
Mechanical Systems and Signal Processing 184 (2023) 109720

A
0

A
g
K
a

b

A

C

K
N
G
R
D
M
G

1

s
s
o
b

h
R

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

Gaussian process regression reduced order model for
eometrically nonlinear structures
yusic Park a,∗, Matthew S. Allen b

University of Wisconsin Madison, Department of Mechanical Engineering, Madison, WI, 53705, United States
Brigham Young University, Department of Mechanical Engineering, Provo, UT, 84602, United States

R T I C L E I N F O

ommunicated by J.E. Mottershead

eywords:
onlinear dynamics
eometric nonlinearity
educed order modeling
ata-driven modeling
odel uncertainty
aussian process regression

A B S T R A C T

Reduced order models, such as Hollkamp and Gordon’s Implicit Condensation and Expansion
(ICE) model, are a highly efficient alternative to full-order finite element models (FEM) of
geometrically nonlinear structures. However, a reduced order model (ROM) is typically only
valid for one FEM. It does not capture how each ROM coefficient changes due to variations
in the FEM (e.g., design parameters or uncertainties), so if the FEM is updated then the ROM
needs to be re-computed with a new set of static load–displacement data. This study presents
a data-driven reduced order modeling approach that creates a single ROM that incorporates
design variations in FEM. The proposed method applies Gaussian Process Regression (GPR) to
the ICE approach, making each coefficient in an ICE ROM a regression model with respect to
a collection of FEMs with varying material properties or geometric parameters. Once the GPR
ROM has been identified, one can immediately produce an ICE ROM for a set of FEM parameters
without a need to solve any static load–displacement cases on the full FEM. This dramatically
enhances the computational efficiency and could be helpful when model uncertainty needs to
be considered or when seeking to update a model to correlate with measurements. Additionally,
the coefficients of a ROM can often change considerably if the scale on the load–displacement
data changes, so it can be difficult to know whether the scaling that was chosen has really
identified an accurate ROM. The proposed GPR ROM estimates the mean ROM coefficients for
a range of load scaling as well as the uncertainty on each ROM coefficient with respect to the
load level. This can be used to gauge the success of the ROM identification and to eliminate
ROM coefficients that are unimportant and hence highly variable. The proposed GPR ROM
approach is evaluated by applying it to flat and curved beam structures, revealing that the
advantages outlined above can be realized with a relatively modest increase in cost relative to
a traditional ICE ROM.

. Introduction

Thin panels of high-speed vehicles exhibit highly complex behaviors when subjected to severe aerodynamic or aerothermal
tress [1,2]. Under such conditions, any large deformation of the thin structures induces a significant change of stiffness, and the
tructures may eventually lose stability to flutter [3,4] or buckle [5,6]. The finite element (FE) method has been well-established
ver the past decades, and FE models (FEMs) have functioned as digital twins of geometrically nonlinear panels to simulate complex
ehaviors in various types of dynamic responses, such as time history response, frequency response functions (FRFs), power spectral
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densities (PSDs) and nonlinear normal modes (NNMs). Although the FE method provides accurate predictions, the computational
cost of integrating the nonlinear response becomes prohibitive as FEMs become large, yet many degrees of freedom may be needed
to capture the geometric complexity of modern aircraft panels [7,8]. The computational overhead becomes even more critical if
one needs to update a FEM to better reproduce a measured response, as this requires simulating the model iteratively after making
changes to the FEM parameters [9–11].

A reduced order model (ROM) is a simplification of a FEM that alleviates the computational burden. In reduced order modeling,
ne typically projects the full-order equations of motion onto a modal subspace by the Galerkin method, greatly reducing the
umber of variables that must be time-integrated to find the dynamic response. The reduced modal equations are typically obtained
y a non-intrusive approach, where a commercial FE solver is used to obtain several nonlinear static solutions, in which the
tructure is subjected to loads or displacements in the shapes of the basis vectors [12,13]. Displacement based approaches, such
s Equivalent Linearization Using a Stiffness Evaluation Procedure (ELSTEP) in [14] and the Enforced Displacement method (ED)
n [15], apply a set of static displacements in the shape of few dominant modes to solve for the corresponding reaction forces,
nd project the displacement–force sets onto the reduced modal coordinates to compute the nonlinear stiffness coefficients of
he ROM. Using the force based approach, on the other hand, one applies a prescribed set of static forces and solves for the
esulting displacement [16,17]. Hollkamp et al. [18] revealed that the force based approach has some distinct advantages, in that
he nonlinear responses can often be captured using only a few dominant bending modes as basis vectors, because it implicitly
aptures the membrane motions; they named the corresponding approach implicit condensation (IC). They further extended this
pproach by adding the ability to recover the membrane displacements in a post-processing step, using a method that is called
mplicit condensation and expansion (ICE) [19]. In either case it can be far more efficient than traditional Galerkin projection or
roper orthogonal decomposition (POD), because the membrane displacements are captured implicitly and so they do not need to be
ncluded in the reduction basis. While ELSTEP and ICE are the two most common non-intrusive reduced order modeling techniques,
any others have been developed recently that take a different view. For example, the spectral submanifold approaches [20,21]

nd the quadratic manifold approach [22]. For more detail the reader is referred to the recent review by Touze et al. [23].
While reduced order modeling methods have been shown to provide accurate dynamic simulations with dramatically reduced

omputational cost, some important challenges still exist. First, a typical ROM can only represent a single FEM configuration and
oes not account for the variations in FEM. If anything in the FEM changes, one must recompute the corresponding ROM with a new
et of static load–displacement solutions. This can make ROM-based simulation repetitive and tedious as one frequently does need
o repeat the simulations after changing the FEM slightly, in order to study manufacturing variability or model uncertainty. Second,
he number of nonlinear terms in a ROM increases with the fourth power of the number of modes, but not every term contributes
qually to capturing the nonlinear responses. For example, Shen et al. [24] recently demonstrated that the resonant terms in an ICE
OM have a stronger influence on the dynamics than the remaining nonlinear terms. It would be desirable to be able to identify
nly those terms that are most important when creating the ROM. Lastly, in spite of considerable research on the topic, manual
ntervention and expertise are still needed to obtain a valid ROM for a given FEM. One reason for this is the fact that some of the
OM coefficients tend to be sensitive to the static load cases that are used to identify the ROM [15,25]. As a result, it becomes
ifficult to use a ROM for nonlinear model updating because manual intervention is needed at each step and small inaccuracies
rom one ROM to the next can corrupt the process [26–28].

The present study proposes a new data-driven reduced order modeling approach for geometrically nonlinear structures that
ddresses these challenges. The proposed approach takes advantage of the ICE form of the ROM, which is known to be efficient
nd accurate for capturing geometric nonlinearity, the physics of interest. However, whereas each polynomial coefficient in an ICE
OM is constant, in the approach proposed here each coefficient is a function of the parameters of the FEM, and the ROM is trained
ith data from a collection of FEMs where the parameters of interest are allowed to vary. As a result, once the training is complete
ne can immediately generate a ROM for any set of FEM parameters within the range of the training data, without computing any
dditional static load cases. Furthermore, the gradient of the ROM with respect to the FEM parameters is embedded in the ROM,
nd this could be useful for model updating.

Specifically, this work proposes to use a Gaussian Process Regression (GPR) to model the polynomial coefficients in the ICE
OM. GPR has been acknowledged as a powerful regression tool due to its Bayesian approach [29,30]. The GPR method specifies a
egression model by its mean and covariance functions and so is non-parametric and flexible for both simple and complex problems.
ne of the strengths of the Gaussian process (GP) model is that it quantifies the predictive uncertainty of the model with respect to

he input variables. In our approach, the GP model is trained using the FEM–ICE ROM (input–output) training sets to formulate a
aussian prior for each ROM parameter (i.e., each of the linear and nonlinear coefficients of the ICE ROM). Then, using the trained
P model of the ROM (hereafter termed a GPR ROM) one can quickly estimate the posterior mean and variance of any term in

he ROM for any set of FEM parameters within the range of the training data. Furthermore, we randomize the load cases that are
sed for computing the training data so that the trained GPR ROM can also quantify the uncertainty of the ROM coefficients with
espect to the applied loads. This provides a means to identify the inconsistent and sensitive ROM coefficients with respect to the
oad cases, and eventually to filter out the redundant terms, significantly reducing the size of the ROM.

Several other researchers have explored related data-driven reduced order modeling methods for various nonlinear systems.
esthaven et al. demonstrated a non-intrusive regression ROM for nonlinear structural or time-dependent problems, which projects

he high-fidelity solutions of discrete FEM sets onto a reduced space [31–34]. On that reduced space their ROM was composed
f an artificial neural network (ANN) and Gaussian Process Regression (GPR) models. Note that in their studies, they directly
rojected a set of full-order dynamic responses onto a reduced space using the proper orthogonal decomposition (POD) method,
2

nd used that relatively expensive data to train the model. They reported that their data-driven ROMs could quickly evaluate the
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reduced-order responses from the regression map without a need of computing the full order responses. Data-driven ROMs have
further been studied particularly for computational fluid dynamics, in which Hasagawa et al. [35] applied the convolutional neural
network autoencoder (CNN-AE) to map a high-dimensional unsteady flow to a reduced latent space. Ma et al. [36] recently applied
GPR to dynamic systems with moving boundaries such as fluid–solid interactions, and inferred the time-evolution of the temporal
coefficients and the parameters characterizing the moving boundary in a reduced space. While there are several similarities and
many of the preceding studies have employed GPR, none has coupled GPR with the ICE ROM as is proposed here.

One common theme in those works is that, to be successful, the chosen ROM scheme must be able to accurately capture the
nderlying physics with a minimal set of parameters, to minimize the training data needed. The ICE ROM proposed here is highly
fficient in that regard. Furthermore, the cited data-driven ROM studies train the ROM using a set of full-order dynamic responses,
hereas the ICE methodology generates a set of training data that is far more rich than a dynamic response by using a set of
uasi-static loads in the shape of the eigenvectors of interest. This makes the offline ROM training stage more computationally
fficient and robust. Furthermore, the ICE ROM form is versatile and can be readily applied to simulate the response using time
ntegration or to compute the FRFs, PSDs and/or NNMs [15].

The paper is organized as follows. Section 2 outlines the underlying theory of the proposed data-driven ROM and its algorithm
ased on Gaussian process regression. In Section 3, the method is evaluated by applying it to two geometrically nonlinear structures.
he conclusion and future works are discussed in Section 4.

. Theoretical development

.1. Reduced order modeling of geometrically nonlinear structure

The 𝑛-DOF FE equations of motion for a geometrically nonlinear structure can be written as

𝐌(𝐩)�̈� + 𝐂(𝐩)�̇� +𝐊(𝐩)𝐱 + 𝐟nl(𝐱,𝐩) = 𝐟 (𝑡) (1)

where 𝐩 ∈ R𝑑 is the 𝑑-dimensional parameter set that characterizes any uncertain parameters in the FEM, such as material properties,
uncertain dimensions, and boundary condition stiffness. 𝐌, 𝐂, and 𝐊 are the corresponding 𝑛×𝑛 mass, damping, and linear stiffness
matrices. 𝐟nl denotes the 𝑛×1 nonlinear restoring force that captures the nonlinearity of the system with respect to the displacements
𝐱, and 𝐟 (𝑡) is the 𝑛 × 1 external force. The full FE equations of motion in the physical domain can be projected to a modal subspace
by solving an eigenvalue problem:

(𝐊(𝐩) − 𝜔𝑟2(𝐩)𝐌(𝐩))𝜱𝑟(𝐩) = 0 (2)

where 𝜔𝑟 is the 𝑟th linear natural frequency and 𝜱𝑟 is its 𝑛 × 1 mass normalized mode shape. The full-order nonlinear response can
be approximated by a linear combination of 𝑚 modal coordinates as

𝐱(𝑡) = 𝜱(𝐩)𝐪(𝑡) (3)

where 𝜱 is the 𝑛 x 𝑚 mass normalized mode shape matrix, and 𝐪 is the 𝑚 x 1 vector of modal coordinates.
The nonlinear reduced order model (ROM) aims to approximate the full-order nonlinear equations with a dramatically reduced

set of dominant modal equations (𝑛 ≫ 𝑚). The 𝑟th nonlinear modal equation can be derived by substituting Eq. (3) into Eq. (1) and
pre-multiplying by 𝜱T:

𝑞𝑟 + 𝑐𝑟(𝐩)�̇�𝑟 + 𝜔2
𝑟 (𝐩)𝑞𝑟 + 𝜃𝑟(𝑞1, 𝑞2,… , 𝑞𝑚,𝐩) = 𝜱𝑟(𝐩)T𝐟 (𝑡) (4)

where 𝜃𝑟 is the modal nonlinear restoring force. When the FEM is geometrically nonlinear and linear elastic, the nonlinear restoring
force 𝜃𝑟 can be well approximated by a cubic polynomial [37,38], which can be written as

𝜃𝑟(𝑞1, 𝑞2,… , 𝑞𝑚,𝐩) =
𝑚
∑

𝑖=1

𝑚
∑

𝑗=𝑖
𝛼𝑟(𝑖, 𝑗,𝐩)𝑞𝑖𝑞𝑗 +

𝑚
∑

𝑖=1

𝑚
∑

𝑗=𝑖

𝑚
∑

𝑘=𝑗
𝛽𝑟(𝑖, 𝑗, 𝑘, 𝐩)𝑞𝑖𝑞𝑗𝑞𝑘 (5)

where 𝛼𝑟 and 𝛽𝑟 are the quadratic and cubic nonlinear stiffness terms. The number of nonlinear terms in a ROM is defined as
𝑁nl = 𝑚

(

𝑚 + 𝑚2 + 𝑚!
2!(𝑚−2)! +

𝑚!
3!(𝑚−3)!

)

, indicating that the number increases with the fourth power of the number of modes used in
he reduced basis. When no damping is considered, the ROM coefficient matrix, which contains both linear and nonlinear coefficients
f the ROM can be defined as

𝐘 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜔1 𝛼1(1, 1) 𝛼1(1, 2) ⋯ 𝛼1(𝑚,𝑚) 𝛽1(1, 1, 1) 𝛽1(1, 1, 2) ⋯ 𝛽1(𝑚,𝑚,𝑚)
𝜔2 𝛼2(1, 1) 𝛼2(1, 2) ⋯ 𝛼2(𝑚,𝑚) 𝛽2(1, 1, 1) 𝛽2(1, 1, 2) ⋯ 𝛽2(𝑚,𝑚,𝑚)

⋯ ⋯
𝜔𝑚 𝛼𝑚(1, 1) 𝛼𝑚(1, 2) ⋯ 𝛼𝑚(𝑚,𝑚) 𝛽𝑚(1, 1, 1) 𝛽𝑚(1, 1, 2) ⋯ 𝛽𝑚(𝑚,𝑚,𝑚)

⎤

⎥

⎥

⎥

⎥

⎦

(6)

Note that the ROM coefficients should obey certain symmetries, for example, 𝛽𝑖(𝑖, 𝑖, 𝑗) = 3𝛽𝑗 (𝑖, 𝑖, 𝑖), as explained in [16,19].
owever, to enforce these symmetries, all of the coefficients must be found in a single least-squares problem and this might increase
umerical ill-conditioning. In this work, those symmetries were not enforced (i.e., we used Hollkamp’s ‘‘unconstrained’’ approach
o find the coefficients), as this was found by Kuether et al. [15] to produce more reliable ROMs.
3
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2.2. Applied loads procedure for reduced order modeling

Non-intrusive methods for reduced order modeling postulate the form given in Eqs (4)–(5) and use a set of static load–
isplacement data to identify the coefficients 𝛼𝑟 and 𝛽𝑟 [12]. This work uses the applied loads procedure (referred as ICE) introduced

by Hollkamp & Gordon [19] to estimate the nonlinear coefficients.
Accordingly, a set of static forces are applied to the full-order FEM, each of which is designed to excite only the modes in the

reduced basis:

𝐅𝑝 = 𝐌(𝜱1𝑐1 +𝜱2𝑐2 +⋯ +𝜱𝑚𝑐𝑚) (7)

where 𝐅𝑝 is the prescribed multi-mode static force and 𝑐𝑟 is the 𝑟th modal forcing coefficient. The scalar 𝑐𝑟 controls the degree of
geometric nonlinearity that 𝐅𝑝 imposes on the system, and can be further defined as

𝑐𝑟 =
𝑓𝑟

𝛷𝑟,max
𝜔2
𝑟 (8)

where 𝛷𝑟,max is the mode shape of the 𝑟th mode at the point where the deformation is maximum and 𝑓𝑟 is the force scaling factor
of the 𝑟th mode. 𝑓𝑟 can be interpreted as the maximum displacement that the static force 𝐅𝑝 would cause for the linearized system.
Kuether et al. in [15] have recently shown that 𝑓𝑟 on the order of the thickness typically allows a ROM to sufficiently capture
the geometric nonlinearity of thin, flat structures. They also demonstrated that a ROM is sensitive to the force scaling factor and
empirical trials are required to find an 𝑓𝑟 that produces an accurate ROM.

The nonlinear coefficients 𝛼𝑟 and 𝛽𝑟 of 𝑟th modal equation in Eq. (5), can be identified by solving a least-squares problem. These
nonlinear coefficients then populate from second to last element of the 𝑟th row of the ROM coefficient matrix 𝐘 in Eq. (6). The
least-squares problem uses a number of forces 𝐅𝑝 with different combinations of terms in Eq. (7) and the resulting sets of static
responses 𝐱𝑝. The static responses can then be projected onto the modal coordinate as 𝑞𝑟 = 𝜱T

𝑟𝐌𝐱𝑝, and used to formulate the
least-squares problem for the 𝑟th mode, which can be written as

𝐐𝜣𝑟 = 𝐆𝑟 (9)

where 𝜣𝑟 is the 𝑁nl
𝑚 × 1 nonlinear stiffness coefficient vector, (i.e., 𝜣𝑟 = [𝜶𝑟, 𝜷𝑟]T), 𝐐 is the 𝑁𝑝 ×

𝑁nl
𝑚 polynomial combinations of

the modal responses 𝑞1, 𝑞2,… , 𝑞𝑚, and 𝐆𝑟 is the 𝑁𝑝 × 1 nonlinear internal force vector:

𝐐 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑞21 [1] 𝑞1𝑞2[1] ⋯ 𝑞2𝑚[1] 𝑞31 [1] 𝑞21𝑞2[1] ⋯ 𝑞3𝑚[1]
𝑞21 [2] 𝑞1𝑞2[2] ⋯ 𝑞2𝑚[2] 𝑞31 [2] 𝑞21𝑞2[2] ⋯ 𝑞3𝑚[2]

⋯ ⋯
𝑞21 [𝑁𝑝] 𝑞1𝑞2[𝑁𝑝] ⋯ 𝑞2𝑚[𝑁𝑝] 𝑞31 [𝑁𝑝] 𝑞21𝑞2[𝑁𝑝] ⋯ 𝑞3𝑚[𝑁𝑝]

⎤

⎥

⎥

⎥

⎥

⎦

(10)

𝐆𝑟 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜱T
𝑟 𝐅𝑝[1] − 𝜔

2
𝑟𝑞𝑟[1]

𝜱T
𝑟 𝐅𝑝[2] − 𝜔

2
𝑟𝑞𝑟[2]

⋮
𝜱T
𝑟 𝐅𝑝[𝑁𝑝] − 𝜔2

𝑟𝑞𝑟[𝑁𝑝]

⎤

⎥

⎥

⎥

⎥

⎦

(11)

Then, the nonlinear stiffness coefficients vector 𝜣𝑟 can be computed using the closed form of the least-squares solution, i.e.,

𝜣𝑟 = (𝐐T𝐐)−1𝐐T𝐆𝑟 (12)

o solve this equation one must have 𝑁𝑝 ≥ 𝑁nl
𝑚 . Solving this equation for 𝜣𝑟 provides the 𝑟th row of 𝐘 in Eq. (6) and is repeated

for each mode 𝑟 = 1,… , 𝑚 to compute the full set of ROM coefficients.

2.3. Proposed Gaussian Process Regression Reduced Order Model (GPR ROM)

This section presents the proposed GPR ROM, which relies on the form of the ICE ROM introduced in the previous sections.
A Gaussian process (GP) model specifies any finite collection of random variables by its mean and covariance function based
on the assumption that the collection obeys a joint Gaussian distribution [29]. In our approach, a collection of 𝑁tr input FEMs
is created, each with a different realization of the parameter vector, 𝐩. The parameter vectors can be collected into a matrix,
𝐏tr = [𝐩1,𝐩2,… ,𝐩𝑁tr ]

T ∈ R𝑁tr×𝑑 and each FEM is used to estimate the corresponding set of ICE ROM coefficients, which are also
collected into an array 𝐘tr = [𝐘1,𝐘2,… ,𝐘𝑁tr ]

T. This is a 3D array of size 𝑁tr ×𝑚× (𝑁nl
𝑚 +1) where the 𝑖th matrix, defined in Eq. (6),

s denoted 𝐘𝑖.
Let 𝑦 denote the (𝑗, 𝑘)th term in the 𝑖th ROM coefficient matrix 𝐘𝑖, corresponding to a single term in the ROM. Then, each

OM coefficient 𝑦 can be described by a GP model, which will depend on the FEM parameters 𝐩. The GP model can be identified
using the known FEM parameters 𝐏tr and the ROM coefficients estimated from each of the training FEMs using the ICE method
𝐲tr = [𝑦1, 𝑦2,… , 𝑦𝑁tr ]

T.
Based on the assumption that the collection of 𝑦 obeys the joint Gaussian distribution, the GP function 𝜓 describing ROM

coefficient 𝑦 can be written as
4

𝜓(𝐩) ∼ (𝜂, 𝜅) (13)
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where  denotes that the function 𝜓 is distributed as a Gaussian Process, and 𝜂 and 𝜅 are the mean and covariance functions that
escribe the ROM coefficient distribution. In this study, the mean function is defined with a constant, 𝜂 = 𝜂𝑚, and the covariance
unction 𝜅 is defined with the automatic relevance determination squared exponential (ARD SE) kernel [39]:

𝜅(𝐩𝑖,𝐩𝑗 ) = 𝜎2𝑓 exp
(

−1
2

𝑑
∑

𝑘=1

(𝑝𝑖,𝑘 − 𝑝𝑗,𝑘)2

𝑙2𝑘

)

(14)

where 𝑝𝑖,𝑘 is the 𝑘th parameter, or the 𝑘th element of 𝐩𝑖, 𝜎𝑓 is the output standard deviation, and 𝑙𝑘 is the 𝑘th individual length
scale. Note that the covariance is a function of the distance between the corresponding FEM parameter vectors 𝐩𝑖. Based on the
assumption that the observed ROM coefficient set 𝐲tr is corrupted by an independent noise term 𝜖𝑛, the ROM coefficient 𝑦 can be
expressed as the following GP model:

𝑦(𝐩) = 𝜓(𝐩) + 𝜖𝑛, 𝜖𝑛 ∼  (0, 𝜎𝑛2) (15)

where 𝜎𝑛2 is the noise variance. The GP model in Eq. (15) can be trained by optimizing the hyperparameters 𝜽ℎ in its mean and
ovariance functions, e.g., 𝜽ℎ =

{

𝜂𝑚, 𝜎𝑓 , 𝑙1, 𝑙2,… , 𝑙𝑑 , 𝜎𝑛
}

. This is achieved by estimating the maximum likelihood of the GP model
ith respect to the training sets [29], which can be expressed as

𝜽ℎ = argmax
𝜽ℎ

log 𝑝(𝐲tr|𝐏tr) = argmax
𝜽ℎ

(

−1
2
log |𝜮(𝜽ℎ)| −

1
2
(𝐲tr − 𝝁(𝜽ℎ))T𝜮−1(𝜽ℎ)(𝐲tr − 𝝁(𝜽ℎ)) −

𝑁tr
2

log(2𝜋)
)

(16)

where 𝝁(𝜽ℎ) is the 𝑁tr × 1 mean vector estimated by the mean function hyperparameter, i.e., 𝜇𝑖(𝜽ℎ) = 𝜂𝑚, and 𝜮(𝜽ℎ) is the 𝑁tr ×𝑁tr
covariance matrix estimated by the covariance function hyperparameters in Eq. (14) and the noise function hyperparameter 𝜎𝑛,
i.e., 𝛴𝑖𝑗 (𝜽ℎ) = 𝜅(𝐩𝑖,𝐩𝑗 ) + 𝜎2𝑛𝛿𝑖𝑗 (where 𝛿𝑖𝑗 = 1 iff 𝑖 = 𝑗 is the Kronecker delta).

The distribution of the training sets 𝐲tr can be used as a prior from a Bayesian perspective, and the posterior distribution for a
ew test set 𝐲∗ can be estimated based on the conditional distribution of joint Gaussian variables [29], which can be written as

𝐲∗|𝐏∗,𝐏tr, 𝐲tr ∼  (𝝁∗ +𝜮T
∗𝜮

−1(𝐲tr − 𝝁), 𝜮∗∗ −𝜮T
∗𝜮

−1𝜮∗), (17)

where 𝝁∗ is the mean of the new test set, which is identical to 𝝁 (as the mean in this work is defined with a constant). 𝜮∗ is the
training-test set covariance 𝜅(𝐏tr,𝐏∗) and 𝜮∗∗ is the test set covariance 𝜅(𝐏∗,𝐏∗). The mean and variance of the ROM coefficient can
thus be easily estimated for any given set of FEM parameters.

In this work the proposed GPR ROM framework was implemented in MATLAB R⃝ using the built-in function fitrgp.

2.4. Proposed GPR ROM training framework

As mentioned in Section 2.2, many of the coefficients in a typical ICE ROM may be highly variable with respect to the static
load cases used to estimate them, and hence they do not contribute significantly to the set of static load displacement data. The
GPR ROM quantifies the predictive uncertainty in each coefficient, and this is utilized here to detect those ICE ROM coefficients
that are not important in fitting the training data. The first term on the right in Eq. (17) provides a prediction of an ICE ROM for
any FEM parameter vector 𝐩∗ (or set of parameter vectors 𝐏∗) that is within the bounds of the training data. The second term in
q. (17) provides information about the predictive variance in each ROM coefficient over the range of training data. This section
escribes how this functionality is employed to filter out uncertain or redundant nonlinear coefficients, in order to keep the ROM
s small as possible.

There are several important reasons for filtering out the unnecessary ROM coefficients. Erroneous ROM coefficients can produce
naccurate dynamic responses, or even cause the time integration algorithm to fail, as shown in Kuether’s work [15]. Hence, a ROM
hat excludes those coefficients is likely to be more robust when running the dynamic simulations. The ROM is also smaller and
ence less expensive to evaluate and this can speed up dynamic simulations. It becomes even more compelling to minimize the
umber of ROM coefficients when one wishes to update a ROM to correlate with experimental measurements. For example, in some
ecent studies [26–28], the nonlinear coefficients were used as design variables and were adjusted until the dynamic responses of
he ROM matched those from measurements. This process becomes much more difficult as the number of ROM coefficients, and
ence the number of design variables, increases. In this regard the filtering capability of the proposed GPR ROM method could be
xtremely valuable. Of course, if the size of the ROM was not a concern in the application of interest, one could skip the procedure
utlined in this section and use the GPR ROM as identified and simply recognize that the ROM coefficients that were more variable
ight be less accurate.

The proposed procedure for training and reducing the size of a GPR ROM is outlined in Fig. 1. The FEM parameters are sampled
ithin the prescribed range [𝐩min,𝐩max] to create 𝑁tr sets, captured in the vectors 𝐩𝑖 that comprise a matrix 𝐏tr = [𝐩1,𝐩2,… ,𝐩𝑁tr ]

T.
Each of those is used to create a set of 𝑁𝑝 randomized static loads, for a total of 𝑁tr sets of 𝑁𝑝 loads each. Each set of 𝑁𝑝 loads
provides a set of data 𝐃𝑖 =

[

𝐐,𝐆𝟏,… ,𝐆𝐦
]

as defined in Eqs. (10)–(11). The total set of data ([𝐃1,𝐃2,… ,𝐃𝑁tr ]) is denoted 𝐃𝑡𝑟.
In the next step a boolean matrix 𝐁nl is defined to select which ROM coefficients, among the entire set of possible coefficients,

are identified in each step. Specifically, 𝐁nl is a 𝑚 × 𝑁nl
𝑚 matrix, whose 𝑟th row 𝐁nl,𝑟 has ones in the locations of the columns of

𝐐 and the rows of 𝜣𝑟 to retain in Eq. (12) and zeros elsewhere. Initially 𝐁nl,𝑟 is a vector of ones, indicating that all coefficients
are sought in the first step. Then, elements become zeros in subsequent steps corresponding to the coefficients that are no longer
5

desired. In each step, an equation identical to Eq. (12) is solved, but with the unneeded rows of 𝜣𝑟 and columns of 𝐐 removed, to
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Fig. 1. Illustration of GPR ROM training framework. (𝐁nl is the boolean matrix of the filtered nonlinear coefficients in the GPR ROM.)

obtain an estimate for the desired ROM coefficients 𝜣𝑟. This data is obtained for each of the trials 𝑖 = 1,… , 𝑁tr and used to create
a GPR model for the ROM coefficients as in Eq. (15).

Once a GPR ROM has been identified for a particular parameter set, the predictive variance of each ROM coefficient, 𝜎2y,𝑖 is
simply the 𝑖th diagonal component of the conditional covariance in Eq. (17). In order to quantify the predictive variance over the
full range of the FEM parameters, the GPR ROM is evaluated at a collection of 𝑁te sets of FEM parameters 𝐏te = [𝐩1,𝐩2,… ,𝐩𝑁te ]

T

within the prescribed parameter range. Then the average predictive standard deviation (STD) of each ROM coefficient is defined as
follows

𝜎y = 1
𝑁te

𝑁te
∑

𝑖=1
𝜎y,𝑖 (18)

Any ROM coefficient with 𝜎y greater than a pre-defined maximum allowable STD (𝜎max) can be removed from the GPR ROM. Those
coefficients have exhibited a high variance over the training data, and hence are very sensitive to the load scaling.

In the method used in this paper, a limit was placed on the maximum allowable size of the GPR ROM (𝑁nl, max), based on the
presumption that a large ROM has a number of redundant coefficients. When the number of nonlinear coefficients kept in the GPR
ROM exceeds this bound, i.e., 𝑁nl > 𝑁nl, max, then at least one nonlinear coefficient having the largest 𝜎𝑦 is filtered out. The process
continues as outlined in Fig. 1 until a GPR ROM of the desired size is obtained.

The computational cost of the proposed procedure is dominated by the need to solve 𝑁𝐭𝐫 ×𝑁𝑝 nonlinear static problems, or 𝑁𝐭𝐫
as many static problems as would be required to create a single ICE ROM. However, this procedure is offline and each static load
case could be computed in parallel. Note that once one has computed the set of static solutions 𝐃tr, it is relatively inexpensive to
go through several iterations of the algorithm for computing and evaluating the GPR ROM.

It should be noted that it is critical that the training data samples capture the FEM parameter set adequately. The range for
each FEM parameter should encompass the range of interest, as there is no reason to expect that the GP model will be able to
extrapolate much beyond this range. Furthermore, the training data should contain sufficient samples in the range [𝐩min,𝐩max] to
capture variation in the FEM force displacement data 𝐃𝑡𝑟, and hence in the ROM coefficients 𝜣𝑟. The ROM interpolates between the
training data using Eq. (14), and so any discontinuities or large variations that are not captured by the training data will lead to
errors. In the examples shown in the following section, training data was sampled with a sufficient number to ensure that the mean
predictions of the trained GPR ROM were continuous with respect to the varying FEM parameters. (i.e., see Figs. 4–7 and 11–13).
While this does not prove that the training data is adequate, it provides some level of assurance. One must rely on engineering
judgment for further verification or else augment the training data further until one is satisfied that the GPR ROM can interpolate
between them accurately.

3. Numerical studies

The GPR ROM approach was numerically tested on a few thin structures that are well known to exhibit geometric nonlinearity.
The GPR ROM was first applied to a flat beam to test how the data-driven ROM captures the underlying physics and the variability
with respect to a single FEM parameter. A curved beam is then used to show how the method performs on a structure that exhibits
more complicated nonlinear behaviors such as snap-through, and where it is much more difficult to fit an accurate ROM and to
determine how many terms should be retained in the ROM.

The accuracy and efficacy of the GPR ROMs were evaluated using their nonlinear normal modes (NNMs). An NNM is a powerful
metric for comparing models, as it captures the full range of near-resonant nonlinear responses that a structure can exhibit, from
small to large amplitudes. They are also independent of the temporal or spatial pattern of the loading applied to the system [40]. In
this work, the NNMs were computed by using the multi-harmonic balance (MHB) method introduced in [41]. All the FE modeling
and the numerical methods for computing static/dynamics responses were implemented with a Matlab-based nonlinear FEA package,
OSFern (https://bitbucket.org/cvandamme/osfern).
6
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Fig. 2. The flat beam model and its dominant modes. The modes were computed with the nominal beam having the axial spring stiffness 𝐾𝑥 = 5.0×105 lbf in−1.

Table 1
The GPR ROM framework parameters for the flat beam model.
Number of training sets (𝑁tr) 20
Number of load cases per a training set (𝑁𝑝) 7
Random force scaling range ([𝑓min , 𝑓max]) [0.25, 0.75] × beam thickness
Number of test sets (𝑁te) 900
Maximum allowable predictive STD per mode (𝝈max) [0.07, 0.07]
Maximum allowable number of ROM coefficients (𝑁nl, max) 8

3.1. Flat beam

The flat, geometrically nonlinear beam used here has been studied in many prior works. The nonlinearity arises as a large
transverse motion induces axial stretch in the beam, causing coupling between the bending and membrane modes and hardening
the stiffness of the structure [18,42,43]. The flat beam model used here is identical to the beam model in [27], which has axial
springs attached to approximate the stiffness of the boundaries. The nominal beam model was 228.6 mm in length, 12.7 mm in
width, 0.787 mm in thickness, and was composed of 40 2-node beam elements. The Young’s modulus was 204.8 GPa, Poisson’s
ratio was 0.29, and the mass density was 7870 kg m−3 to approximate steel. The flat beam model and the first four bending modes
are illustrated in Fig. 2.

3.1.1. Training GPR ROM of flat beam
In this case study, a GPR ROM of the flat beam was designed to incorporate the variation of boundary stiffness, which is

typically one of the most uncertain parameters when modeling structures such as this. A wide range of the boundary stiffness,
from soft to nearly clamped, was considered in the GPR ROM, by choosing the lower and upper bounds of the axial spring stiffness
𝐾𝑥 ∈ [𝐾𝑥,min, 𝐾𝑥,max] = [1.0 × 104, 5.0 × 105] lbf in−1. Within the given range, the variation of the stiffness 𝐾𝑥 significantly impacted
the nonlinear coefficients of the ROM, while not changing the linear frequencies of any of the bending modes that made up the
ROM. Note that the variation in the boundary stiffness in the given range did not severely change the mode shapes. The mode
shapes varied slightly in the peaks and slopes, but consistently followed the mode shapes of the nominal beam model in Fig. 2. The
training sets of varying 𝐾𝑥 were uniformly sampled within the bounds and the number of samples was 𝑁tr = 20. When generating
the training sets, the signs of the mode shapes of each set were adjusted to assure that they were consistent with those of the nominal
FEM to prevent the possible mismatching in the training sets. The reduced basis of the GPR ROM included Mode 1 and 3 (2-DOF
ROM), and the correspondingly defined parameters for the GPR ROM framework are presented in Table 1.

Note that only 𝑁𝑡𝑟𝑁𝑝 = 140 static load cases are needed to train the model, and the 𝑁𝑡𝑒 = 900 test sets are computed by evaluating
the GPR ROM for various FEM parameter vectors and so are inexpensive to compute. The trained GPR ROM was evaluated using 900
uniformly distributed test sets and the predicted mean and confidence interval of the GP model of each nonlinear ROM coefficient
are shown in Figs. 3 and 4. It is worth noting that the confidence intervals shown are the 95% intervals (or the ±2𝜎 bounds)
computed using the conditional covariance in Eq. (17); the actual errors in fitting a GPR ROM to the training data may not be
Gaussian and could contain both epistemic and aleatory uncertainty so these should not be considered to be true statistical bounds.
Fig. 3 illustrates that all the quadratic coefficients are very uncertain and have large variances centered around zero, which are
mainly due to computational noise from the ICE ROM fitting process as well as the random force scaling. The predictive STDs
of the first mode’s nonlinear coefficients are presented in Table 2, which also support the significant uncertainty of the quadratic
terms. Furthermore, any changes in these terms with respect to the axial spring stiffness are smaller than the uncertainty, and hence
they can be removed from the ROM. This is as expected, as the geometric nonlinearity of a flat, symmetric beam is known to not
contain any quadratic stiffness effects. On the contrary, the cubic coefficients captured the variation of the FEM parameters with
small uncertainties, as can be found in Fig. 4 and Table 2. The coefficients were observed to transition smoothly from small to large
values as the axial spring stiffness varied. Fig. 5 demonstrates the GPR ROM prediction for the cubic coefficients when applying a
constant force scaling factor (𝑓𝑟 = 0.5) instead of a random force scaling factor for training the GPR ROM. As the sensitivity with
respect to the force scaling was neglected in the training, the uncertainty was dramatically reduced (e.g., see 𝛽 and 𝛽 ). The
7
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Fig. 3. The GPR ROM prediction for the quadratic coefficients at the first iteration (𝑁nl = 14): trained observations (blue circles), mean prediction (green curve),
and its 95% predictive confidence (gray surface). The nonlinear ROM coefficients and the axial spring stiffness are normalized by the nominal values.

Fig. 4. The GPR ROM prediction for the cubic coefficients at the first iteration (𝑁nl = 14): trained observations (blue circles), mean prediction (green curve),
and its 95% predictive confidence (gray surface). Note that the results after the second iteration (𝑁nl = 8) were visually indistinguishable from these.

results indicate that the uncertainty of the coefficients was mainly due to their sensitivity to the force scaling factor, while the FEM
variation produced negligible uncertainty.

Based on the degree of uncertainty estimated for each nonlinear coefficient, the GPR ROM algorithm removed all the quadratic
terms and kept the cubic terms in the filtering stage. The reduced GPR ROM (𝑁nl = 8) functioned the same as the full GPR ROM
(𝑁nl = 14) as can be inferred from Table 2, and the mean predictive STD of the GPR ROM 𝜎GPR significantly reduced from 0.393
to 0.009, indicating that the ROM became small but robust with respect to the force scaling factor. The GPR ROM could be further
filtered to have 𝑁nl = 6, and the resulting GP models of the nonlinear ROM coefficients are shown in Fig. 6. A slight increase of
uncertainty could be seen for the cubic terms, which was also found with increased predictive STDs (𝜎y) in Table 2. This implied
that the robustness of the GPR ROM with respect to the force scaling factor has started to decrease. If one were to seek to reduce the
number of GPR ROM coefficients further, to 𝑁nl = 4 and 2, the uncertainty would increase even more, as indicated in Table 2. Fig. 7
illustrates the GPR ROM prediction when applying a constant force scaling factor (𝑓𝑟 = 0.5) for training the GPR ROM of 𝑁nl = 6.
This again supports the fact that the uncertainty of the GPR ROM to the FEM variation was ignorable. It is important to note that
while using a constant force scaling resulted in a GPR ROM with negligible uncertainty, the GPR ROM would not necessarily be
accurate. As shown by Kuether et al. [15], if the value of the force scaling was not chosen optimally the NNMs computed with such
a ROM could be significantly in error. Hence, the variances estimated in the GPR ROM fitting process are only meaningful if the
load cases used to create the ROMs are sufficiently rich.
8
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Fig. 5. The GPR ROM prediction for the cubic coefficients when the force scaling factor applied to all the training sets was constant (𝑓𝑟 = 0.5) for training
the GPR ROM: trained observations (blue circles), mean prediction (green curve), and its 95% predictive confidence (gray surface). The results represent the
prediction both at 𝑁nl = 14 and 𝑁nl = 8, which were visually indistinguishable.

Fig. 6. The GPR ROM prediction for the cubic coefficients at the third iteration (𝑁nl = 6): trained observations (blue circles), mean prediction (green curve),
and its 95% predictive confidence (gray surface).

Table 2
The predictive STDs of the nonlinear ROM coefficients (𝜎y) of Mode 1 and their mean (𝜎GPR,1) of the GPR ROM. The STDs are
estimated using the normalized values of the nonlinear ROM coefficients.

𝛼1,11 𝛼1,13 𝛼1,33 𝛽1,111 𝛽1,113 𝛽1,133 𝛽1,333 𝜎GPR,1

Iteration 1 (𝑁nl = 14) 0.770 0.485 0.924 0.003 0.008 0.003 0.003 0.314
Iteration 2 (𝑁nl = 8) – – – 0.003 0.008 0.003 0.003 0.004
Iteration 3 (𝑁nl = 6) – – – 0.006 – 0.040 0.004 0.016
Iteration 4 (𝑁nl = 4) – – – 0.034 – – 0.091 0.063
Iteration 5 (𝑁nl = 2) – – – 0.092 – – – 0.092

3.1.2. Evaluation of GPR ROM of flat beam using NNMs
The accuracy and robustness of the GPR ROMs were evaluated using their NNMs. The NNM backbone curves were computed by

applying the MHB method using five harmonics. In this work, NNMs are represented on the frequency–energy plane, in which any
point on the curves represents a frequency that corresponds to the minimal period of periodic response at a given energy (i.e., a sum
of kinetic and potential energy of the nonlinear system). The NNM curves captured by the GPR ROMs are illustrated in Fig. 8. The
NNMs were computed from the mean prediction of the GPR ROMs at each given boundary stiffness, using the conditional mean in
Eq. (17). The GPR ROM could estimate the variability of nonlinear responses for a wide range of boundary stiffness. For example,
when the beam was at total conserved energy of 0.001 J, the GPR ROM was able to capture about 15 Hz frequency shift of the first
9
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Fig. 7. The GPR ROM prediction for the cubic coefficients when the force scaling factor applied to all the training sets was constant (𝑓𝑟 = 0.5) for training the
GPR ROM of 𝑁nl = 6: trained observations (blue circles), mean prediction (green curve), and its 95% predictive confidence (gray surface).

Fig. 8. The 1st and 3rd NNM curves of the flat beam computed from the mean prediction of the GPR ROMs of various orders. For each order 𝑁nl, two NNMs
were computed, one for 𝐾𝑥,min and one for 𝐾𝑥,max. This illustrates how a single ROM captures wide variation in this parameter of the FEM.

NNM that is due to the change of the boundary stiffness. Also, it is important to note that any NNM curve within the range could be
estimated by using a ROM from the regression model; it is not necessary to solve additional static load cases to train a new ROM.

The accuracy of the GPR ROM was evaluated at two extreme boundary conditions. The NNM curves closely matched the reference
NNM of the full FEM when 𝑁nl ≥ 6, and started to break down from 𝑁nl = 4. This agrees well with the observation that the predictive
variance of the 𝑁nl = 8 or 𝑁nl = 6 ROM coefficients was very low. The fact that the NNMs match so closely implies that there would
also be an excellent agreement between a wide range of forced or free dynamic responses in which this mode is dominant. Note
that the error from the reference curves was relatively small for the 3rd NNM, regardless of having large uncertainty in the GPR
ROMs (e.g., 𝑁nl = 4). This was because the flat beam entails relatively weak modal coupling, as illustrated in our recent study [43],
so a small number of coefficients could be enough to capture some of the nonlinear dynamic responses.

The predictive confidence for estimating the NNMs when using the GPR ROMs is also shown in Fig. 9. The confidence bounds of
the NNMs were computed from the Gaussian sample sets generated at the upper and lower bounds of the 95% confidence interval of
the GPR ROM prediction, using the conditional covariance in Eq. (17). The uncertainty of GPR ROM was commensurably translated
to the uncertainty of the nonlinear response, and the confidence intervals dramatically increased from 𝑁nl ≤ 4. As expected, there is
a trade-off between having highly certain prediction and reducing the size of the ROM. It can thus serve as a powerful indicator for
defining the optimal ROM coefficient set, depending on whether one is more interested in robustness or computational efficiency
in the application in question. This highlights one very appealing feature of the GPR ROM, as it allows one to not only predict the
ROM but the uncertainty in the ROM due to the training data.

3.2. Curved beam

Curved beam structures exhibit complex nonlinear behaviors such as snap-through instability, and also entail relatively stronger
modal coupling between low and high frequency modes compared to flat beam structures [43,44]. In this study, the GPR ROM
10
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Fig. 9. The predictive confidence interval (95%) of the 1st and 3rd NNM curves estimated from the GPR ROMs at 𝐾𝑥,min.

Fig. 10. The nominal curved beam model and its dominant modes.

was applied and tested on a curved beam model, which approximates the 3D printed structure tested in [27]. The beam model
was composed of 62 beam elements (183 free DOF), and the dimensions were 180 mm in length, 3175 mm in radius of curvature,
8.32 mm in width, and 2.60 mm in thickness. The material properties of the model followed the nominal values of polylactic acid
(PLA), such that the Young’s modulus was 3.10 GPa, the Poisson’s ratio was 0.33, and the density was 1248 kg m−3. The two ends
of the beam were assumed to be stiff but not fixed, so were approximated with vertical beams that had the same material property
(PLA) and length of 10 mm, width of 30 mm, and thickness of 10 mm. Fig. 10 illustrates the nominal curved beam model and its
first four bending modes.

3.2.1. Training GPR ROM of curved beam
The design parameters for the curved beam GPR ROM were the Young’s modulus (𝐸) and the radius of curvature (𝑟) of the

main beam. These were treated as parameters because they entail significant uncertainties due to the manufacturing variability,
and they also have a significant effect on the dynamic response. The upper and lower bound of both of these parameters were taken
to be 150% and 50% of their nominal values, so that the GPR ROM would capture the system for this range of values. From the
given range of the two uncertain FEM parameters, 10 uniformly distributed samples were selected from each FEM parameter and
combined to construct one hundred training sets (𝑁tr = 100). Similar to the flat beam case, the mode shapes of all the training sets
matched well with those of the nominal model, with minor variations in the peaks and slopes. When generating the training sets,
the signs of the mode shapes were forced to be the same as those of the nominal curved beam model, so the modal information
was consistent in the training sets. It is worthwhile to note that the mode shapes in our cases did not reorder nor were there large
changes in the mode shapes, but this would certainly be an issue for more complicated structures and should be addressed in future
works. In such cases, the GPR ROM framework may need an additional pre-processing, (e.g., subgrouping the training sets based
on the mode shapes and then applying GPR fitting to each subgroup), which is left to be explored in a future work.

The training sets were used to train a 3-DOF GPR ROM consisting of Modes 1, 2, and 3. The corresponding GPR ROM framework
parameters are presented in Table 3. Compared to the previous flat beam example, the complexity of the GPR ROM model was
exponentially increased by incorporating two-dimensional design variation in the FEM, and having a three mode basis in the ROM.
This resulted in a significant increase in the total number of static load cases, as can be found in Table 3. The random force scaling
range ([𝑓min, 𝑓max]) was chosen wide enough to sufficiently capture the nonlinear dynamic behavior of the curved beam at large
deformations, which will be further discussed in the following sections.

Fig. 11 illustrates the predicted means and confidence intervals of the linear frequencies estimated by the uniformly sampled
test set 𝐏te. The GP models capture smooth variation in the linear frequencies due to changes in the FEM parameters with almost
no uncertainty, indicating that they were not corrupted by any noise and accurately modeled using sparse training data. The results
11
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Table 3
The GPR ROM framework parameters for the curved beam model.
Number of training sets (𝑁tr) 100
Number of load cases per a training set (𝑁𝑝) 16
Random force scaling range ([𝑓min , 𝑓max]) [0.25, 3.00] × beam thickness
Number of test sets (𝑁te) 900
Maximum allowable predictive STD per mode (𝝈max) [0.10, 0.10, 0.30]
Maximum allowable number of ROM coefficients (𝑁nl, max) 24

Fig. 11. The GPR ROM prediction for the linear frequencies: trained observations (blue circles), mean prediction (gray surface), and its upper bound (cyan
surface) and lower bound (red surface) of 95% predictive confidence. The linear frequencies and the FEM parameters are normalized by the nominal values.

showed that the radius of curvature has a relatively small impact especially on the second and third linear frequencies, while the
variation of Young’s modulus significantly changes the linear frequencies.

Some GP models of resonant and non-resonant nonlinear coefficients were also evaluated and are depicted in Fig. 12. The
resonant terms were discussed in [24], in which the cubic resonant terms are typically defined as 𝑞𝑟𝑞𝑖2 in the 𝑟th modal equation,
where 𝑞𝑖 can be any modal coordinate. The results in Fig. 12 revealed that the resonant coefficients were relatively certain and
accounted for the variation of the design parameters well. For example, 𝛼1,11 increased quadratically or at most cubically to the
increase of the radius of curvature while the coefficient was linearly proportional to the Young’s modulus. The variation of Young’s
modulus also linearly propagated to the variation of 𝛽1,111, but the variation of radius of curvature had no impact on this cubic term.
On the other hand, the non-resonant terms had large prediction variances, revealing that they were very sensitive to the random
force level used when estimating them, and thus were subjected to filtering by the GPR ROM algorithm. This corresponded well
with the recent observation of Shen et al. [24], where they found the non-resonant terms to contribute less to capturing the system’s
nonlinearity.

The curved beam GPR ROM was trained through the proposed framework, and after 7 iterations, the number of nonlinear
coefficients 𝑁nl reduced from 48 to 21. The mean predictive STD of GPR ROM 𝜎GPR also substantially reduced from 0.232 to 0.060,
indicating that the GPR ROM became much more robust as the size was reduced by more than 50%. The predictive STD of the
resulting optimal GPR ROM can be also found in Table 4.

3.2.2. Effect of force scaling bounds on GPR ROM
The random force scaling contributes to the independent noise term 𝜖𝑛 in Eq. (15) for the GPR ROM, and the noise becomes

significant for the load-sensitive nonlinear ROM coefficients. The case study investigated the effect of force scaling on the GPR
ROM by testing multiple sets of different force scaling bounds for training a GPR ROM. Fig. 13 demonstrates some nonlinear GPR
ROM coefficients trained using the reduced random force scaling bounds [𝑓min, 𝑓max] = [0.25, 0.75] × beam thickness. Compared
to the GP models applied by [𝑓min, 𝑓max] = [0.25, 3.00] × beam thickness shown in Fig. 12, the predictive confidence interval has
significantly decreased, particularly for the non-resonant coefficients. It can be inferred that as the range of applied loads increases,
the static solution sets 𝐃tr include larger deformations. This potentially increases the load-sensitive noise, consequently increasing
the predictive variance of GPR ROM.

The case study applied five different force scaling bounds to train the GPR ROMs, and the predictive STDs of the nonlinear
coefficients of the resulting optimal GPR ROMs are presented in Table 4. Note that the nonlinear coefficients kept in the GPR ROM
were mostly the same between the cases with different force scaling bounds. The GPR ROM was robust enough, so even when the
GPR ROM was computed using a smaller force scaling, it was able to evaluate and distinguish relatively uncertain coefficients from
the certain ones in that ROM. The results again show that the uncertainty of the GPR ROM tends to increase as the force scaling
range increases. When the force scaling range was larger, the nonlinear terms that are less impactful (e.g., most of the non-resonant
terms) were more uncertain relative to the dominant terms (e.g., mostly the resonant terms), as can be observed by comparing
Figs. 12 and 13. Hence, it appears to be advisable to use a larger force range so that it becomes easier to filter out these redundant
coefficients.

All the resonant terms, except 𝛽3,113 in Mode 3, showed low predictive uncertainty and were retained in the optimal GPR ROM.
This supports the fact that they significantly contribute to forming a ROM to capture the system’s nonlinearity. It is also important
to note that a few non-resonant terms were still kept in the optimal ROM. It can be inferred that they are less significant but still
have a small contribution to the ROM in terms of accuracy and reducing uncertainty.
12
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Fig. 12. The GPR ROM prediction for some resonant (top) and non-resonant (bottom) nonlinear terms when subjected to random force scaling bounds
𝑓𝑟 ∈ [0.25, 3.00] × beam thickness: trained observations (blue circles), mean prediction (gray surface), and its upper bound (cyan surface) and lower bound
(red surface) of 95% predictive confidence. The nonlinear ROM coefficients and the FEM parameters are normalized by the nominal values.

Fig. 13. The GPR ROM prediction for some resonant (top) and non-resonant (bottom) nonlinear terms when subjected to random force scaling bounds
𝑓𝑟 ∈ [0.25, 0.75] × beam thickness: trained observations (blue circles), mean prediction (gray surface), and its upper bound (cyan surface) and lower bound
(red surface) of 95% predictive confidence. The nonlinear ROM coefficients and the FEM parameters are normalized by the nominal values.

3.2.3. Evaluation of GPR ROM of curved beam using NNMs
The NNMs of the curved beam GPR ROMs were computed using the MHB method with five harmonics. The reference NNM

backbone curves were computed using an ICE ROM with 10 modes, which was thought to have a large enough modal basis to
accurately capture the NNMs. Fig. 14 shows the resulting NNMs from the GPR ROMs of various sizes when subjected to the force
scaling 𝑓𝑟 ∈ [0.25, 3.00] × beam thickness. The GPR ROMs accurately captured the nonlinear responses propagated from the design
variation ranging from (E, r)min to (E, r)max. Interestingly, the softening–hardening behavior at (E, r)min turns to pure hardening
at (E, r)max, a feature that is captured by the GPR ROM. The GPR ROM could also accurately describe the variation of hardening
NNMs at higher frequencies in Mode 3, which covers nearly 300 to 400 Hz frequency shift as the FEM parameters vary.

The accuracy of GPR ROMs was preserved even when reducing the number of nonlinear coefficients by more than 50%, revealing
that the 3-mode ROM contains a significant number of redundant coefficients that can be neglected while still accurately capturing
the nonlinear responses. Note that the accuracy aligned well with the predictive variance estimated in the GPR ROM framework, as
was also the case in the flat beam case study. While the optimal GPR ROM (𝑁nl = 21) maintained a satisfactory accuracy, further
reduction of nonlinear coefficients induced larger GPR ROM predictive variance and started to increase error for capturing the
13
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Table 4
The predictive STDs of the nonlinear coefficients (𝜎y) of the GPR ROM trained with various force scaling bounds. The STDs are estimated using the normalized
values of the nonlinear ROM coefficients.

(a) Mode 1

[𝑓min , 𝑓max] 𝛼1,11 𝛼1,22 𝛼1,33 𝛼1,12 𝛼1,13 𝛼1,23 𝛽1,111 𝛽1,112 𝛽1,113 𝛽1,221 𝛽1,222 𝛽1,223 𝛽1,331 𝛽1,332 𝛽1,333 𝛽1,123 𝑁nl,1

[0.25, 0.75] 0.016 0.009 0.008 0.017 0.013 0.018 0.053 7
[0.25, 1.50] 0.017 0.006 0.039 0.015 0.006 0.056 0.060 0.040 8
[0.25, 2.00] 0.019 0.006 0.045 0.020 0.007 0.063 0.066 0.048 8
[0.25, 3.00] 0.027 0.019 0.083 0.027 0.021 0.088 0.060 7
[0.10, 3.00] 0.017 0.018 0.074 0.018 0.021 0.075 0.046 7

(b) Mode 2

[𝑓min , 𝑓max] 𝛼2,11 𝛼2,22 𝛼2,33 𝛼2,12 𝛼2,13 𝛼2,23 𝛽2,111 𝛽2,112 𝛽2,113 𝛽2,221 𝛽2,222 𝛽2,223 𝛽2,331 𝛽2,332 𝛽2,333 𝛽2,123 𝑁nl,2

[0.25, 0.75] 0.015 0.013 0.006 0.010 0.007 0.004 0.003 0.006 8
[0.25, 1.50] 0.016 0.020 0.009 0.031 0.014 0.009 0.005 0.016 8
[0.25, 2.00] 0.020 0.024 0.013 0.033 0.018 0.010 0.006 0.021 8
[0.25, 3.00] 0.032 0.022 0.036 0.026 0.015 0.021 0.050 7
[0.10, 3.00] 0.022 0.019 0.032 0.024 0.013 0.020 0.087 7

(c) Mode 3

[𝑓min , 𝑓max] 𝛼3,11 𝛼3,22 𝛼3,33 𝛼3,12 𝛼3,13 𝛼3,23 𝛽3,111 𝛽3,112 𝛽3,113 𝛽3,221 𝛽3,222 𝛽3,223 𝛽3,331 𝛽3,332 𝛽3,333 𝛽3,123 𝑁nl,3

[0.25, 0.75] 0.011 0.045 0.051 0.009 0.041 0.024 6
[0.25, 1.50] 0.067 0.108 0.098 0.032 0.051 0.022 6
[0.25, 2.00] 0.071 0.130 0.117 0.102 0.055 0.062 0.026 7
[0.25, 3.00] 0.111 0.178 0.130 0.127 0.077 0.082 0.032 7
[0.10, 3.00] 0.104 0.164 0.106 0.106 0.068 0.083 0.024 7

Fig. 14. The 1st and 3rd NNM curves of the curved beam computed from the mean prediction of the GPR ROMs using random force scaling bounds
𝑓𝑟 ∈ [0.25, 3.00] × beam thickness.

NNMs. The predictive confidence for estimating the 1st NNMs when using the GPR ROMs is shown in Fig. 15, which also suggests
that reducing the order of the GPR-ROM to fewer than 21 terms begins to significantly increase the uncertainty in the nonlinear
response.

The effect of force scaling range on the predictive performance of the GPR ROM was estimated using NNM curves, as shown in
Fig. 16. The GPR ROM created by applying random force scaling factors 𝑓𝑟 ∈ [0.25, 0.75] × beam thickness was compared to the
GPR ROM with 𝑓𝑟 ∈ [0.25, 3.00], in terms of accuracy for estimating the 1st NNMs. The differences between the predicted NNMs
were quite small for all cases except for that with 𝑁nl = 18, where the GPR ROM with 𝑓𝑟 ∈ [0.25, 3.00] seems to have a significant
error in the snap through region. In the end it seems that the GPR ROM is not as sensitive to the range of force scaling as it is to the
number of coefficients retained, and so one can use scaling ranges between 𝑓𝑟 ∈ [0.25, 0.75] and 𝑓𝑟 ∈ [0.25, 3.00] and focus attention
on making sure that enough coefficients are retained in the ROM; the best practice is probably to choose 𝑓𝑟 = 0.25 as the lower
bound and to choose the upper bound to be approximately equal to the largest displacements that are expected.

The predictive confidence for estimating the 1st NNMs when using the GPR ROM of 𝑓𝑟 ∈ [0.25, 0.75] × beam thickness is illustrated
in Fig. 17. In the previous section, it was found that the predictive uncertainty of the GPR ROM was greater when the force scaling
range was larger. However, the confidence intervals of some GPR ROMs applied by the larger force scaling range in Fig. 15 are even
narrower than those of the GPR ROMs applied by the smaller force scaling range in Fig. 17, particularly at large deformations. Once
again it appears that the method is insensitive to the range of force scaling as long as the nonlinearity is exercised to a sufficient
extent. This also highlights the utility of using the GPR ROM to predict confidence intervals on the nonlinear responses such as
these NNMs.
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Fig. 15. The predictive confidence interval (95%) of the 1st NNM curves estimated from the GPR ROMs using random force scaling bounds 𝑓𝑟 ∈ [0.25, 3.00] ×
beam thickness. The 1st NNM curves at (E, r) min (left) and (E, r)max (right).

Fig. 16. The 1st NNM curves of the curved beam computed from the mean prediction of the GPR ROMs using random force scaling bounds 𝑓𝑟 ∈ [0.25, 0.75] ×
beam thickness. The 1st NNM curves at (E, r)min (left) and (E, r)max (right). (The 10-mode ROM NNM curve at (E, r)max is completely overlapped by the curve
of the GPR ROM of 𝑁nl = 21, 𝑓𝑟 ∈ [0.25, 0.75] × beam thickness.)

Fig. 17. The predictive confidence interval (95%) of the 1st NNM curves estimated from the GPR ROMs using random force scaling bounds 𝑓𝑟 ∈ [0.25, 0.75] ×
beam thickness. The 1st NNM curves at (E, r)min (left) and (E, r)max (right).

3.2.4. Discussion on computational efficiency of GPR ROM

The case study was used to evaluate the computational efficiency of the GPR ROM and to compare it with that of a full FEM and a
typical ROM (i.e., 3-DOF ICE ROM). The computations were performed on an Intel Core i7-7700 K 4.2 GHz quad-core computer with
64 GB of RAM. The comparison of computational time between different approaches is presented in Table 5. The offline stage for
training GPR ROM required a relatively high computational cost, and this was due to computing a large number of static solutions
𝐃tr. That is, this case study computed 100 times as many load cases as would be minimally necessary to compute a typical ICE
ROM. However, the cost was still small relative to that required to integrate the full-order dynamic equations. Also, note that this
stage is entirely offline, and, if resources are available, it can be parallelized with perfect efficiency because each static load case is
independent.
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Table 5
The comparison of computational time (s) for training the curved beam models and integrating
10 s simulation under random loading. The sampling rate was 10,000 Hz.

Full FEM ICE ROM GPR ROM

Offline ROM training – – 501.60
Online ROM computation – 4.93 0.01
Time integration for 10 s 5652.84 8.87 8.86

In the online stage (in which the user might typically want a fast or even a real-time ROM), the GPR ROM could quickly generate
n ICE ROM in less than a second for any given set of FEM parameters, whereas the ICE ROM approach needed to newly compute
he static data to create a corresponding ROM. The GPR ROM was also tested to integrate the random responses of the curved beam,
nd it was revealed that the computational efficiency was the same as that of an ICE ROM, in that they are orders of magnitude
aster than integrating the full FEM.

It should be noted that the computational efficiency of the GPR ROM will be amplified further when the parent FE model is
omposed of a large number of elements, and a ROM also requires a large number of modes to capture the nonlinear responses of
hat system. In such case, the trade-off between offline training and online prediction will become much more substantial.

. Conclusion

This study proposed a new data-driven model reduction approach for geometrically nonlinear structures based on the Gaussian
rocess regression method. To the best of the authors’ knowledge, this is the first study to incorporate design variation in a
eometrically nonlinear structure into a machine learning based reduced order model. By combining GPR with the well established
CR ROM, the governing physics of the problem are preserved in the form of polynomials in the modal coordinates and parameter
ariation in the FEM is efficiently captured by the mean and covariance terms in the GPR model. Thus, with a single GPR ROM
ne could compute the response of the FE model for any set of values of the parameters in the range of the training data. Similarly,
f those parameters are known to be uncertain and not defined by a single value, then one could use the GPR ROM to efficiently
ompute the variability in the response due to the known distribution of those FEM parameters. The GPR ROM also provides a
eans to evaluate the sensitivity of nonlinear ROM coefficients with respect to the force scaling, and in the case studies presented
ere was able to reduce the set of nonlinear coefficients by filtering out any nonlinear coefficients that changed significantly as the
orce scaling changed. Hence, the proposed GPR ROM strategy has a built-in means for creating a small and robust ROM, which
esolves a major limitation of the implicit condensation and expansion (ICE) method [15]. The proposed GPR ROM approach will be
urther tested as a short term future work on more realistic structures, e.g., exhaust cover plates and instrumental gongs, to evaluate
ts computational efficiency and robustness to represent the geometric nonlinearity of more complicated structures.

From a data-driven perspective, the GPR ROM could be efficiently pre-computed offline with a sparse set of training data, and
t the online stage a ROM could be directly predicted for any new input FEM parameter set without any additional static analysis
ypically required for computing a ROM. In this respect, the GPR ROM can be a very powerful tool to be incorporated into nonlinear
EM updating (FEMU) tasks [9–11]. Using this approach, there would be no need to iterate on the Galerkin projection to correlate
EM to ROM, and the variation of the FEM is directly linked to the GPR ROM in the form of analytical sensitivity. This is expected
o greatly accelerate nonlinear FEMU, and overcome a critical issue of recently developed ROM based model updating methods that
o not bridge between the updated ROM and the actual design parameterized in the FEM [26–28]. The GPR ROM based FEMU will
e further explored as a future work.
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