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Built-up structures exhibit nonlinear dynamic phenom-
ena due to friction at the surfaces that are held together
using mechanical fasteners. This nonlinearity is hys-
teretic, or history dependent. Additionally, interfacial
slip results in stiffness and damping variations that are
dependent on the vibration amplitude. In the microslip
regime, the dissipation varies as a power of the ampli-
tude. The four-parameter Iwan model can capture both
the hysteretic and power-law dissipation behavior that is
characteristic of many bolted joints. However, simulat-
ing the dynamic response of this model is computation-
ally expensive since the states of several slider elements
must be tracked implicitly, necessitating the use of fixed-
step integration schemes with small time steps. The Bouc-
Wen model is an alternative hysteretic model in which
the restoring force is given by a first order nonlinear dif-
ferential equation. Numerical integration of this model
is much faster because it consists of just one additional
state variable, i.e. the hysteretic variable. Existing litera-
ture predominantly focuses on studying the steady-state
behavior of this model. This paper tests the effective-
ness of the Bouc-Wen model in capturing power-law dis-
sipation by comparing it to four-parameter Iwan models
with various parameters. Additionally, the effect of each
Bouc-Wen parameter on the overall amplitude-dependent
damping is presented. The results show that the Bouc-
Wen model cannot capture power-law behavior over the
entire microslip regime, but it can be tuned to simulate the
response over a smaller amplitude range.
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1 INTRODUCTION
Mechanical fasteners are commonly used to assem-

ble various parts in built-up structures, making manufac-
turing and maintenance of these structures convenient.
These fasteners have a nonlinear effect on the overall stiff-
ness and damping of the structure due to frictional en-
ergy losses at the interface [1, 2]. The contact pressure
at the interface due to bolt preload is non-uniform, with
the pressure being high near the bolt hole and gradually
decreasing further away [3]. As a result, at low tangential
loads, the area near the bolt hole remains stuck whereas
the edges of the contact interface start to slip. This phe-
nomenon is termed microslip. The area that remains stuck
can be understood to behave like a linear spring, whereas
the area that slips results in frictional energy dissipation
and a loss of stiffness [4]. Various experimental studies
have found that, so long as the joint doesn’t slip com-
pletely, the stiffness of the joint tends to decrease slightly
while the damping increases significantly, potentially by
orders of magnitude [5–7]. The nonlinear resonant fre-
quency and dissipation can be quantified as a function of
the amplitude. For bolted joints, the dissipation is found
to vary as a power of the load amplitude [8, 9], so that the
log of the damping is a linear function of the log of the
vibration amplitude. This is referred to as power-law be-
havior. If the force amplitude increases further, the area
of contact reduces, ultimately resulting in relative mo-
tion between the surfaces, also known as macroslip. In
macroslip, the joint stiffness decreases significantly and
the dissipation exhibits power-law behavior with a differ-
ent exponent (or slope). Additionally, due to interfacial
slip, the stress-strain, or force-displacement relationship
is hysteretic in nature, i.e. the restoring force depends not



only on the displacement but also on the past state of the
system.

One approach to simulate the dynamics of jointed
structures could be to create a high-fidelity finite element
(FE) model of the bolted structure that is able to cap-
ture the dissipation due to friction in the microslip and
macroslip regime [10, 11]. However, due to the orders-
of-magnitude difference in the length scales associated
with microslip and that of the whole model, this approach
is highly computationally expensive [12]. Jewell et al.
[11] observed that a fine mesh is needed around the con-
tact region to effectively capture microslip nonlinearity,
especially at low displacement amplitudes. An alterna-
tive is to replace the contact interface with a constitutive
model capable of simulating the hysteretic and amplitude-
dependent nonlinear behavior that has been observed ex-
perimentally. The constitutive model could then be in-
corporated into the FE model using whole-joint modeling
[9] or similar approaches. In the whole-joint approach,
the nodes on a contact surface are constrained to a sin-
gle virtual node. The appropriate hysteretic model is then
applied between the virtual nodes of the surfaces in con-
tact. While this approach is computationally more effi-
cient than creating a high-fidelity FE model, it is diffi-
cult to isolate the effect of each joint on the overall sys-
tem dynamics. Therefore, computationally intensive opti-
mization schemes are required to calibrate the constitutive
models [13]. Alternatively, a modal modeling approach
can be used [14], in which each mode is represented by
a single degree-of-freedom (SDOF) system with a paral-
lel arrangement of a linear spring, linear damper and the
hysteretic model.

In either of the modeling approaches, a suitable con-
stitutive model is required to capture the nonlinear dy-
namics of the bolted joint(s). Gaul and Nitsche [15] re-
viewed different models that can be used to estimate the
dynamics due to bolted joints. More recently, Mathis et
al. [16] presented an overview of various rate-dependent
and rate-independent hysteretic models. One such model
prevalent in bolted joint dynamic analysis is the Iwan
model [17]. It consists of a parallel arrangement of
spring-slider units, known as Jenkins elements, with all
elements having the same spring stiffness but different
slider strengths. A distribution function is defined to spec-
ify the strength of the sliders. Several forms of the Iwan
model have been developed for bolted joints applications
[18–20]. Among them, Segalman’s four-parameter Iwan
model [19] is most popular since it can capture the mi-
croslip power-law dissipation behavior that has been ex-
perimentally observed. However, an implicit integration
scheme is required to simulate the dynamic behavior of
the Iwan model, with the state of the sliders being eval-

uated sequentially at each time step. The speed of nu-
merical computation depends on the number of sliders,
or discrete elements that define the distribution function.
Typically, 30−100 sliders are used, resulting in high com-
putational cost. Brake [21] presented a reduced formula-
tion of the four-parameter model that makes it possible
to derive an analytical expression for the nonlinear force,
thus circumventing the slider state calculations. Alter-
natively, Shetty and Allen [22] used closed-form expres-
sions for stiffness and dissipation to reformulate the dif-
ferential equations of the four-parameter model such that
explicit ODE solvers can be used. However, the closed-
form expressions used are applicable only in the microslip
regime.

The Bouc-Wen model [23, 24] is another semi-
physical, rate-independent model that can capture hys-
teretic behavior. It consists of a nonlinear, first-order or-
dinary differential equation (ODE) that relates the input
displacement to the output restoring force in a hysteretic
way. The equation of motion for this model can be writ-
ten in state-space form. Therefore, it can be integrated us-
ing explicit ODE solvers such as the Runge-Kutta method
[25]. Since the hysteretic variable defined by the nonlin-
ear ODE is the only additional state variable, dynamic
simulation of the Bouc-Wen model is more computation-
ally efficient than the four-parameter Iwan model. The
Bouc-Wen model is regarded as semi-physical since its
formulation is based on some physical understanding of
hysteresis but its parameters are non-physical. Ismail et
al. [26] provide an extensive survey of the Bouc-Wen
model.

A vast majority of the existing literature focuses on
applying the Bouc-Wen model to capture steady-state
hysteretic behavior of various nonlinear systems [27–29].
There has been some effort to simulate the hysteretic be-
havior due to friction using this model [30, 31]. Allen et
al. [32] observed good agreement between the time re-
sponses of a reduced-order model with nonlinearity rep-
resented using the Bouc-Wen formulation and a detailed
FE model of a complex, large-scale aerospace structure
with stick-slip elements in many joints. However, to com-
pletely characterize the nonlinearity in a bolted structure,
the frequency and power-law damping behavior over a
range of vibration amplitude must be considered. Porter
et al. [33] took a step towards this, assessing the abil-
ity of several hysteretic models (including the Bouc-Wen
model) to fit experimental frequency and damping curves
by using multi-objective optimization to identify the pa-
rameters. This paper seeks to shed further light on this
issue, focusing on characterizing the ability of the Bouc-
Wen model to capture the microslip-level power-law dis-
sipation behavior that is characteristic of bolted joint dy-



namics. The effect of each Bouc-Wen parameter on the
overall damping behavior is also studied.

The following section provides background on the
four-parameter Iwan model, the Bouc-Wen model and
the modal modeling approach. A method to identify
the Bouc-Wen model parameters from quasi-static force-
displacement data is also included. Section 3 compares
the dynamic response of the two hysteretic models to
an impulsive force, analyzing the Bouc-Wen model’s ef-
fectiveness in simulating power-law dissipation behavior.
Section 4 provides an analysis of the effect of each Bouc-
Wen parameter on the overall damping of the system. Fi-
nally, the conclusions are presented in Sec. 5.

2 BACKGROUND
2.1 The Four-Parameter Iwan Model

The Iwan model [17] is a lumped, hysteretic model
that was originally developed to characterize metal elasto-
plasticity. It consists of a parallel arrangement of spring-
slider units, also known as Jenkins elements. The nonlin-
ear restoring force due to the Iwan model is given by Eq.
1,

fnl,Iwan(x, t, ϕ) =

∫ ∞

0

ρ(ϕ)[x(t)− u(t, ϕ)]dϕ (1)

where x(t) is the imposed displacement, u(t, ϕ) is the dis-
placement of the Jenkins elements that constitute the Iwan
model, and ρ(ϕ) is the density of sliders that have strength
ϕ. Thus, the formulation of ρ(ϕ), also referred to as the
distribution function, defines the slip behavior of the Iwan
model. Note that, for an SDOF system, x(t) is the dis-
placement of the mass whereas for an MDOF system, it
is the difference between the displacements of nodes that
are connected with the Iwan element. The dissipation due
to bolted joints in the microslip regime exhibits power-
law behavior [8, 9], i.e. the dissipation increases with
some power of the the applied load amplitude. Segalman
[19] defined a distribution function for the Iwan model
that is able to capture this power-law behavior. The re-
sulting model is referred to as the four-parameter Iwan
model, and its distribution function can be written as

ρ(ϕ) = Rϕχ[H(ϕ)−H(ϕ−ϕmax)]+Sδ(ϕ−ϕmax), (2)

where H(.) and δ(.) are Heaviside and Dirac-delta func-
tions respectively. This model form can thus be repre-
sented by the parameter set [ϕmax, χ,R, S],where ϕmax is
the displacement at which all sliders slip (i.e. macroslip

occurs), χ is a dimensionless quantity that governs the
slope of the power-law energy dissipation versus ampli-
tude, and R and S can be understood as the stiffness of
the power-law portion of the distribution and the delta
function portion of the distribution respectively. Since the
parameters R and S do not have physically meaningful
units, Segalman proposed using another set of more intu-
itive parameters, [FS,KT, χ, β], with FS being the force
required to cause macroslip, KT being the tangential stiff-
ness of the joint at small applied loads, and χ and β being
dimensionless parameters.

In order to simulate the nonlinear force due to the
Iwan model using numerical methods, Eqs. 1 and 2
must be written in discrete form with a finite number of
discretization points. Typically, 30 − 100 discretization
points are sufficient, depending on the range of amplitude
being simulated. Equation 1 in discrete form is composed
of a summation of the friction forces due to the sliders
that have slipped and the linear spring forces due to the
sliders that remain stuck. Thus, the density of sliders that
have slipped and that are stuck must be evaluated, result-
ing in 30− 100 additional state variables in the nonlinear
equation. It is computationally expensive to simulate the
dynamic response of the Iwan model because the state of
all sliders needs to be evaluated at each time step. Ad-
ditionally, the slider positions depend on their prior state
and on the displacement. Thus, one must iterate to find
their states at each time step; i.e. the equation of motion
cannot be cast in the form ẏ = f(y, t) that is required
for most ODE solvers. Further details about the model
formulation and discretization procedure can be found in
[9].

2.2 The Bouc-Wen Model
Another model that can capture hysteretic behavior

is the Bouc-Wen model [23, 24]. This formulation is in-
tended for any form of hysteresis and was originally ap-
plied to force – deflection and flux– current diagrams of
mechanical and ferromagnetic hysteresis. In case of the
Bouc-Wen model, the nonlinear restoring force is given
as

fnl,BW(x, z) = (1− α)K0z (3)

where K0 is the initial low-amplitude stiffness and α is
defined as the ratio of macroslip stiffness to initial stiff-
ness. The hysteretic state variable, z(t) is defined by the
following ODE,

ż = Aẋ− β|ẋ||z|n−1z − γẋ|z|n (4)



where A, β, γ and n are the Bouc-Wen parameters that
can be tuned to fit force-displacement data obtained ei-
ther experimentally or using FE simulations. Thus, the
hysteretic variable z is an additional state variable to
be solved for, along with the displacement and velocity,
when computing the dynamic response of a system con-
sisting of a Bouc-Wen model. However, this is just one
additional variable as opposed to the state of all sliders
in the Iwan model resulting in the addition of 30 − 100
state variables. Therefore, this formulation provides a
computational advantage over the four-parameter Iwan
model. Additionally, the system of ODEs takes the form
ẏ = f(y, t) where y is the vector of state variables. Thus,
the ODEs can be solved using explicit solvers like the
Runge-Kutta methods. For n = [1, 2], closed-form so-
lutions for z can be obtained [34], but other values of n,
including non-integer values, are often needed to obtain
the desired behavior. In the context of structural dynam-
ics, the Bouc-Wen model is considered semi-physical in
nature since, unlike the spring-slider units in Iwan mod-
els, the state variable z(t) does not have a specific phys-
ical interpretation. Note that Guo et al. [35] proposed
an equivalent normalized Bouc-Wen model with param-
eters that can be qualitatively linked to the shape of the
hysteresis curve.

2.3 Identifying the Parameters of the Bouc-Wen
Model

An adaptation of the identification method presented
in [36] has been used to identify Bouc-Wen parameters
for a given load-displacement hysteresis loop. Consider
an SDOF system with hysteretic nonlinearity that is being
reproduced using the Bouc-Wen model. The equations
for the Bouc-Wen formulation are given by Eq. 3,4. The
parameter α is given as the ratio of K∞, the linear stiff-
ness in the macroslip regime with respect to K0, the linear
stiffness at low amplitudes, i.e. before slip occurs. If the
low-amplitude linear natural frequency, ω0, and the high-
amplitude slip frequency, ω∞, of the system are known
instead, the corresponding linear stiffness can be calcu-
lated as a square of the natural frequency. Thus, α can be
calculated using the relation

α =

(
K∞

K0

)
=

(
ω∞

ω0

)2

. (5)

Since the parameter A is the coefficient of the linear term
in Eq. 4, it can be set to unity if the estimate of stiffness
using the low-amplitude linear frequency is expected to
be accurate. Next, eliminating the time dependence and

switching from differential in Eq. 4 to difference gives

△z = △x− β|△x||z|n−1z − γ△x|z|n. (6)

Suppose the hysteresis of the system has been measured,
collecting the displacements of the system in the vector
x and the corresponding restoring forces in fnl. These
could be plotted to view the hysteresis loop that the sys-
tem would exhibit in steady-state oscillation. The hys-
teretic variable z can be calculated from the nonlinear
force and displacement vectors, i.e. fnl and x respectively,
using Eq. 7, obtained by re-arranging Eq. 3.

z =
1

(1− α)K0
fnl (7)

Note that z in Eq. 7 is a vector, giving the value of the
hysteretic variable for every value of fnl. Therefore,

△z =
1

(1− α)K0
△fnl (8)

where △fnl is the difference between consecutive values
of the vector △fnl. Substituting Eq. 8 in Eq. 6 gives

△fnl
(1− α)K0

−△x =
[
−△x|z|n−1z −△x|z|n

] [β
γ

]
.

(9)
Equation 9 is of the form Y = ΦΘ which can be solved
for Θ by taking the pseudo-inverse of Φ, for a con-
stant value of n. To ensure that the matrix Φ is well-
conditioned, each column of Φ is normalized to its cor-
responding maximum value. In order to obtain an opti-
mal set of parameters [n, β, γ], the least-squares regres-
sion problem, given by Eq. 9, is solved iteratively for dif-
ferent values of n, and the parameter set that results in the
lowest error is used. Although the method presented in
[36] considered n to be constant, it has been varied in this
study since n impacts the amplitude-dependent dynamic
behavior of the Bouc-Wen model, as will be discussed in
Sec. 3.2. Note that this method can also be applied to a
single mode of a nonlinear system when using the modal
modeling approach, described below. In this case, x is
replaced by the modal displacement q.

2.4 Modal Modeling Approach
Consider the FE model of a structure where each

bolted joint is represented by a constitutive model. The



resulting equation of motion (EoM) is given by Eq. 10,

Mẍ+Cẋ+K∞x+ fnl(x, h) = fext(t) (10)

where M is the mass matrix, C is the linear damping ma-
trix, K∞ is the linear stiffness matrix if all the joints were
disconnected, and fnl(x, h) is the vector of nonlinear joint
forces given by a hysteretic model, that depend on the
nodal displacements x and the hysteretic state h. The
hysteretic state is simply the variable z for the Bouc-Wen
model, while for an Iwan model it is a vector of slider
states ϕ. As discussed earlier, it is difficult to isolate the
effect of each joint on the overall system dynamics, so it
is non-trivial to use Eq. 10 to calibrate the parameters of
the hysteretic models to match measurements.

As an alternative, Segalman [14] proposed a modal
modeling approach, where each nonlinear mode of the
structure is represented by a single degree-of-freedom
(SDOF) system with a parallel arrangement of a linear
spring, linear damper and a nonlinear hysteretic element.
This approach makes two important assumptions. Firstly,
it assumes that there is no coupling, or energy transfer, be-
tween the modes. This assumption holds true if the exter-
nal force results in excitation of a single, dominant mode.
Eriten et al. [37] showed that in a weakly nonlinear struc-
ture, the interaction between modes is not significant if
their natural frequencies, or harmonics of the frequencies,
are sufficiently spaced. On the other hand, Moldenhauer
et al. [38] and Wall et al. [39] showed the presence of
modal coupling in two different jointed structures. The
second assumption is that the low-amplitude, linear mode
shapes of the system are preserved and hence applicable
in the amplitude range being analyzed. This assumption
is often reasonable, as the joints introduce only a weak
stiffness nonlinearity and tend to change the global mode
shapes relatively little.

While there are limitations to the applicability of the
modal modeling method, when the modes do not exhibit
coupling this method has proven simple to use and has
very accurately captured the observed behavior [7]. As
a result, in this paper a modal model is used as a truth
model for a system that did not exhibit significant modal
coupling. Equation 10 is transformed to the modal do-
main using x = Φ0q, where Φ0 is the low-amplitude,
linear mode shape matrix and q is the vector of modal
displacements. If there is no modal coupling, the modal
transformation results in the nonlinear joint force fnl be-
ing projected onto each mode and being a function of the
corresponding modal displacement, i.e. ΦT

0rfnl(x, h) =

f̂nl(qr, ĥ), where the (ˆ) symbol denotes joint parameters
that are defined on a modal basis rather than for actual

physical joints. As a result, Eq. 10 reduces to

q̈r + 2ζ0rω0r q̇ + ω2
∞rq + f̂nl(qr, ĥ) = ΦT

0rfext (11)

for the rth mode. Here, ω0r is the linear frequency of
the rth mode at low amplitudes, when there is no slip
occurring, whereas ω∞r is the frequency at macroslip.
It is also assumed that the modal transformation results
in a diagonal linear damping matrix, with ζ0r being the
low-amplitude damping ratio of the rth mode. Each non-
linear mode can be independently analyzed using a suit-
able hysteretic model to represent the modal joint force,
f̂nl(qr, ĥ). Figure 1 provides a schematic of the modal
model.

c

q1

m

k

fnl

Fig. 1: Modal model: SDOF system with a linear spring,
damper and nonlinear element in parallel. In this work
m = 1, k = ω2

∞, c = 2ζ0ω0 and f̂nl is the force defined
by either a Bouc-Wen or Iwan element.

Modal models significantly reduce the computation
cost of dynamic simulations. Deaner et al. [6] and
Roettgen and Allen [7] showed that the modal Iwan
model is capable of describing the nonlinearity in vari-
ous bolted structures. Further, Lacayo et al. [40] found
that this approach can accurately capture the nonlinear re-
sponse to an impulse-type excitation (that excites differ-
ent modes of the structure to varying extents) if it consists
of one dominant mode, and may still be fairly acceptable
in cases of more than one dominant mode, provided the
mode being studied is a dominant one. This paper evalu-
ates the effectiveness of the Bouc-Wen model as a modal
model, in terms of its ability to capture the nonlinear be-
havior that has been observed experimentally for a mode
of a specific structure. In the authors’ experience, the be-
havior chosen is typical of that of many structures with
bolted interfaces.



3 COMPARING THE BOUC-WEN AND IWAN
MODELS
An assembly of two beams bolted together, com-

monly referred to as the Sumali beam, was used to evalu-
ate the capability of the Bouc-Wen model and to compare
it to that of the four-parameter Iwan model. The structure,
as seen in Fig. 2a, consists of two thin, identical, stainless
steel beams of length 508 mm, width 50.8 mm, and thick-
ness 6.35 mm, that overlap and are joined with four bolts.
Deaner et al. [6] experimentally analyzed the first three
elastic modes of this structure and fit suitable modal Iwan
models to capture the observed amplitude-dependent be-
havior. Further, Lacayo et al. [40] created an FE model
of the Sumali beam and tuned the modal Iwan models
such that their FE simulations closely matched the dy-
namic response measured by Deaner et al. In this work,
the modal Iwan model identified in [40] for the second
bending mode of the Sumali beam (shown in Fig. 2b)
is taken as the truth model. It must be noted that the
modal Iwan models in [6] were fit to match the amplitude-
dependent resonant frequency and damping specifically
in the microslip regime. One significant drawback of the
Iwan model is the abrupt change in stiffness from the mi-
croslip to macroslip regime, a behavior that is not physi-
cally accurate. However, the model’s ability to capture the
power-law damping behavior accurately makes it a useful
basis for comparison in this particular case study.

Table 1 lists the parameters of the modal Iwan model
that best fits the second bending mode of the Sumali
beam. These parameters result in a low-amplitude lin-
ear frequency of 213.94 Hz, and a macroslip frequency of
205.86 Hz. It was shown in [6] and [40] that the result-
ing amplitude-dependent frequency and damping curves
produced by the modal Iwan model closely match exper-
imental measurements. Therefore, the modal Iwan model
can be considered to be the truth model for this system.
While the Sumali beam tends to have lower damping than
other jointed structures [41], it was chosen as a case study
in this work because the behavior is still typical and its
modal behavior has been thoroughly studied through both
simulation and experiments. Following the comparative
study with the Iwan model, the range of nonlinear behav-
ior that a Bouc-Wen model can capture is also evaluated,
allowing some generalization to other structures.

3.1 Procedure for Comparison Between the Hys-
teretic Models

First, an equivalent Bouc-Wen model must be iden-
tified using the method of least squares, outlined in Sec.
2.3. To do so, the force-displacement relationship of the
modal Iwan model was estimated by performing a quasi-

Table 1: Parameters of the four-parameter modal Iwan
model that fits Mode 8 of the Sumali beam

Parameter Value

(K∞) [s−2] 1.67× 106

low-amplitude damping (ξ0) 1× 10−4

Fs [N kg−1/2] 1.518

(KT ) [s−2] 1.34× 105

χ −0.162

β 2.000

static analysis. The equation for the Iwan model under
static loading reduces to

K∞q + Fnl,Iwan(q,ϕ) = Fstatic, (12)

where q is the displacement of the mode under con-
sideration, i.e. the second bending mode of the Sumali
beam in the case presented. The above equation is non-
linear in nature and can be converted to the form f(q) = 0
by moving the term Fstatic to the left-hand side. There-
fore, the displacement of the modal Iwan model, q, at
a particular static force can be obtained by using the
Newton-Raphson method to solve Eq. 12. This was done
over a range of monotonically increasing static force am-
plitudes, up to a maximum value of Fmax, to generate
the force-displacement backbone curve. Since the Iwan
model is a Masing model, Masing’s rules could be applied
to estimate the complete hysteresis loop at the maximum
force amplitude [42]. Note that, alternatively, one could
use the Newton-Raphson method to estimate the com-
plete hysteresis loop by applying static loads that result
in loading, unloading and then reloading of the system.
However, application of Masing’s rules gives a quicker
and equally accurate result. Once the complete force-
displacement hysteresis loop was calculated, the method
described in Sec. 2.3 was used to estimate the equivalent
Bouc-Wen model parameters.

The resultant Bouc-Wen model was first statically ex-
cited to verify the least squares solution. The Bouc-Wen
static formulation can be written as

K∞q + (1− α)K0z − Fstatic = 0 (13)

where the hysteretic variable, z, is calculated by solving
Eq. 4. Note, again, that the externally applied static force



(a) (b)

Fig. 2: (a) Photograph of the Sumali beam structure and (b) Elastic Mode 8, the second bending mode

is written on the left-hand side for the equation to be of
the form f(q) = 0. To solve Eq. 13 using the Newton-
Raphson method, the modal displacement q was defined
as a function of z. To do so, first, Eq. 4 can be rearranged
as

ż = q̇(1− |z|n(sgn(q̇z)β + γ)). (14)

The time dependence in Eq. 14 can be eliminated, result-
ing in Eq. 15.

dq =
dz

(1− |z|n(sgn(q̇z)β + γ))
(15)

The integral of the above equation is given by Gauss’ hy-
pergeometric function, 2F1(a, b; c; z), as shown in [34].
Therefore,

q = q0 + z2F1

(
1,

1

n
; 1 +

1

n
; (sgn(q̇z)β + γ)|z|n

)∣∣∣∣z
z0

(16)
Substituting Eq. 16 in Eq. 13 results in a nonlinear equa-
tion of the form f(z) = 0, which can be solved for z us-
ing the Newton-Raphson iteration method. Equation 16
can then be used to calculate the modal displacement at
the force amplitude under consideration. The Bouc-Wen
system was excited up to Fmax, the same maximum force
amplitude as the Iwan model, followed by a decrease in
the force to cause unloading up to −Fmax, and then an
increase again to cause reloading up to Fmax. Thus, the
complete hysteresis loop for the Bouc-Wen model was
identified. Unlike the Iwan model, the Bouc-Wen model
does not obey Masing’s rules. Therefore, the complete

cycle needs to be numerically simulated. Note that, al-
ternatively, the Bouc-Wen response could have been nu-
merically estimated by applying a harmonic force of low
enough frequency such that the system can be approx-
imated as being quasi-statically excited. The nonlinear
EoM can then be solved using the Runge-Kutta method.

Once a Bouc-Wen model was obtained that could
capture the steady-state hysteretic behavior, its ability to
capture the amplitude-dependent system dynamics was
evaluated. The response of the Bouc-Wen model to an
impulsive force was simulated using the Runge-Kutta ex-
plicit ODE solver. On the other hand, the Newmark-β
method was used to simulate the response of the Iwan
model. In both cases, the impulsive force was modeled
as one half of a sinusoid with a width of 0.005 s and the
dynamic response was simulated for a time span of 10 s.
Note that one dynamic analysis of the Iwan model using
the Newmark-β method took 93.22 s, whereas the Runge-
Kutta method for the Bouc-Wen model took 3.86 s. Both
models were being simulated on an Intel(R) Core(TM) i7
CPU 950 @ 3.07GHz. This highlights the computational
advantage offered by the Bouc-Wen model. The resulting
time history in both cases was then post-processed using
the Hilbert transform [43, 44] to compute the amplitude-
dependent frequency and damping for comparison.

This analysis method was applied to three different
cases comparing the Bouc-Wen model to the Iwan model.
A description of the three cases and the results are dis-
cussed below.

3.2 Effect of the Parameter n on Dynamic Behavior
The parameter n in the Bouc-Wen model is known to

determine the smoothness of the transition from microslip
to macroslip [26]. When the parameter n tends to infin-
ity, a bilinear model is obtained. According to existing



literature, the Bouc-Wen model is not sensitive to n [36]
and in some applications, varying n does not significantly
impact the results [31, 32]. The validity of this claim in
case of bolted joints dynamics has been tested here.
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Fig. 3: Hysteresis curve when n = 1 (dashed line) and
when n = 2 (dashed-dotted line) compared against the
Iwan model (solid line)

Figure 3 shows the hysteresis loops calculated using
the quasi-static analysis described in Sec. 3.1. The solid
line is the estimate using the Iwan model, the dashed line
is from the Bouc-Wen model with n = 1, and the dashed-
dotted line is from the Bouc-Wen model with n = 2. It
can be observed that the two values of n result in very
similar steady-state behavior. The area inside the hystere-
sis loop for n = 1 equals 3.303 × 10−6 kg N m while
that inside the hysteresis loop for n = 2 is nearly the
same at 3.725 × 10−6 kg N m, giving a difference of
≈ 12%. However, the amplitude-dependent frequency
and damping are of primary interest when characterizing
bolted joint dynamics. Therefore, the effect of change
in ‘n’ on the amplitude-dependent behavior was studied
by applying an impulsive force, as described in Sec. 3.1.
Figure 4 shows the frequency and damping, both plot-
ted against the nondimensional velocity amplitude. Note
that due to the nondimensionalization, the system is in
macroslip when the X-coordinate equals 1. In the system
presented, with n = 1 the Bouc-Wen model is able to
match the true behavior (given by the Iwan model) more
closely, with a maximum error of 0.17%. On the other
hand, when n = 2, the frequency changes abruptly and
the maximum error is 0.49%. Figure 4b plots the nonlin-

ear damping as a function of response amplitude. Similar
to frequency, the damping estimate when n = 1 closely
matches the Iwan model, with a maximum error of 17.8%
while n = 2 shows significant deviation, with a maxi-
mum error of 67.4%. Thus, n appears to influence the
amplitude-dependent nonlinear dynamics of the system
and must be accounted for when identifying the Bouc-
Wen model parameters. In the following cases, the pa-
rameter identification process was performed over a range
of n values and the parameter set resulting in lowest er-
ror in the least squares solution was chosen. It should be
noted that while the comparison above may suggest that
the parameter n changes the power-law exponent of the
Bouc-Wen model, the results in Fig. 8, discussed later,
show that this is not the case.

3.3 Effect of Forcing Amplitude on Parameter Iden-
tification

One difficulty in comparing hysteretic models is that,
because the damping is a weak effect, almost any hys-
teretic model or even a linear model can reproduce a given
vibration measurement at a fixed amplitude. However,
if the model does not correctly capture the variation in
damping with vibration amplitude, it will only be accu-
rate at the amplitude at which the fit was performed. In
order to evaluate this for the Bouc-Wen model, the exci-
tation level of the quasi-static analysis that was used to
estimate the model parameters, i.e. Fmax, was varied and
a Bouc-Wen model was fit to the quasi-static hysteresis
loop obtained for each force amplitude. To quantify the
level of slip at these different force amplitudes, the am-
plitude ratio, AR, was defined as the ratio of the max-
imum displacement at the applied load to the displace-
ment at which macroslip occurs (i.e. ϕmax). By defini-
tion, AR = 1 indicates the amplitude of the quasi-static
load applied is sufficient to cause macroslip.

AR =
xmax

ϕmax
(17)

The Bouc-Wen parameters that best fit the hystere-
sis loop for the different values of AR were calculated.
Then, an impulsive force, with amplitude small enough
for the system to remain in microslip, was applied to each
of these Bouc-Wen models and the Fast Fourier Trans-
form, or FFT, of the dynamic response was calculated.
Figure 5 shows that there is a range of AR, specifically
0.1 < AR < 1, for which the resultant Bouc-Wen model
gives nearly identical response. If macroslip level data
is being fit, i.e. when AR > 1, the Bouc-Wen model
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Fig. 4: Amplitude-dependent (a) frequency and (b) damp-
ing, for two different values of n, compared against the
Iwan modal

obtained is significantly different. This implies that two
different Bouc-Wen models are required to simulate the
behavior of an Iwan model.

The amplitude-dependent dynamic behavior was an-
alyzed to further verify this claim. Two AR values were
considered. For the first value, the model is in microslip
(AR = 0.4) while for the second, it is in macroslip
(AR = 1.23). An impulsive force large enough to cap-
ture both macroslip and microslip behavior was applied
to both models and the resultant frequency and damping
were calculated. As seen in Fig 6, the Bouc-Wen model
obtained using AR = 0.4, shown using dashed lines, is
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Fig. 5: FFT of the response to an impulsive force applied
to the Bouc-Wen models obtained using forces that pro-
duce different values of the amplitude ratio (AR)

able to estimate the frequency and damping in the mi-
croslip regime but is inaccurate in the macroslip regime.
Note that a value of 1 on the X-axis corresponds to the
onset of macroslip. On the other hand, the nonlinear dy-
namic behavior obtained using AR = 1.23, shown using
dashed-dotted lines, is accurate in the macroslip region
but not in microslip. This further proves that the same
Bouc-Wen model cannot replicate both microslip as well
as macroslip behavior of the Iwan model. Another obser-
vation of note here is that the Bouc-Wen model that best
fits microslip data has n = 1, whereas the model that best
fits macroslip data has n ≈ 5.5. This also highlights the
need to vary the parameter n, as discussed in Sec. 3.2. Ta-
ble 2 lists the parameters of the Bouc-Wen model that best
simulates the microslip-level behavior. Thus, this model
results in the frequency and damping curves given by the
dashed lines in Fig. 6.

3.4 Accuracy of the Bouc-Wen Model at Different
Dissipation Levels

The parameter χ in the four-parameter Iwan model
directly relates to the power-law behavior observed in the
damping (or in the dissipation per cycle [19]). The slope
of the damping vs amplitude, when plotted on a logarith-
mic scale, equals 1 + χ. (This corresponds to the energy
dissipated per cycle having a slope of 3 + χ.) The value
of χ typically varies between −1 and 0, with χ = −1
corresponding to linear damping. In the prior case stud-
ies (i.e. in Sec. 3.2-3.3), χ = −0.162 was used since
it best captures the damping for mode 8 of the Sumali
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Fig. 6: Comparison of the nonlinear (a) frequency and,
(b) damping when the AR used for fitting the Bouc-
Wen model corresponds to microslip (dashed line) vs.
macroslip (dashed-dotted line). The solid line is the re-
sult from the truth model.

beam. This corresponds to the damping curve having a
slope of 0.838 in the microslip regime when plotted on
the logarithmic scale, as shown by the solid line in Fig.
7a. The value of χ was then changed to χ = −0.6 with
the other parameters left constant, and the comparison re-
peated, with the results shown in Fig. 7b. As a result,
the modal Iwan model used no longer matches measure-
ments from mode 8 of the Sumali beam. However, such
a value of χ is still within the range of damping behavior
observed in other bolted structures. For example, χ values

Table 2: Parameters of the modal Bouc-Wen model that
best fits microslip behavior of mode 8 of the Sumali beam
(given by the four-parameter Iwan model in Tab. 1)

Parameter Value

A 1

β 1.41× 104

γ 2.32× 104

n 1

between −0.280 and −0.400 were observed in [7]. Com-
paring the results for the two cases, when χ = −0.162,
the Bouc-Wen model exhibits a similar trend to the Iwan
model but underestimates the damping, with a maximum
error of 18.1%. However, when χ is changed to −0.6,
the Bouc-Wen model significantly deviates from the Iwan
model, with a maximum error of 67.2%. Therefore, it
appears that the Bouc-Wen model is less effective at cap-
turing the modal behavior of a system when the power
law behavior has a smaller slope.

Note that, for each value of χ, the Bouc-Wen model
that best fit the quasi-static response of the Iwan model
was estimated. Then, the response of both the Bouc-Wen
and Iwan models to an impulsive force was calculated. In
each case the quasi-static data used to identify the Bouc-
Wen model corresponded to the microslip regime, and the
amplitude of impulsive force applied when computing the
dynamic response was also limited so that the response of
the system remained in the microslip regime.

Figure 8 further compares the nonlinear damping as
a function of amplitude for a range of χ values to bet-
ter observe the damping trend followed by the Bouc-Wen
model. The different colors correspond to different values
of χ. For each color, the solid line is the damping for the
Iwan model, and the dashed-dotted line of the same color
is the damping for the best-fit Bouc-Wen model. Both
axes have logarithmic scales so that the power-law behav-
ior can be easily observed. As expected, the Iwan model
gives straight lines of varying slopes for different χ values
until the response amplitude is low enough for the linear
damping to dominate. The slope of damping increases
as the value of χ increases (note that χ assumes nega-
tive values). The Bouc-Wen model, on the other hand,
exhibits little difference in the damping behavior, regard-
less of the value of χ of the system that one is trying to
represent. The damping versus amplitude produced by
the Bouc-Wen model is approximately straight line on the
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Fig. 7: Comparison of the damping estimated by the Bouc-Wen model against the Iwan model when (a) χ = −0.162,
and when (b) χ = −.6 for the Iwan model. The left y-axis shows the damping and the right y-xis shows the error in
damping, both plotted against the non-dimensional velocity on the x-axis.

log-log plot, indicating that the Bouc-Wen model does ex-
hibit power-law behavior, but the slope of the line varies
little. For lower values of χ, the equivalent Bouc-Wen
model shows significant deviation from the Iwan model
damping curve. However, for higher χ values, for ex-
ample when χ = −0.01, the damping estimated by the
Bouc-Wen model closely matches the Iwan model. This
indicates that the Bouc-Wen model is more suitable when
the power law slope is closer to 1 or when χ ≈ 0.

3.5 Discussion
The comparisons presented here take the true behav-

ior to be that of an Iwan model that has been tuned to
match the behavior of a single mode of the Sumali beam.
The results have shown that the Bouc-Wen model is lim-
ited in its ability to capture this behavior. This is impor-
tant because the power-law damping behavior captured
by the Iwan element is a feature of important analytical
models such as the Mindlin solution [19] and many struc-
tures have been shown to exhibit Iwan-like behavior [5–
7]. However, there are certainly many systems that be-
have differently; in those cases one might find that the
Bouc-Wen model is more faithful in reproducing the de-
sired behavior. Additionally, the Bouc-Wen model may
be more capable of reproducing the behavior of an Iwan
element if different parameters were chosen for the latter.
The next section explores the capabilities of the Bouc-
Wen model in more general terms, showing how each
term affects its damping versus amplitude behavior.

4 EFFECT OF EACH BOUC-WEN PARAMETER
ON THE DAMPING
In the different case studies considered above, all the

parameters of the Bouc-Wen model were allowed to vary
such that the resultant set best fit the Iwan model behav-
ior. This section studies the effect of changing a single
parameter at a time on the damping behavior of the Bouc-
Wen model. To do so, the Bouc-Wen parameters that best
fit the Iwan model for mode 8 of the Sumali beam were
considered as a starting point. First, the parameter β was
varied from 0.8 × 104 to 1.5 × 105, increasing by nearly
20 times over the range. Note that the value of β for the
Sumali beam model was 1.41× 104 (as shown in Tab. 2),
thus lying within the range considered here. An impulsive
force was applied to the resulting Bouc-Wen model for all
values of β, and the time history was post-processed using
the Hilbert transform to estimate the amplitude-dependent
damping. Figure 9a shows the damping for the differ-
ent values of β. It can be seen that increasing β results
in the damping curve shifting upwards, along the Y-axis.
This means that for the same response amplitude, a higher
β results in a higher damping (or dissipation of energy).
However, the slope of the curve itself shows negligible
change.

Next, the Bouc-Wen parameter γ was varied, with all
other parameters corresponding to the model that best fit
mode 8 of the Sumali Beam, as in the previous sections.
The original value of γ was 2.32× 104. Thus, it was var-
ied from 1× 104 to 1× 106, a hundredfold increase over
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the range. The nonlinear damping for all values of γ was
estimated using the response to an impulsive force, with
the results plotted in Fig. 9b. At low response amplitudes,
the damping curves show negligible difference. However,
as the amplitude increases and approaches macroslip, the
curves diverge. Note that macroslip is the point at which
the damping is the highest. As γ increases, the point at
which macroslip occurs shifts to the left along the X-
axis, i.e. to a lower response amplitude. Therefore, the
parameter γ impacts the damping behavior of the Bouc-
Wen model only near macroslip; the lower-amplitude mi-
croslip behavior is largely unaffected.

Finally, the parameter n, that appears as an exponent
in the differential equation defining the Bouc-Wen model,
was varied. Note that in Sec. 3.2, for each value of n con-
sidered, all the Bouc-Wen parameters were updated to ob-
tain the best fit to a mode with a certain damping versus
amplitude curve. Here, however, only n was varied, set-
ting all other parameters to the values in Tab. 2. Figure
10 shows the resultant amplitude-dependent damping for
1 ≤ n ≤ 2. Increasing n results in the damping curve
shifting horizontally towards the right. This means that
for the same response amplitude, a higher value of n gives
lower damping when the system is in microslip. The in-

crease in n also results in a delay in macroslip, i.e. a
larger amplitude is required to cause the system to go into
macroslip. However, the slope of the damping curve in
the microslip regime remains largely unaltered. Note that
these trends were observed to continue for higher values
of n. A smaller range was chosen here for clear visual-
ization and easy interpretation.

Considering all of the results in this study, it can be
concluded that, while the Bouc-Wen model does exhibit
power-law dissipation behavior, the slope of that behav-
ior is roughly fixed and corresponds to that of an Iwan
model with χ ≈ 0; the log damping versus log amplitude
curve has a slope of +1. None of the parameters of the
Bouc-Wen model are effective in varying that slope over a
large amplitude range. If capturing steady-state response
is of interest, or the system is expected to operate over a
small amplitude range, the Bouc-Wen model could still be
used. For example, Fantetti et al. [31] developed a wear-
dependent Bouc-Wen model that successfully captured
the impact of long-term wear on the steady-state behavior
of frictional contact. Similarly, the Bouc-Wen model has
been successfully used to simulate the hysteretic behavior
of magnetorheological dampers [45] as well as concrete
structural elements [46]. It must be noted that these appli-
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cations, apart from focusing on steady-state dynamics, in-
volve modeling of complete slip behavior. Alternatively,
a parallel arrangement of Bouc-Wen models with varying
parameters could potentially be designed to capture the
nonlinear behavior over a large amplitude range. How-
ever, this method requires further investigation.

5 CONCLUSIONS
This paper explored the ability of the Bouc-Wen

model to capture the power-law damping behavior that
is characteristic of structures with bolted joints. Three
important observations were made when comparing the

10
-2

10
0

Velocity amplitude |V| [kg
1/2

ms
-1

]

1 10
-4

1 10
-3

3 10
-3

D
a
m

p
in

g
 

 n = 2

increasing n

n = 1

Fig. 10: Effect of varying the Bouc-Wen parameter n on
the amplitude-dependent damping

Bouc-Wen model to the four-parameter Iwan model.
First, it was observed that the value of the Bouc-Wen
parameter n has a significant effect on the amplitude-
dependent frequency and damping estimated by the
model. While existing literature shows that the hystere-
sis loop itself is not sensitive to small changes in n, this
paper shows that n needs to be varied for the Bouc-Wen
model to better estimate the dynamic behavior of a system
over a range of amplitudes. The second observation was
that a single Bouc-Wen model cannot simulate both mi-
croslip and macroslip level nonlinearity. The parameters
can be adjusted to capture either microslip or macroslip,
but not both simultaneously. This also must be consid-
ered when identifying the Bouc-Wen model parameters
from quasi-static responses. For low amplitude ratios,
when the system is in microslip, similar Bouc-Wen model
parameters were obtained regardless of the amplitude of
quasi-static excitation used to identify the system. How-
ever, once the system goes into macroslip, a different set
of parameters are required to correctly fit the hysteretic
behavior. Thirdly, the effect of changing the parameter
χ, that defines slope of the log damping versus log of the
vibration amplitude, was studied. A lower value of χ cor-
responds to the dissipation versus amplitude curve having
a lower slope, when plotted in the logarithmic scale. The
Bouc-Wen model was observed to have a power-law slope
of ≈ +1 (corresponding to χ ≈ 0). When the system
of interest had a smaller power-law slope, the Bouc-Wen
model became increasingly inaccurate. Hence, while the
Bouc-Wen model is conceptually simple and computa-
tionally efficient, it is limited in the range of microslip-



level dynamic behavior that it can simulate.
The effect of each Bouc-Wen parameter on the over-

all damping was also studied. It was found that increas-
ing the parameter β causes the damping curve to shift
vertically upwards, while increasing n results in a hori-
zontal shift. However, the slope of the damping curve in
the microslip regime does not change significantly in ei-
ther case. On the other hand, the parameter γ changes
the slope of the curve near macroslip, with the damping
at lower-amplitudes remaining largely unaffected. Thus,
none of the Bouc-Wen model parameters can capture the
microslip-level power-law damping behavior over a large
range of amplitudes that is known to be characteristic of
bolted joints. However, one may be able to choose param-
eters that adequately capture the average damping over
a small enough range of force amplitudes, and in those
cases the Bouc-Wen model can still be extremely useful.
In the future, it would be interesting to explore whether a
parallel arrangement of Bouc-Wen models can be tuned to
capture power-law behavior over a wider range of ampli-
tudes, while still retaining reasonable computational effi-
ciency.
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