spidered joints to understand the effects of the area
of influence for the joint (i.e. using full and reduced contact interface areas). The viability of the models was studied by
evaluating their ability to reproduce the linear natural frequencies of the assembly (i.e. by updating linear springs at the
interface) and their ability to capture the amplitude dependent frequency and damping caused by the joints (i.e. by updating
the parameters of nonlinear Iwan elements at the interfaces).

The linear updating exercise showed that all models were quite similar, although the models with spiders constructed
with rigid bar elements captured the second mode more accurately, and this was significant because the second mode was
sensitive to shearing of the joint due to bending of the beam, a phenomenon that is often observed in lap joints. We also
explored simply bonding all nodes in the interface that were found to be in contact by a high fidelity simulation of preload,
but we did not obtain as good of agreement using that approach as was seen by Fronk et al. [14] although that aspect of this
study deserves further investigation.

Quasi-static modal analysis was then used to update the parameters of the nonlinear Iwan elements, using the joint
stiffnesses found in the linear updating step. Although the models captured the linear modes quite similarly, they produced
a widely varying results for the nonlinear damping and for the change in frequency with vibration amplitude. The model
with a full interface spidered with RBAR elements resulted in the excellent correlation between the experimental nonlinear
frequency and damping curves, perhaps the best that has been observed in this type of study to date, whereas the model that
used the Full Interface with RBE3 spiders gave very poor results. Both of the models using a reduced interface area gave
reasonable correlation, but the Iwan joints were forced to the verge of macro-slip and so one would not have high confidence
in simulations from these models. The preliminary conclusion of this work is that the method of spidering the interface does
indeed matter very much for this type of modeling. Future work will be needed to understand this further and to develop best
practices.
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Appendix: Full Interface RBAR Springs for all Models

In this case study, the full interface RBAR case linear spring stiffnesses were used to attach the four interfaces for the other
three models. The tables below depict their results with Table 4.7 showing the linear frequencies and Table 4.8 showing the
percent errors.

Table 4.7 Linear frequencies for each model using the spring stiffnesses of the full interface RBAR case

Experimental Full interface Full interface Reduced interface Reduced interface

Mode # (Hz) RBAR (Hz) RBE3 (Hz) RBAR (Hz) RBE3 (Hz)

1 258.01 259.56 246.92 253.41 244.39
2 331.73 332.97 325.90 329.80 324.34
3 478.55 474.81 473.86 474.40 473.83
4 567.69 555.22 555.00 555.10 555.03
5 708.29 702.80 670.48 687.05 663.68
6 851.54 848.68 812.16 817.12 797.27



38 A. Singh et al.

Table 4.8 Percent errors for the modes for each model using the spring stiffnesses of the full interface RBAR case

Mode # Full interface RBAR (%) Full interface RBE3 (%) Reduced interface RBAR (%) Reduced interface RBE3 (%)

1 0.60 −4.30 −1.78 −5.28
2 0.37 −1.76 −0.58 −2.23
3 −0.78 −0.98 −0.87 −0.99
4 −2.20 −2.24 −2.22 −2.23
5 −0.78 −5.34 −3.00 −6.30
6 −0.34 −4.62 −4.04 −6.37

In comparison to the optimal models, the frequencies for Modes 3 and 4 did not change. However, for all other modes, the frequency errors
increased significantly though not dramatically
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