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Abstract

Finite element model updating (FEMU) seeks to tie simulations of digital twin models to the actual performance of the
geometrically nonlinear structure of interest. Recently developed FEMU methods have adopted nonlinear responses (e.g., non-
linear normal modes) as a correlation metric, which provides strong assurance of agreement between the model and the actual
structure of interest, but is expensive as it requires an iterative computation of the nonlinear response of the FEM as adjustments
are made. Reduced order models (ROMs) can be an effective alternative to the full-order FEMs to dramatically reduce the cost
of computing the nonlinear responses, but they are typically only valid for a single FEM configuration and must be recomputed
if the model is updated. This study presents a novel model updating approach that incorporates a data-driven ROM trained by
Gaussian Process regression (i.e., GPR ROM) into the model updating procedure. The GPR ROM is trained with FEMs with
varying design parameters, and thus is capable of capturing design variation in FEM. That is, for a given set of FEM parameters
within the trained range, the GPR ROM can immediately produce a nonlinear modal model in the form of a non-intrusive ROM,
such as implicit condensation and expansion (ICE) ROM. In the proposed model updating routine, when given an initial guess
of unknown FEM parameters, the GPR ROM quickly predicts a corresponding ICE ROM for the initial FEM parameters, and
the ICE ROM is used to compute and compare the nonlinear normal modes (NNMs) to the target NNMs. The GPR ROM also
provides the analytical gradient of the NNMs with respect to the FEM parameters and this is effectively used to find new FEM
parameters that improve agreement between the simulated and target NNMs. In this work, a numerical example of a flat beam
model is studied to validate the effectiveness of the proposed model updating approach.

Keywords: Nonlinear Dynamics, Geometric Nonlinearity, Finite Element Model Updating, Data-driven Reduced Order Mod-
eling, Gaussian Process Regression

1 Introduction

Finite element model (FEM) has served as an effective and cost-saving digital twin to virtually represent the geometrically
nonlinear structures, which typically comprise the skin panels of advanced air vehicles [1–4]. As the advanced vehicles expe-
rience extreme flight conditions such as thermal, acoustic and aerodynamic stresses [5–7], a FEM or a digital twin should be
able to accurately simulate highly nonlinear responses and stresses of an actual thin structure. This is a difficult task in practice
because some discrepancies exist between the digital twin and the actual structure in terms of geometry, material properties
and boundary conditions. Thus, the FEM parameters need to be well correlated and updated to minimize the gaps between the
simulated predictions and the experimental measurements of an actual structure.

Model correlation and updating methods have been investigated with a significant amount of attention over the past few
decades [8, 9]. A majority of existing methods utilize the linear modal properties of a structure to correlate between FE
predictions and physical observations. The most common metrics used are natural frequencies and mode shapes, which are
load invariant and easily computed from both FEM and experiments [10–12]. One main limitation of linear model correlation
is that its approximation is only valid for small deformations from the equilibrium. Once the structure’s behavior deviates
far from the linear range, the linear approach may at most provide roughly conservative solutions that cannot explain the
nonlinearity. Thus, it is gaining more importance for the model correlation and updating to account for the nonlinearity of
structures due to large deformations.

Nonlinear model updating based on FEM has been recently studied by several groups [13–15]. The studies revealed
that FEM updating (FEMU) could be accurately achieved by directly updating the FEM parameters to match the simulated



nonlinear responses to the experimentally measured data. In particular, these studies used nonlinear normal modes (NNMs)
as the nonlinear responses to be correlated, which have been known as an efficient response metric due to their temporal and
spatial independence from applied forcing and also their easy-to-measure characteristics [16–19]. Although the direct FEMU
methods provide accurate results, the computational cost required for the procedure becomes a critical issue. For example,
when the NNMs are used in the updating procedure, the backbone curves and their numerical gradients with respect to FEM
parameters are iteratively computed for making changes to the parameters. This results in a prohibitive computational overhead
for the FEMU as the number of FEM elements becomes large.

This issue can be alleviated by substituting the full-order FEM with its reduced order model (ROM) for the model updating.
Reduced order modeling significantly reduces the cost of computing nonlinear responses by projecting the full-order equations
of motions of the FEM onto a reduced subset of the modal basis. Various non-intrusive ROM methods have been studied and
introduced for decades, including stiffness evaluation procedure [20, 21], implicit condensation [22–25], modal derivative [26,
27] and invariant manifold methods [28–31]. For more detailed information, the readers are referred to the recent review papers
by Mignolet et al. [32] and Touze et al. [33]. The benefits of applying ROMs to model updating were recently demonstrated by
Denis et al. [34], where they used a ROM of normal form and identified its linear and cubic coefficients by correlating the NNM
curves of the ROM to experimental data. It was shown in their circular plate example that a single-DOF ROM could accurately
correlate the plate model to match the measured experimental backbone curve. ROM updating has also been developed recently
by VanDamme et al. [35], where they derived an analytical sensitivity of NNMs with respect to the ROM coefficients when the
NNMs were computed by the multi-harmonic balance (MHB) method. They tested the approach on a 3D printed curved beam
example and showed that the analytical gradients further improve the computational efficiency of the updating procedure and
also provide an accurate correlation.

Despite the significant computational advancement, there are some critical drawbacks of ROMU approaches. One is
that a ROM has redundant design variables to correlate in the model updating procedure. For example, as the number of
modes increases in a ROM of cubic-order nonlinearity, the number of nonlinear coefficients increases quartically. Because the
nonlinear coefficients act as the design variables in the updating routine, using too many nonlinear coefficients in a multi-mode
ROM increases the possibility of converging to a local minimum and also results in poor computational efficiency. Another
issue is that the updated ROM from ROMU cannot correctly pass the updated modal information to its parent FEM in the
physical domain. One of the author’s recent studies investigated a method to directly correlate FEM parameters to the updated
ROM and showed successful results in a simple numerical case [36]. However, the algorithm failed to converge to the correct
solution when direct correlation was used in more complicated examples (e.g., tuning FEM parameters of a few thin curved
structures to match multi-DOF ROM). The main reason was that the problem was poorly posed: each ROM coefficient had
been updated independently regardless of their correlation to the FEM parameters, so the updated ROM coefficients often
could not be led to a unique/valid FEM solution. The study suggested that the ROM-based approaches may not be reliable in
identifying the actual physical parameters in the FEM that need to be updated to match the actual structural design, which is
often a fundamental goal of model updating.

This work demonstrates a novel data-driven ROM based model updating approach, which overcomes these challenges
arising from both FEMU and ROMU. The authors recently introduced a data-driven ROM of geometrically nonlinear structures
in [37], where the ROM was trained by Gaussian process regression (GPR) with a collection of FEMs with varying design
parameters. The GPR-based data-driven ROM (GPR ROM) could accurately capture the design variation in the FEM. That
is, for making any change of FEM parameters, the GPR ROM can immediately produce a corresponding ROM without any
static analysis and Galerkin projection of the FEM. Thus, the data-driven ROM can be efficiently incorporated into the model
updating routine to quickly update the FEM parameters to match experimental measurements based on ROM-based simulation.

In this work, a GPR ROM is trained for a range of uncertain FEM parameters and used in the proposed model updating
framework. When an initial guess of the FEM parameters is provided, the GPR ROM immediately produces a corresponding
implicit condensation and expansion (ICE) ROM. Then, the ICE ROM is used to compute and compare NNMs with target
NNMs. The gradients of the NNMs with respect to the FEM parameters are then computed and used to find new FEM param-
eters that improve the agreement between the simulated and target NNMs.

Adopting a GPR ROM into the model updating framework greatly enhances the computational efficiency of the iterative
procedure, thanks to providing the online ROM prediction and ROM-based response (NNMs) computation for any given set
of FEM parameters. Also, the GPR ROM provides an analytical sensitivity of the ROM with respect to the FEM. This can be
combined with the analytical sensitivity of NNM with respect to ROM, derived in [35], to establish a fully analytical sensitivity
between the NNM and FEM. Compared to the conventional FEMU approaches that compute numerical gradients using finite
difference methods [38], the proposed method can compute the gradients in a much more robust and fast manner.

The following section outlines an overview of the GPR ROM based model updating framework. A derivation of the
analytical sensitivity of the NNMs with respect to the FEM parameters is discussed. Then in Section 3, the proposed model
updating framework is tested on a numerical example of a flat beam, where initially guessed FEM parameter sets are updated



to match a simulated target NNM. The paper concludes with a discussion and future work in Section 4.

2 Theory

2.1 GPR ROM for Model Updating of Geometrically Nonlinear Structures

A Gaussian Process regression ROM (GPR ROM) is trained for a collection of varying FEMs of geometrically nonlinear struc-
tures to be used in the model updating task. The training framework of GPR ROM was thoroughly introduced in [37], where
the reader can find more details. This section briefly recapitulates the formulation and training of GPR ROM for geometrically
nonlinear structures.

2.1.1 Reduced Order Modeling of Geometrically Nonlinear Structures

An n-DOF geometrically nonlinear finite element model, parameterized by the d-dimensional FEM parameter set p ∈ Rd, can
be expressed by the FE equations of motion:

M(p)ẍ+C(p)ẋ+K(p)x+ fnl(x,p) = fext(t) (1)

where x is the n× 1 displacement, M,C and K are the n × n mass, damping and stiffness matrices, fnl is the n× 1 nonlinear
restoring forces and fext is the n× 1 external forces. The FE equations can be projected to a set of modal basis, defined as

(K(p)− ωr
2(p)M(p))Φr(p) = 0 (2)

where ωr and Φr are the r-th linear frequency and n×1 mass normalized mode shape, respectively. The full-order FE equations
in Eq. (1) can be approximated by a linear combination of a reduced set of modal basis m ≪ n as

x(t) = Φ(p)q(t) (3)

where Φ is the n x m mode shape matrix and q is the m x 1 modal coordinates. The nonlinear modal equations of motion
can be defined by plugging Eq. (3) into Eq. (1) and pre-multiplying by ΦT. Then the r-th nonlinear modal equation can be
expressed as

q̈r + cr(p)q̇r + ω2
r(p)qr + θr(q1, q2, ..., qm,p) = Φr(p)

Tf(t) (4)

where θr is the nonlinear modal restoring force. The modal restoring force θr is described by a third-order polynomial in terms
of geometric nonlinearity and can be written as

θr(q1, q2, ..., qm,p) =

m∑
i=1

m∑
j=i

αr(i, j,p)qiqj +

m∑
i=1

m∑
j=i

m∑
k=j

βr(i, j, k,p)qiqjqk (5)

where αr and βr are the quadratic and cubic stiffness coefficients. In this work, a ROM defined by Eq. (4) and Eq. (5) is
computed using the implicit condensation and expansion (ICE) method [25], which applies a set of prescribed static loads
onto the FEM and computes the nonlinear stiffness coefficients in Eq. (5) with the resulting static load-displacement data. The
prescribed force set Fp is defined as

Fp = M(Φ1c1 +Φ2c2 + ...+Φmcm) (6)

where cr is the r-th modal forcing coefficient characterizing the degree of forcing. cr is further controlled by the force scaling
factor fr as

cr =
fr

Φr,max
ω2
r (7)

where Φr,max is the entry of the DOF in the r-th mode shape at which the deformation is maximum. The minimum number of
static load cases required for the ICE method is the same as the number of nonlinear coefficients per mode in an ICE ROM,
which can be written as

Nnl = m+m2 +
m!

2!(m− 2)!
+

m!

3!(m− 3)!
(8)

When damping is not considered, an ICE ROM can be represented by a matrix consisting of linear and nonlinear stiffness
coefficients:

Y =


ω1 α1(1, 1) α1(1, 2) · · · α1(m,m) β1(1, 1, 1) β1(1, 1, 2) · · · β1(m,m,m)
ω2 α2(1, 1) α2(1, 2) · · · α2(m,m) β2(1, 1, 1) β2(1, 1, 2) · · · β2(m,m,m)

· · · · · ·
ωm αm(1, 1) αm(1, 2) · · · αm(m,m) βm(1, 1, 1) βm(1, 1, 2) · · · βm(m,m,m)

 (9)



2.1.2 GPR ROM Training

A GPR ROM is a data-driven ROM, which trains each coefficient in an ICE ROM as a non-parametric regression model. A
collection of Ntr input FEMs is drawn from a random distribution, i.e., Ptr = [p1,p2, ...pNtr ]

T ∈ RNtr×d, each of which is
formulated based on the FE equations of motion in Eq. (1) with a different parameter vector p = [p1, p2, ...pd]

T ∈ Rd. The
random FEM parameter set p in the GPR ROM will serve as a design variable set to be optimized in the proposed model
updating task.

Each of the FEM samples is applied by the ICE method to compute a corresponding ICE ROM, and the resulting collection
of the ROMs can be represented as Ytr = [Y1,Y2, ...,YNtr ]

T ∈ RNtr×(m×(Nnl+1)), where Yi denotes the i-th ROM’s coeffi-
cient matrix in Eq. (9). Then for any ROM coefficient y ∈ Y, its training set can be denoted as ytr = [y1, y2, ..., yNtr ]

T ∈ RNtr×1.
The ROM coefficient y can be described by a Gaussian Process (GP) model in terms of FEM parameters p, by training

Ptr - ytr sample set. The GP model can be written as

y(p) ∼ GP(η, κ) + ϵn, ϵn ∼ N (0, σn
2) (10)

where GP implies that the distribution of the ROM coefficient y obeys a Gaussian Process, and η and κ are the mean and covari-
ance functions specifying the Gaussian Process. ϵn is an independent noise, which is assumed to follow a normal distribution
with variance σn

2. In this study, the mean function of the GP model is constant, η = ηm, and the covariance function κ is the
automatic relevance determination squared exponential (ARD SE) kernel [39]:

κ(pi,pj) = σ2
fexp

(
− 1

2

d∑
k=1

(pi,k − pj,k)
2

l2k

)
(11)

where pi,k is the k-th parameter of pi, σf is the output standard deviation, and lk is the k-th individual length scale.
The GP model y in Eq. (10) can be trained by optimizing its hyperparameters θh =

{
ηm, σf , l1, l2, ..., , ld, σn

}
using the

maximum likelihood estimation of the sample distribution [40]:

θh = argmax
θh

log p(ytr|Ptr) = argmax
θh

(
− 1

2
log |Σ(θh)| −

1

2
(ytr − µ(θh))

TΣ−1(θh)(ytr − µ(θh))−
Ntr

2
log(2π)

)
(12)

where µ(θh) is the Ntr × 1 mean vector of µi(θh) = ηm, and Σ(θh) is the Ntr × Ntr covariance matrix of Σij(θh) =
κ(pi,pj) + σ2

nδij (where δij is the Kronecker delta).
The GPR ROM completes the training as all the coefficients in the ROM matrix Y are trained as the GP models. Then,

for any new design parameter set(s) Pte within the trained range, the corresponding ICE ROM(s) can be quickly predicted with
its mean and confidence interval. That is, the conditional mean and covariance of the new test set yte can be estimated based on
the assumption that the training set ytr and test set yte follow a joint normal distribution:

yte|Pte,Ptr,ytr ∼ N (µ∗ +ΣT
∗Σ

−1(ytr − µ), Σ∗∗ −ΣT
∗Σ

−1Σ∗), (13)

where µ∗ is the mean of the test set (µ∗ = µ in this work because they are constant), Σ∗ is the training-test set covariance
κ(Ptr,Pte) and Σ∗∗ is the test set covariance κ(Pte,Pte).

2.2 GPR ROM based Model Updating

2.2.1 Proposed Model Updating Framework

The flowchart of the proposed GPR ROM based model updating method is shown in Figure 1. First, the lower and upper bounds
of uncertain design parameters (pmin,pmax) are defined and an initial guess of the design parameter set p0 is provided. Then,
the framework trains a GPR ROM with uniformly sampled FEMs within the parameter range. The GPR ROM generates an
ICE ROM for the initial guess p0, and the ICE ROM is used to compute a nonlinear normal mode (NNM) backbone curve of
the initial structural model. The numerical NNM is compared with the target NNM (e.g., experimental data) and their gap can
be minimized by an iterative procedure of updating the FEM parameters, predicting the ICE ROM from the GPR ROM, and
computing the updated NNM. The design sensitivity of NNM with respect to the FEM parameters determines the next estimate
of the FEM parameters. The sensitivity analysis will be discussed in the following section.

In this work, NNMs are computed by applying the multi-harmonic balance (MHB) method [41]. The MHB method
is beneficial to be used in this proposed model updating routine, because it provides analytical gradients of the NNMs with
respect to the ICE ROM as shown in [35].



Figure 1: Flowchart of the proposed GPR ROM based model updating framework.

The model updating framework aims to minimize the discrepancy between the numerical and target NNMs by adjusting
the FEM parameters. The objective function to be minimized is formulated in a quadratic form:

Γ = ∆zTWz∆z+ γ∆pTWp∆p (14)

where z is the vector of state variables. The state variables are the values of the NNM at different amplitudes, and ∆z is
the distance between each point on the NNM from the ROM and the target or measured NNM . γ is the weighting term to
control the effect of the second term (changes in the design variables) with respect to the first term (a gap between the state
variables and the target variables). Wz and Wp are weighting matrices governing the relative weights between the different
state and design variables, respectively. In this work these matrices are identity matrices, meaning that each term in each vector
is weighted equally. Minimizing the cost function leads to achieving the minimum discrepancy between the updated and target
NNM, while constraining the change in the design parameters to be minimal.

The state variable error vector ∆z is defined by the Euclidean distance between each target NNM point and its closest
numerical NNM point on the 2D frequency-amplitude plane. Note that the amplitude on the plane can be defined by either
physical or modal displacement of a node of interest, and the Euclidean distance is computed with normalized frequency and
amplitude. The optimization routine finds the minimum objective function based on a gradient-based method, i.e., the interior-
point algorithm [42], implemented in the MATLAB R⃝ built-in function fmincon.

2.2.2 Design sensitivity analysis

The computational efficiency of minimizing the cost function in Eq. (14) is determined by how the design sensitivity of the state
variables with respect to the design variables is formulated. For example, if the design sensitivity were computed numerically by
finite difference methods, it would require a significantly increased number of NNM computations, and the resulting gradients
could be affected by possible numerical errors.

The proposed GPR ROM based model updating enables to compute a fully analytical design sensitivity of the NNMs with
respect to the FEM parameters, which can be defined as



∂z

∂p
=

∂z

∂Y

∂Y

∂p
(15)

The first term ∂z
∂Y is the design sensitivity of the NNMs (z) with respect to the ROM coefficient matrix (Y). The sensitivity

matrix has the size of Nz × Nnl, where Nz is the number of the NNM points used as the state variables. This work uses the
analytically derived NNM-to-ROM sensitivity ∂z

∂Y based on the algebraic equations of the MHB method, which was recently
derived by VanDamme et al. The detailed derivation can be found in [35].

The second sensitivity term ∂Y
∂p linking the FEM and ROM can be derived based on the GPR ROM equations. As shown

in Eq. (13), the trained GPR ROM provides a mean prediction of the ROM coefficient ȳ(p) for a given FEM parameter set p:

ȳ(p) = µ∗(p) +ΣT
∗ (p)Σ

−1(ytr − µ) (16)

In this work, µ∗ = µm is constant and so only the covariance term of the training-test set Σ∗(p) changes as the FEM parameters
are varied. Then, the derivative of the mean prediction can be defined as

∂ȳ(p)

∂p
=

∂ΣT
∗ (p)

∂p
Σ−1(ytr − µ) (17)

The derivative of the covariance term can be expressed as

∂Σ∗(p)

∂p
=

[
∂κ1∗

∂p

∂κ2∗

∂p
· · · ∂κNtr∗

∂p

]T
(18)

where κi∗ is the trained GP covariance function, defined as

κi∗ = κ(ptr,i,p) = σ2
fexp

(
− 1

2
(ptr,i − p)TΛ−1(ptr,i − p)

)
= σ2

fexp

(
− 1

2

d∑
k=1

((pk)tr,i − pk)
2

l2k

) (19)

where Λ is the diagonal matrix of the individual length scales, i.e., Λ = diag(l1
2, l2

2, · · · , ld2). The derivative of the covariance
function can be derived as

∂κi∗

∂p
=

∂

∂p

[
σ2
fexp

(
− 1

2
(ptr,i − p)TΛ−1(ptr,i − p)

)]
= Λ−1(ptr,i − p)κi∗

(20)

The derivative of the mean prediction of the ROM coefficient in Eq. (17) can then be rewritten as

∂ȳ(p)

∂p
= Λ−1

[
(ptr,1 − p)κ1∗ (ptr,2 − p)κ2∗ · · · (ptr,Ntr − p)κNtr∗

]
Σ−1(ytr − µ)

= Λ−1

[
(PT

tr − p1T
Ntr

)diag(Σ∗(p))

]
Σ−1(ytr − µ)

(21)

where 1Ntr is the Ntr × 1 vector of all ones. Then, the derivative of the ROM coefficient matrix with respect to a given FEM
parameter set can be defined as

∂Y(p)

∂p
≈ ∂Ȳ(p)

∂p
=

[
∂ȳ1(p)

∂p

∂ȳ2(p)

∂p
· · · ∂ȳNnl(p)

∂p

]T
=

[
∂ω̄1(p)

∂p

∂ω̄2(p)

∂p
· · · ∂β̄m(m,m,m)(p)

∂p

]T (22)

whose size is Nnl × d. The gradient ∂Y
∂p can be pre-multiplied by the gradient of the NNMs to the ROM ∂z

∂Y to achieve the fully
analytical gradient ∂z

∂p in Eq. (15). Note that the size of the final design sensitivity matrix is Nz × d.



3 Numerical Study - Flat Beam

The proposed procedure was tested numerically on the flat beam finite element model, which was previously studied in [37].
The beam model with axial boundary springs is shown in Figure 2. The nominal beam had a length of 228.6 mm, a width of
12.7 mm, and a thickness of 0.787 mm. The material properties followed the nominal values of steel where the mass density
was 7800 kg m−3, Young’s modulus was 206.84 GPa, and Poisson’s ratio was 0.29. The beam model was composed of 40
2-node beam elements.

The boundary stiffness Kx was chosen as a design variable for the model updating, because this parameter is typically
computed to approximate the effect of the boundary conditions and hence can be highly uncertain. In this case study, the
boundary stiffness was assumed to be within the bounds of [Kx,min,Kx,max] = [1.0 × 104, 5.0 × 105] lbf in−1, which could
represent soft to nearly clamped boundary stiffness.

3.1 GPR ROM of Flat Beam

As the first step of the model updating procedure, a GPR ROM could be trained that allows Kx to vary within those bounds.
Some important GPR ROM training parameters were defined and are presented in Table 1. The GPR ROM was trained using 20
uniformly sampled Kx-varying FEMs with their corresponding 2-DOF ICE ROMs. The force scaling factor fr was randomized
within the range of [0.25, 0.75] × beam thickness for each load case of each training FEM, so that the GPR ROM could also
evaluate the uncertainty of the nonlinear ROM coefficients with respect to the load level on the FEMs [37]. Then, 900 uniformly
sampled test sets of FEMs were tested on the trained GPR ROM to evaluate the predicted mean and its confidence interval of
each ROM coefficient for the varying boundary stiffness. The predicted means and the confidence intervals for the cubic ROM
coefficients are shown in Figure 3. The cubic coefficients accurately captured the smooth transition from the soft to stiff axial
spring stiffness. This also reveals that 20 training samples were sufficient enough for the GPR ROM to capture the FEM
variation with very small uncertainty. More details of the GPR ROM evaluation for the flat beam can be further found in [37].

Figure 2: Schematic of the flat beam with boundary axial spring and its first four bending modes. The modes were computed
with the nominal beam with maximum axial spring stiffness Kx,max. (The figures are reprinted from [37].)

Modal basis in GPR ROM Mode 1 & 3
Number of training sets (Ntr) 20
Number of load cases per a training set (Nnl) 7
Random force scaling range ([fmin, fmax]) [0.25, 0.75] × beam thickness
Number of test sets (Nte) 900

Table 1: The GPR ROM training parameters for the flat beam model.



Figure 3: The GPR ROM prediction for the cubic ROM coefficients of the flat beam: trained observations (blue circles), mean
prediction (green curve), and its 95% confidence interval (grey surface). The ROM coefficients and axial stiffness are all
normalized by the nominal values. (The figures are reprinted from [37].)

3.2 GPR ROM based Model Updating of Flat Beam using NNMs

A target (or true) FEM used in this numerical study was chosen to have a boundary stiffness Kx,t = 2.0× 105 lbf in−1, while
all the other parameters had the nominal values. Two initial FEMs with different design parameter values Kx,0 = 4.0 × 105

and 0.5× 105 lbf in−1 were then used as initial guesses, and in each case the proposed GPR ROM based updating scheme was
used to update the model to match the target NNM. Figure 4 shows the 1st NNMs computed from the target FEM and the two
initial FEMs. In this case study, the state variable vector z consisted of points on the 1st NNM represented by the frequency
and transverse displacement of the center node of the beam.
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Figure 4: The 1st NNM curves of the target and initial flat beam models. The curves are computed by the MHB method using
five harmonics.

Figure 5 shows how the NNMs of the initial models converge to the target NNM during the model updating routine. The
initial and final parameter values as well as the cost function values are also presented in Table 2. The results show that the
NNMs of both cases converged to the target NNM within a small number of iterations. The final cost function values were
relatively small and the updated boundary stiffness values were also quite near to the target value. It can be inferred that the
analytical sensitivity enabled the design variable to quickly find the optimal path to the true solution. It is also important to
note that the GPR ROM constructed a smooth manifold (i.e., a curve) for each ROM coefficient for the given range of the
design variable, as depicted in Figure 3. This information serves as a useful indicator that the optimization would be smooth
and reliable as long as the FEM parameter and corresponding ICE ROM remain in the convex manifold.



The computational cost of the proposed model updating procedure was compared with a conventional FE model updating
(FEMU) approach, which directly computes and correlates NNMs using a full FEM [38]. The computations were performed
on an Intel Core i7-7700K 4.2GHz quad-core computer with 64 GB of RAM, and the results are presented in Table 3. The
computational overhead for computing an NNM curve and its gradients was dramatically reduced by two to three orders of
magnitude. The conventional FEMU, which also computes the NNMs using the MHB method, needed to find the numerical
sensitivities of full linear matrices of mass and stiffness as the FEM parameters update. On the other hand, the proposed
approach simply computed the analytical sensitivity, which is far more efficient to evaluate.
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Figure 5: The 1st NNMs of the flat beam model at a few iterations of the model updating procedure. The 1st NNM curves of
the FE models with Kx,0 = 4.0× 105 (left) and Kx,0 = 0.2× 105 lbf in−1 (right).

Initial Parameter Values (Kx,0) 4.0000× 105 0.2000× 105

Initial Cost Function Value 3.3309× 10−4 0.4475
Final Parameter Value (Kx,0) 2.1204× 105 2.1219× 105

Final Cost Function Value 9.1943× 10−6 1.0263× 10−5

Number of Iterations 6 17

Table 2: The model updating results of the beam models with Kx,0 = 4.0× 105 (left) and Kx,0 = 0.2× 105 lbf in−1 (right).

Conventional FEMU GPR ROM based FEMU
NNM computation 110.3172 0.6376
Gradient ( ∂x∂p ) computation 169.2634 0.0834

Table 3: The computational time comparison (s) between the conventional FEMU method in [38] and the proposed model
updating method.

4 Conclusion

In this work, a GPR ROM based model updating method was developed, which could efficiently overcome some major chal-
lenges of the existing FEMU and ROMU approaches. The numerical example showed that, using the proposed framework, the
FEM parameter quickly converged from its initial guess to the true value. This was because the computational cost required
to estimate the NNMs and their gradients was greatly reduced, which are needed at each step in the model updating process.
Compared to the ROMU approach in [35], the physical parameters were directly updated, and the number of design variables
was kept relatively small. (There would have been 14 design variables if the ROMU approach in [35] were used.)

The proposed method was significantly fast in correlating the FEM parameters to match the target NNMs. This can be
appealing in practice for updating nonlinear structural models, because one typically wants to run as many trials as needed to
sort out the uncertain design parameters, and also to collect multiple possible solutions that correlate the models with actual
experimental data.



The proposed approach achieves a very efficient model correlation at the cost of preparing a well-trained data-driven
ROM. A simple structural model such as the flat beam could retain a small number of modes in a GPR ROM, and hence one
could compute an accurate and convex GP model for each ROM coefficient with a small number of training samples. The
optimization could then easily converge to the target by finding an optimal path on the smooth ROM manifolds. When the
proposed method is applied to more complicated structures, such as curved plates, the GPR ROM may require more careful
training, such as additional post-processing that detects the discontinuous variation of the ROM coefficients and regroups each
of the continuous variations into separate subgroups. In this respect, a GPR ROM can serve as a useful gauge that evaluates
the effect of the variation of the FEM parameters on the static/dynamic behaviors of the nonlinear structural model. This can
further be used to judge whether the model correlation using that FEM parameter set will converge or not in the given uncertain
parameter range.

One important aspect of the GPR ROM is that it can filter out uncertain or redundant nonlinear ROM coefficients as
studied in [37]. It is expected that by neglecting the uncertain coefficients in the GPR ROM, the ROM prediction as well as
its gradient with respect to FEM parameters will become more certain and accurate, consequently enhancing the quality of the
model updating procedure. The effect of GPR ROM coefficient filtering on the proposed updating method will be examined as
a future work.

In addition, the proposed GPR ROM based model updating will be tested to correlate a beam model to an actual 3D
printed beam structure using experimentally measured NNMs. The proposed approach will also be applied to more complicated
structures to validate its efficacy.
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