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Abstract

The objective of this publication is to propose a novel technique for black-box identification of structures with
geometric nonlinearity. The technique is based on a recently introduced frequency-domain system identification
method called Nonlinear Identification through eXtended Outputs (NIXO). The proposed algorithm first expresses the
nonlinear part of modal equation of motion (EOM) as a general polynomial of high order, and then removes the terms
which are determined to be irrelevant to the mechanical system’s response. This division into dominant and irrelevant
nonlinear terms relies on the values of two novel indicators that are particular to NIXO. The heuristic presented here
was observed to work well only when the tested structure is excited with various swept-sine input signals of different
magnitudes (so that the system oscillates at sufficiently distinctive amplitudes in different experimental tests). The
technique is first demonstrated on a noise-free numerical case study employing a reduced model of a curved beam.
The results obtained are verified via comparing the true Nonlinear Normal Mode (NNM) to the one computed using
the modal EOM pointed out by NIXO. Then the method is demonstrated on experimental measurements collected
on a 3D-printed flat beam exhibiting significant natural frequency shifts, and the outcomes are verified by overlaying
the identified NNMs on the swept-sine responses.

Keywords: Black-Box Nonlinear System Identification, NIXO, Nonlinear Experimental Dynamics, Geometrically
Nonlinear Structures, Swept-Sine Vibration Testing

1 Introduction

Nonlinear oscillating systems are receiving a lot of attention in both industry and academia due
to current as well as potential future industrial applications. In many fields, nonlinearities are
recognized as important in obtaining accurate predictive models of structures such as aircraft,
spacecraft and automotive systems. For example, nonlinear structural dynamics helps in modeling
frictional mechanical systems [1,2], or predicting the motion of structures oscillating at high-amplitudes
[3–5]. Vibration mitigation has lately become a popular field of study employing the nonlinear
approach [6–8]. Another application is understanding the nonlinear behavior of wind turbines (due
to e.g. nonlinear damping) [9]. When it comes to future solutions, there has been increasing interest
in exploiting nonlinearity to create structures that are light and stiff simultaneously. Hence, it is not
surprising that an increasing number of researchers are working to extend linear vibration analysis
and testing methods to nonlinear structures. The following two subsections review some key features
of nonlinear dynamic systems and the existing literature on nonlinear system identification.

1.1 Nonlinear Oscillating Structures

Linear vibration analysis is well established in the literature [10]. The equation of motion (EOM)
describing such structures is illustrated in Eq. (1a). MatricesM,C, andK occurring there represent,



respectively, the distributions of mass, linear viscous damping and stiffness, while vector x(t) is the
time response of the system subjected to the applied force f(t).

Mẍ+Cẋ+Kx = f(t) (1a)

Mẍ+Cẋ+Kx+ fnl(x, ẋ) = f(t), (1b)

A detailed description of linear vibration theory is not the focus of this work (the interested
reader may consult [10] for further details), but a few basic characteristics will be briefly reviewed.
The steady-state forced response of a linear single-degree-of-freedom (SDOF) equation of motion
is governed by two modal parameters: the linear natural frequency (ωlin) and damping ratio (ζlin).
A typical linear forced response is shown in Fig. 1 and these two linear parameters are marked in
there as dashed horizontal lines, which implies that they are constant (or amplitude-independent)
quantities. (The horizontal line corresponding to the natural frequency is sometimes called the
Linear Normal Mode, or LNM.) Furthermore, due to this invariance, the linear frequency response
is almost symmetric with respect to the Linear Normal Mode, as is also depicted in Fig. 1.
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Fig. 1: Linear vs. nonlinear characteristics exhibited by
general single-degree-of-freedom (SDOF) structures.

A general form of the equation of motion describing nonlinear structures is presented in Eq. (1b).
It differs from the linear EOM by the additional vector function fnl(x, ẋ) that appears on the left
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hand side of the equation and represents the nonlinearities present in the system. Because of these
nonlinear terms, the resonance frequency and effective damping of the structure tend to change
with vibration amplitude – as is also illustrated in Fig. 1(a) and 1(c), respectively. (Analogous
to what mentioned in the previous paragraph – the natural frequency expressed as a function of
vibration level is called a Nonlinear Normal Mode, or simply NNM [11].) This frequency-amplitude
dependency causes the nonlinear Response Functions to lose symmetry (as shown in Fig. 1a),
although they are still roughly centered on the NNM.

Most mechanical systems reveal their nonlinear nature only when they oscillate at sufficiently
high amplitudes. Hence, their motion can be still approximated as linear if the vibrations are small
enough. This is also illustrated in Fig. 1, where the Linear Normal Mode is shown to be tangent to
its nonlinear counterpart when the vibration level approaches zero. Analogously, the linear damping
ratio meets the nonlinear damping curve at low amplitudes. However, it is worth noting that not
all systems have this characteristic, e.g. [12] presents an interesting exception.

The description above only highlights a few features that are important and should be taken
into consideration while studying the dynamics of nonlinear structures, but it certainly does not
cover all the phenomena occurring in these systems. The readers interested in investigating linear
and nonlinear vibration in more detail could refer to [10] and [13–15], respectively.

1.2 White, Black and Grey Box System ID Algorithms

There are multiple ways to classify nonlinear system identification techniques. They could be
grouped based on the domain they operate in, or the model function they are using. In this
section, system identification methods are divided into three groups: white-, black- and gray-box
algorithms. A brief description is provided below, together with a few examples of popular and
state-of-art representatives of these three categories.

White-box identification procedures are based on well-understood physical laws expressed explicitly
with functions that are known beforehand. These methods can be further divided into sub-groups
based on the approach they take to identify the system, or the domain they operate in. Hence, one
can distinguish time-domain, frequency-domain and modal methods.

Time- and frequency-domain white-box methods try to fit a differential equation (known a
priori) to the measured signals in order to estimate the values of certain physical parameters that
occur in that equation. A very popular choice for the identification in the former domain is the
Restoring Force Surface (RFS) method. In [16] and [17], it have been proved successful in identifying
mechanical systems exhibiting softening-stiffening and pure stiffening characteristics, respectively.
Representatives of frequency-domain methods are Nonlinear Identification through Feedback of
the Outputs (NIFO) and Nonlinear Identification through eXtended Outputs (NIXO). They were
successfully applied to both numerical and real-life structures in [18–20] (NIFO) and [21,22] (NIXO).
When the system is unforced, the FREEVIB method [23] has also proven very successful, although
for many structures it is difficult to obtain free response measurements at sufficiently high amplitudes
to use FREEVIB or other similar approaches.

On the other hand, modal methods try to directly identify the modal characteristics of a nonlinear
system, such as Nonlinear Normal Modes (NNMs) or nonlinear damping ratio curves. The most
popular methods of this type are the CONCERTO1 [24], RCT2 [25] and, inverse SNRM-based3 [26]

1CONCERTO – COde for Nonlinear identifiCation from mEasured Response To vibratiOn
2RCT – Response-Controlled Stepped-Sine Testing
3inverse SNRM-based method – inverse Single Nonlinear Resonant Mode based method
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algorithms. They all use the Single Nonlinear Resonant Mode (SNRM) formula [27] to model the
nonlinearity present in the system. These methods are generally limited to systems in which a single
mode is dominant, and have not yet been extended to cases where multiple modes of the linearized
system interact.

In black-box identification, the model function is not known beforehand. In the early stages of
this type of modeling, the researchers assume a general form of the function that will capture the
physical phenomena present in the system, or they use a mathematical model limited by very few
constraints. The final form of this model function crystallizes during the identification process based
on the knowledge learned from monitoring the measured data or via machine learning techniques.

Some popular black-box identification methods were proposed and evaluated by Worden et al.
in [28] and [29]. In the former work, the authors have proposed a time-domain technique called
NARX (from Nonlinear Auto-Regressive with eXogenous inputs model) supported by a certain
genetic algorithm. They employed it in black-box identification of a nonlinear equation of motion
with a quadratic term. In [29], they compared the effectiveness of NARX, local models and recurrent
neural networks in the black-box ID process of the signals obtained using a real-life tribometer. The
analysts agree so far that black-box techniques can be considered powerful and find application in
system ID of wide range of systems (because of their undefined nature). However, these algorithms
simultaneously suffer from a rapid increase in the number of parameters to estimate (due to a
general form of equations they utilize), and thus very large amounts of data may be needed in the
identification, limiting their applicability.

Recently proposed black-box identification techniques lean towards a data-driven approach,
which stands for the estimation of the investigated model based on the data captured in experiments
without having prior knowledge regarding the mechanical system. One of the more popular methods
was proposed by Moore, who employed his Characteristic Nonlinear System Identification (CNSI)
method to identify an assembly consisting of a linear structure connected to a nonlinear energy
sink [30], or in a different paper with multiple nonlinear attachments [31]. Another example of
the data-driven approach (supported by the deep neural networks) was lately introduced by Li
and Yang [32]. They managed to successfully identify the NNM of the Duffing equation [33] using
response data only.

Finally, grey-box techniques combine both the learning from the measured data and a prior
(usually partial) knowledge of the mechanical system. Gray-box modeling has certain advantages
over its white-box and black-box siblings. The main benefit over the latter, is an opportunity to
predict the situations not entirely covered by the measured data, or when parts of the collected
data has low quality. Comparing with white-box models, the main improvement is the ability to
model complex mechanical systems, that are not fully captured by the assumed governing formulas.

In [29], Worden et al. presented a successful attempt to identify a frictional system using
the gray-box techniques based on the exponential Stribeck equation supported by the Lu-Gre
and Generalized Maxwell Slip friction models. Noël, Kerschen, et al. investigated a concept of
representing the complex stiffness and damping non-linear phenomena using cubic splines (piecewise
third-order polynomials). They successfully employed their idea to capture the non-linear dynamics
of solar arrays [34]. An interesting combination of the data-driven identification approach using the
Gaussian function supported by partial knowledge of the system was recently proposed by Zhang
and Cross [35].
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1.3 Objectives and Contributions

The objective of this article is to introduce a novel technique for identifying black-box systems with
geometric nonlinearity. Building upon the work presented in [22], we propose two frequency-domain
system ID algorithms called D1-NIXO and D2-NIXO. In [22], a white-box version of NIXO proved
successful in identifying parameters for a few geometrically nonlinear mechanical systems. In each
case the equation of motion was assumed to be known and NIXO had only to identify the parameters.
In this study, we extend this technique to a black-box identification method, which is applicable in
cases where the nonlinear equation of motion that describes the structure’s dynamics is not known a
priori. Instead, a very general equation of motion is specified and the algorithm seeks to determine
which terms are needed to describe the system in question.

The identification with the black-box version of NIXO consists of four steps: (i) postulating a
general form of the nonlinear equation of motion that describes the dynamics of the structure (e.g.
a geometrically nonlinear EOM where the nonlinearity represented with every possible quadratic,
cubic, quartic, etc. polynomial term), (ii) performing an identification attempt using NIXO, (iii)
detecting which nonlinear terms are dominant (and should be kept in the nonlinear EOM), and (iv)
identifying the object one more time – this time using the EOM obtained after Step 3.

In Step 3, the division into the dominant and irrelevant terms is made based on the values of
two metrics ∆∗ and ∆∗∗, that are particular to NIXO and will be defined in Section 3 of this work.
In essence, these metrics arose when NIXO was applied to several case studies and an interesting
pattern was revealed. Namely, it was observed that if the tested structure: (i) was excited with
a swept-sine forcing signal and (ii) oscillated at low (yet sufficiently high) amplitudes during the
experiment, then the nonlinear terms that are not dominant in the system’s response tend to
be complex-valued. The above-mentioned ∆-metrics capture whether each parameter is mostly
complex- or real-valued.

The following sections present the proposed NIXO-based black-box identification procedure and
demonstrate the technique numerically and experimentally. The numerical case studies evaluate
the algorithm under perfect conditions (the noise-free signals). The outcomes obtained there are
used to generate the Nonlinear Normal Mode that is further compared to the NNM of the actual
numerical structure. In the experimental case study, the identification attempt is performed on a
3D-printed beam and the results are validated against experimental measurements collected during
swept-sine vibration testing, allowing the reader to see the limits of the applicability of this black-box
identification procedure for the structures studied here.

The following section presents the overview of the NIXO method itself, while Section 3 elaborates
on the black-box NIXO-based system identification process. In Section 4, the technique is evaluated
in simulated experiments by applying it to an ICE-ROM [3] of a curved beam, and the outcomes are
validated and discussed. Section 5 illustrates the results from the identification attempt performed
on a beam 3D-printed from polylactide acid. Finally, Section 6 presents conclusions and future work.

2 An Overview of the NIXO Method

Nonlinear Identification through eXtended Outputs (NIXO) is a novel system identification algorithm
that operates in the frequency domain. A detailed derivation of the method is presented in [22],
along with its application to case studies where the modal equation of motion (EOM) is known
beforehand. Since the derivation of NIXO is quite lengthy, this section provides only a brief overview
of the method. All of the steps described here were implemented in Matlab ®.
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For clarification purposes, let us assume that an equation of motion of a geometrically nonlinear
single degree of freedom (SDOF) system is explicitly known and represented by Eq. (2).

mẍ+ cẋ+ kx︸ ︷︷ ︸
linear part

+ k2x
2 + k3x

3 + k4
4 + k5x

5︸ ︷︷ ︸
nonlinear part

= f(t) (2)

This auxiliary equation will be utilized in this section to provide a simplified explanation of the
system identification process using NIXO.

Furthermore, let us assume that the mass of the SDOF system is known and is equal to 1
(m = 1). Therefore, the equation of motion (2) consists of a linear part (with unknown linear
damping and stiffness coefficients: c and k, respectively) and a nonlinear part represented by a
quintic polynomial with four unknown stiffness coefficients: k2, k3, k4, and k5. The objective of
NIXO is to estimate the values of c, k, k2, k3, k4, and k5 based on the system response.

The method is derived by first bringing the equation of motion (EOM) into the frequency domain
using Fourier Transform, resulting in Eq. (3):

D(Ω)X(Ω) + k2P1(Ω) + k3P2(Ω) + k4P3(Ω) + k5P4(Ω) = Ψ(Ω), (3)

where Ω is the forcing frequency, and X(Ω), Pi(Ω), and Ψ(Ω) are the Fourier representations of the
linear output, four nonlinear outputs, and forcing signal, respectively. (Naturally, X(Ω) = F{x(t)},
Pi(Ω) = F{xi+1(t)}, and Ψ(Ω) = F{f(t)}, where the Fourier operator is denoted by F{·}, and
i ∈ {1, 2, 3, 4}.) D(Ω) is the dynamic stiffness, which is the reciprocal of the frequency response
function, H(W), whose explicit mathematical forms are provided in Eqs. (4) and (5), respectively.

D(Ω) = −mΩ2 + icΩ + k
m=1
== −Ω2 + icΩ + k (4)

H(Ω) =
1

D(Ω)
=

1

−Ω2 + icΩ + k
(5)

Equation (3) assumes that the frequency-domain quantities presented therein are obtained by
taking the fast Fourier transform (FFT) of their time-domain counterparts. In practice, it is
beneficial to break each of these time signals into several overlapping pieces and apply a Hann
window to each signal. For instance, matrices X, Ψ, and Pi (i ∈ {1, 2, 3, 4}) can be constructed
using the matrix form presented in either Eq. (6) or Eq. (7).

D(Ω)
[
X1, . . . , XNavg

]
+k2

[
P1,1, . . . , P1,Navg

]
+ k3

[
P2,1, . . . , P2,Navg

]
+

+k4
[
P3,1, . . . , P3,Navg

]
+ k5

[
P4,1, . . . , P4,Navg

]
=
[
Ψ1, . . . ,ΨNavg

]
(6)

D(Ω)X(Ω) + k2P1(Ω) + k3P2(Ω) + k4P3(Ω) + k5P4(Ω) = Ψ(Ω), (7)

where matrices X, Ψ, and Pi (i ∈ {1, 2, 3, 4}) have a size of 1×Navg, where Navg is the number of
blocks that the time signals have been split into.

The left-hand and right-hand sides of Eq. (7) should be divided by Navg and then post-multiplied
by eitherXH orΨH , where (·)H denotes the Hermitian or conjugate transpose operator. This results
in obtaining Eqs. (8a) and (8b), respectively. Anticipating the rest of this section, Eq. (8a) will be
further transformed into the D1-based NIXO base function, while Eq. (8b) will serve as the base
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for the D2-NIXO system identifier. The difference between the D1-based and D2-based NIXO will
be explained later in this section.

1

Navg

(
D(Ω)XXH + k2P1X

H + k3P2X
H + k4P3X

H + k5P4X
H
)
=

1

Navg

ΨXH (8a)

1

Navg

(
D(Ω)XΨH + k2P1Ψ

H + k3P2Ψ
H + k4P3Ψ

H + k5P4Ψ
H
)
=

1

Navg

ΨΨH (8b)

The term ΨXH represents a sum over all windowed time blocks, as shown in Eq. (9). When
divided by Navg, it provides an estimate for the power spectrum SΨX (also defined in Eq. (9))
between the quantities Ψ and X. Similarly, power spectra SXX , SΨΨ, SXΨ, SPiX , and SPiΨ (where
i ∈ {1, 2, 3, 4}) can be obtained using the same method.

1

Navg

ΨXH =
1

Navg

(
Navg∑
j=1

ΨjX
H
j

)
= SΨX (9)

Therefore, Eqs. (8a) and (8b) can be equivalently expressed in the form presented in Eqs. (10a)
and (10b), respectively.

D(Ω)SXX + k2SP1X + k3SP2X + k4SP3X + k5SP4X = SΨX (10a)

D(Ω)SXΨ + k2SP1Ψ + k3SP2Ψ + k4SP3Ψ + k5SP4Ψ = SΨΨ (10b)

Please note that Eqs. (8) and Eqs. (10) are valid for every individual frequency line. This means
that the quantities SΨX , SXX , SΨΨ, SXΨ, SPiX (where i ∈ {1, 2, 3, 4}) are actually functions of
frequency. In equation (10), these functions could be presented as SΨX(Ω), SXX(Ω), SΨΨ(Ω), and
so on, but the argument of these functions was not shown for clarity.

To identify a nonlinear structure, NIXO must solve a relatively large system of linear equations
in the form of Au = b. Here, u represents the vector of unknowns, and A and b represent the
matrix and right-hand-side vector of known coefficients, respectively. Figure 2 illustrates the NIXO
base formula used for this purpose.

The algebraic problem in Fig. 2 can be described by three quantities:

� The parameter p represents the number of nonlinear terms in the equation of motion, which
is usually not more than a dozen. In the case of Eq. (2), p is equal to 4.

� The parameter n represents the number of frequency lines, which is typically a couple of
hundreds or thousands.

� The parameter r stands for the number of transient vibration tests performed to collect the
data needed to create the NIXO-based formula. In previous case studies, NIXO worked well
when r was equal to 2 [36,37], but it is possible to have r greater than 2.

The size of matrix A is (r × n)× (n+ p), while the length of vector u is r × n, as indicated in
the diagram in Fig. 2. These two quantities are filled out with the calculated power spectra from
Eq. (10), following a certain pattern (for more information regarding this pattern, please refer to
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Fig. 2: A diagram illustrating the base formula used in the NIXO algorithm to identify nonlinear
systems is shown below. p represents the number of nonlinear terms in the assumed equation of motion,
n represents the number of frequency lines, and r represents the number of transient tests considered in a

certain identification attempt.

publication [22]). The length of the unknown vector, b, is n + p. Usually, the first n entries of
this vector represent the dynamic stiffness (hence, they characterize the underlying linear part of
the mechanical system), while the remaining p entries represent the unknown nonlinear coefficients.
When equation of motion (2) is used, the value of p is 4, and the last four entries of vector b
represent the unknown nonlinear coefficients: k2, k3, k4, and k5.

The rest of this section discusses three topics related to NIXO, which are listed below. It is
necessary to elaborate on each of them as they address specific aspects of the black-box identification
process presented in this work.

� The necessity of providing more than one input-output data set to NIXO.

� Differences between D1- and D2-based NIXO.

� Two variations of NIXO: one that estimates the nonlinear parameters as complex numbers
and the other that finds them as real.

NIXO requires collecting data in at least two transient experimental tests. This data, which
captures the response of the structure to the forcing signal, is needed to calculate the power
spectra in Eq. (10). These calculations are used to populate matrix A and vector b, which are
key components of the NIXO-based system of equations presented in Fig. 2. This indicates that in
cases where r = 1 and data is collected in only one transient experimental test, the NIXO-based
system of equations cannot provide a unique solution because it is underdetermined. However, in
cases where data is collected in multiple transient experimental tests (r ≥ 2), the size of matrix A
increases to(r × n) × (n + p), resulting in a linear problem with more equations than unknowns.
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This ensures that a unique solution exists. Recall that the value of n typically ranges from several
hundred to several thousand, while p is no more than a dozen. This implies that from a practical
standpoint, the inequality (r × n) > (n× p) is always true.

Two variations of NIXO can be derived, referred to as D1-based and D2-based NIXO. The ”D”
in these terms stands for dynamic stiffness, defined in Eq. (4), since NIXO estimates the linear
part of the mechanical system in that form. The subscripts ”1” and ”2” indicate whether the
cross-spectra are obtained via right-multiplying the equations of motion with the inputs or outputs,
respectively. The D1-based NIXO linear problem presented in Fig. 2 is filled out with power spectra
from Eq. (10a), while the D2-based NIXO formula uses power spectra from Eq. (10b).

The power spectra presented in Eq. (10) are generally complex numbers. This implies that the
NIXO-based linear problem Au = b can be classified as a system of complex linear equations.
Therefore, the solution to such a system of equations will be a vector of complex numbers. The
values of the nonlinear coefficients (k2, k3, k4, and k5), which were introduced as real numbers in
Eq. (2), will also be estimated as complex. However, this has not been a major problem because
if the identification process with NIXO is run correctly, the values of the nonlinear parameters are
found as strongly real-valued4. Nonetheless, the issue of complex-valued nonlinear parameters can
be overcome by estimating the real and imaginary parts of the unknown vector u separately (for
more details, please refer to publication [22]). This modification enforces NIXO to find the nonlinear
coefficients as real numbers. Lastly, the results obtained with the two versions of NIXO described
in this paragraph are crucial for this publication. In Section 3, the nonlinear parameters estimated
as complex numbers will be referred to as γcmplx, while those estimated as real numbers will be
referred to as γreal. These γcmplx and γreal coefficients are further used to calculate the metrics ∆∗
and ∆∗∗.

3 Proposed Black-Box NIXO Identification Procedure

This section provides a description of each of the four steps of the proposed procedure. Additionally,
the diagrams in Fig. 3 support this description graphically.

In the first step, a general form of the nonlinear modal equation of motion is postulated. For
example, Eq. (11) represents the modal EOM of a structure with geometric nonlinearity, and hence
it consists of linear and nonlinear parts, where every possible quadratic and cubic stiffness term is
assumed to occur. Please note that the hypothesis of proportional damping distribution is used
to derive Eq. (11). This approach is commonly used for continuous nonlinear systems, which are
examined in the numerical and experimental case studies presented in this work. Readers interested
in learning about proportional damping in more detail could refer to [38,39].

q̈k + 2ζkωkq̇k + ω2
kqk︸ ︷︷ ︸

linear part

+αk
11q

2
1 + αk

12q1q2 + . . .︸ ︷︷ ︸
quadratic part

+ βk
111q

3
1 + βk

112q
2
1q2 + . . .︸ ︷︷ ︸

cubic part

= ΦT
k f(t) (11)

To facilitate application to multi-degree-of-freedom systems, the expression in Eq. (11) describes
the motion of the k-th mode of vibration, where qk(t) is the k-th modal coordinate, ωk is the linear
natural frequency, ζk – the linear damping ratio, and Φk is the column vector representing the
mass-normalized eigen-shape of the underlying linear and undamped mechanical system. One can

4The authors use the term ”strongly-real-valued” to describe a complex number whose real part has a much
larger magnitude than its imaginary part.
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Fig. 3: A diagram depicting the four steps involved in the system identification procedure using the
black-box NIXO-based method.
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account for as many modes as are present in the measurements, and the nonlinear terms account for
any coupling between the modes as the vibration amplitude increases. Each modal equation contains
several αk

uv and βk
lmn coefficients, corresponding to the nonlinear quadratic and cubic terms in the

modal EOM. Their subscripts correspond to the product of polynomial terms that they multiply,
for example: αk

uv multiplies term quqv, while the βk
lmn term qlqmqn. Finally, f(t) is the vector time

function representing the force applied to the structure in the spatial domain.
In the second step, the parameters of the nonlinear system are identified with the NIXO method.

In order to do so, one must first perform various swept-sine experimental test in which the structure
vibrates at sufficiently distinguishable amplitudes, measure the input and output transient signals
and provide them to the NIXO algorithm. NIXO then returns an estimate of the frequency response
function of the underlying linear system, as well as the approximate values of the parameters for
all nonlinear terms assumed beforehand. As already mentioned is Section 2, two different versions
of NIXO are run, one of which estimates the parameters as complex numbers and the other that
forces them to be real.

In the third step, one seeks to identify which nonlinear terms are dominant in the system, and
which can be removed. The decision is made based on the values of two metrics (∆∗ and ∆∗∗),
which are computed for each of the nonlinear αk

uv- and βk
lmn-coefficients found in Step 2. As already

mentioned earlier in this section, the NIXO algorithm computes two estimates for each coefficient,
one in which they are forced to be real valued, denoted γreal, and another in which it is allowed to
be complex, denoted γcmplx. (For clarity, the parameters αk

uv- and βk
lmn found as real and complex

numbers are represented here with, respectively, γreal and γcmplx.) The metrics in Eqs. (12) then
measure the realness of the coefficients.

∆∗ =
∥γreal −Re {γcmplx} ∥

∥γreal∥
(12a)

∆∗∗ =
∥ |Re {γcmplx}| − |Im {γcmplx}| ∥

∥Re {γcmplx} ∥
(12b)

The nonlinear coefficients are considered to be dominant in the system if they are strongly
real-valued. The metric ∆∗ expresses the relative difference between the nonlinear coefficient that is
forced to be real, and the real part of the complex one. In other words, it measures the consistency
of the two above-mentioned identifications. The second metric, ∆∗∗, is defined as the relative
difference between the real and imaginary parts of the complex solution. Hence, the nonlinear
αk
uv- and βk

lmn-coefficients are considered to be strongly real-valued when: (i) ∆∗ is a small number
and (ii) ∆∗∗ is close to 1.0. In this work, the criteria shown in Eq. (13) are used to identify
coefficients that are dominant, since these criteria has proven successful based on past experience
applying NIXO to experimental measurements and simulated data [36, 37]. If any of the αk

uv- or
βk
lmn-coefficients satisfies both conditions simultaneously then it is considered to be significant in

the modal equation of motion. Additionally, any terms that do not satisfy the criteria in Eqs. (13)
are removed from the previously assumed modal EOM.{

∆∗ ≲ 10%

∆∗∗ ≳ 90%
(13)

In Step 4, the system identification is repeated as in Step 2. However, rather than using the
general modal EOM (11), the identification is performed on a reduced modal EOM that contains
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only the dominant terms. The model thus obtained should be minimal and capture the behavior of
the system well. If desired, one can further evaluate the results by computing the ∆-metrics again,
or by comparing the nonlinear coefficients to those obtained in Step 2.

4 Black-box Identification with NIXO: Numerical Case Study

4.1 Numerical Test Description

This section illustrates black-box system identification by applying NIXO to a numerical model
of a clamped-clamped curved beam. The structure is displayed in Fig. 4 and its geometric and
mechanical properties are presented in Tab. 1.

Tab. 1: Geometric dimensions and mechanical parameters of
the numerical curved clamped-clamped beam.

Length [mm] Width [mm] Thickness [mm]
Radius of

curvature [m]

304.8 12.7 0.508 11.43

Young’s
Density

[
kg
m3

] Poisson’s
modulus [Pa] ratio

2.074× 1011 7870 0.29

Fig. 4: The numerical model of a curved beam subjected to a uniformly distributed sinusoidal force.

The structure, modeled with 100 shell elements resulting in a total of 606 DOFs, is excited with a
uniformly distributed sinusoidal force (Fig. 4). The finite element model (FEM) is used to generate
the 3-mode ICE-ROM including the first three symmetric modes, i.e. modes 1, 3, 5. The modal
equations of motion are presented in Eq. (14). Their nonlinear parts consists of 16 polynomial
terms each, since they are represented with every possible quadratic and cubic polynomial term
and (as mentioned above) the dynamics of the beam is modeled using 3 modes, where the indices
1, 2, 3 correspond to, respectively, modes 1, 3, and 5. The linear and nonlinear coefficients values
are defined in Tables 2 and 3, respectively.
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q̈1 + 2ζ1ω1q̇1 + ω2
1q1 + α1

11q
2
1 + α1

12q1q2 + · · ·+ β1
111q

3
1 + β1

112q
2
1q2 + · · · = ΦT

1 f(t) (14a)

q̈2 + 2ζ2ω2q̇2 + ω2
2q2 + α2

11q
2
1 + α2

12q1q2 + · · ·+ β2
111q

3
1 + β2

112q
2
1q2 + · · · = ΦT

2 f(t) (14b)

q̈3 + 2ζ3ω3q̇3 + ω2
3q3︸ ︷︷ ︸

linear part

+α3
11q

2
1 + α3

12q1q2 + . . .︸ ︷︷ ︸
quadratic stiffness part

+ β3
111q

3
1 + β3

112q
2
1q2 + . . .︸ ︷︷ ︸

cubic stiffness part

= ΦT
3 f(t) (14c)

Tab. 2: Linear modal parameters of the numerical curved clamped-clamped beam.

Mode ωr [Hz] ζr

1 65.181 0.0350
3 158.636 0.0262
5 385.882 0.0174

Tab. 3: Values of the polynomial coefficients in the nonlinear modal equations of motion (14). The
values of coefficients αkl and βlmn have been obtained using a Matlab-based nonlinear FEA package,
OSFern (https://bitbucket.org/cvandamme/osfern). The procedure in [40] was used to generate the

nonlinear reduced order model (NLROM).

Parameter \ Mode 1 3 5

α11 [
1√

kg m3/2 s2

]
3.420E+09 1.961E+09 1.679E+09

α22 6.403E+09 -1.222E+10 -1.843E+08
α33 2.066E+10 -9.944E+09 -2.027E+10
α12 3.873E+09 1.299E+10 -6.836E+09
α13 2.022E+09 -6.202E+09 3.631E+10
α23 -5.368E+09 -3.026E+08 -2.360E+10

β111

[
1

kg m2 s2

]
2.017E+13 2.276E+13 1.576E+13

β112 6.738E+13 1.903E+14 -1.362E+13
β113 3.557E+13 -1.793E+13 3.423E+14
β221 1.870E+14 4.635E+14 1.091E+13
β222 1.524E+14 9.332E+14 -2.576E+14
β223 -8.006E+11 -7.799E+14 2.557E+15
β331 3.858E+14 3.710E+14 6.213E+14
β332 3.761E+14 2.676E+15 -2.120E+15
β333 2.052E+14 -7.077E+14 6.639E+15
β123 -1.792E+13 -2.868E+13 6.289E+14

This section presents the identification of the first nonlinear normal mode (NNM). Hence, the
beam is excited near this mode using various up- and down-swept-sines, such that it oscillates
at sufficiently different amplitudes in every test. The sweeps are 300-second-long and cover the
frequency range from 1 to 115 Hz. This range of frequencies is chosen because the linear first
mode is at approximately 65 Hz, and the sweep excitation in this range can capture increases and
decreases in this mode’s first natural frequency. The sweep rate is 0.38 Hz/s and is common to every
numerical test run. The time signals are recorded using a sample increment of ∆t = 4.0 × 10−4 s.
The specifications of the input swept-sine signals are summarized in Tab. 4.
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Tab. 4: Specification of the swept-sine forcing functions used to excite the numerical beam.

F0 [N] [Ωst, Ωend] [Hz] tst [s] tend [s] ∆Ω [Hz/s] ∆t [s]

various values [1, 115] (up-sweep)
0 300 0.38 4.0× 10−4

(see legend in Fig. 5) [115, 1] (down-sweep)

As illustrated in Fig. 5, the structure is excited with 17 different swept-sines. The modal signals
q(t) are obtained via applying the transformation presented in Eq. (15) to the output signals
measured in the physical domain, x(t). q1q2

q3

 = Φ†

 x1
...

x606

 , (15)

where Φ† represents the pseudo-inverse of the mass-normalized mode-shape matrix Φ.
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Fig. 5: The NNM curve overlayed on the swept-sine responses
of varying amplitudes measured at the beam’s center.

4.2 Set-up of the Black-Box System ID Procedure

The nonlinear part of the first modal EOM (of the clamped-clamped curved beam) is assumed to
consists of every possible quadratic and cubic polynomial term. As a result, there are sixteen terms
in this modal equation of motion, as presented in Eq. (14a).

The seventeen i/o signals were first grouped into different pairs, and then provided to the NIXO
algorithms in order to identify the structure. This approach worked well in multiple case studies
performed previously [36,37].

In order to avoid overwhelming the reader with too much data, this section presents only the
results from one pair of signals. Namely, the results presented come from a case study where only
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the two data sets of input-output signals, obtained with forcing amplitudes: 2.4×10−3 N (up-sweep)
and 5.0× 10−4 N (down-sweep), were used. These signals are marked in the legend in Fig. 5 with
black arrows, and their specifications are provided in Tab. 5. (Two sets of input-output signals are
required to obtain an over-determined system of equations in NIXO, as was explained in Section 2.)
The beam oscillates at very different vibration amplitudes when these two input signals are used to
excite the beam (see Fig. 5). The smaller of the two is sufficient to excite the noticeable softening
nonlinearity, while the other one produces the output signal exhibiting stiffening. (For completeness,
at the end of Section 4 we reconsider the other signals shown in Fig. 5 and discuss how the results
presented here contrast with those obtained when different pairs of signals were used.)

Tab. 5: Specification of the swept-sine forcing function(s) used in
the black-box identification attempt presented in this article.

F0 [N] [Ωst, Ωend] [Hz] tst [s] tend [s] ∆Ω [Hz/s] ∆t [s]

2.4× 10−3 [1, 115] (up-sweep)
0 300 0.38 4.0× 10−4

5.0× 10−4 [115, 1] (down-sweep)

4.3 Steps 2 and 3 of the System ID Procedure

In Step 2, NIXO returns the estimates of the underlying linear frequency response function and
all the nonlinear terms in Eq. (14a). Figure 6a shows a comparison between the true and found
frequency response functions of the underlying linear system for both the D1- and D2-based NIXO
algorithms. (In each case two sets of coefficients were found, one where they were allowed to be
complex and one when they were forced to be real.) When it comes to the nonlinear part of the
EOM, the estimated values of α- and β-polynomial coefficients are listed in Tab. 6. Based on the
∆-metrics, only four nonlinear terms (corresponding to coefficients α1

11, α
1
12, β

1
111 and β1

112) are found
to be dominant in the first modal equation of motion.
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Fig. 6: Underlying linear system estimated by the NIXO algorithms in the (a) second and (b) fourth
steps of the presented black-box identification procedure.

A few analyses were performed to verify that the four nonlinear terms identified by black-box
NIXO are indeed dominant. First, the NNM curve computed for the estimated nonlinear EOM,
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which contains only the four dominant terms and is presented in Eq. (16), is compared to the true
NNM obtained for the EOM with the full set of 16 nonlinear terms, Eq. (14a).

q̈1 + 2ζ1ω1q̇1 + ω2
1q1 + α1

11q
2
1 + α1

12q1q2 + β1
111q

3
1 + β1

112q
2
1q2 = ΦT

1 f(t) (16)

To provide a visual comparison, Fig. 7 shows the two NNM curves described in the previous
paragraph graphically. The NNM curves presented there were computed with the Multi Harmonic
Balance (MHB) method [41–43] using the first five harmonics. The estimated NNM curve is marked
there with a red solid line, and is obtained for the nonlinear parameter values from Tab. 6 returned
by the D1-NIXO algorithm. The sixteen true nonlinear coefficient values from Tab. 3 were used to
compute the “true” curve, shown with a blue solid line. As presented in Fig. 7, the estimated and
target NNM curves match each other well until the vibrations amplitude exceeds twice the thickness
of the beam (which is 0.508 mm). In contrast, if one computes the NNM using Eq. (17) and the true
nonlinear coefficients (so excluding the four dominant ones), a straight vertical line (marked with
green in Fig. 7) is obtained. In effect, those other 12 nonlinear terms shown in Eq. (17) contribute
so little to the response that the mechanical system behaves linearly over this range of vibration
amplitude. This is interesting, because Tab. 6 shows that it is not easy to distinguish the important
terms from the others based on their magnitudes alone.
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Fig. 7: A comparison of the true NNM curve to NNMs computed using the EOMs identified with the
proposed NIXO-based procedure. The NNMs were computed with the Multi-Harmonic Balance method

using the first five harmonics. Beam thickness: 0.508 mm.

Because the case study presented in this section is numerical, the true values of the nonlinear
coefficients are known exactly, and they can also be used to further validate the findings of the
algorithm. Table 7 compares the true values of the parameters α1

11, α
1
12, β

1
111 and β1

112 to their
estimated values obtained with NIXO. The table shows that the relative difference between the
true and estimated values is less than 3% and 5.5% for identification using D1-based and D2-based
NIXO, respectively. The slightly less accurate results returned by D2-NIXO can be explained by
its sensitivity to noise in the output signal.
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Tab. 6: Estimated values of the nonlinear parameters obtained using the D1- and D2-based NIXO
algorithms. Parameters marked with green satisfy the criteria (13), while those marked with blue are

close to satisfying these requirements.

D1–NIXO Re{·cmplx} Im{·cmplx} ·real ∆∗ [%] ∆∗∗ [%]

α11 [
1√

kg m3/2 s2

]
3.42E+09 -4.33E+06 3.42E+09 0.16 99.87

α22 7.71E+09 -6.92E+08 5.39E+09 43.14 91.03
α33 9.84E+10 6.68E+10 3.18E+10 209.28 32.16
α12 3.67E+09 2.38E+08 3.94E+09 6.89 93.51
α13 5.17E+09 -2.51E+09 1.20E+09 331.44 51.41
α23 3.42E+09 -1.51E+10 -4.56E+09 175.13 340.39
β111

[
1

kg m2 s2

]
2.04E+13 1.68E+11 2.01E+13 1.51 99.18

β112 6.88E+13 5.48E+12 6.58E+13 4.65 92.04
β113 3.75E+13 -8.84E+13 5.77E+13 34.95 135.48
β221 1.94E+14 1.45E+13 1.76E+14 10.55 92.54
β222 1.76E+14 6.85E+13 1.25E+14 40.92 61.19
β223 -1.00E+15 -1.93E+15 2.07E+14 584.67 91.74
β331 1.54E+15 -1.54E+15 9.56E+14 60.90 0.37
β332 9.40E+15 -1.50E+16 3.32E+15 183.31 59.73
β333 -4.31E+15 1.24E+16 5.18E+15 183.10 187.36
β123 -1.01E+14 -8.46E+14 1.59E+14 163.83 735.67

D2–NIXO Re{·cmplx} Im{·cmplx} ·real ∆∗ [%] ∆∗∗ [%]

α11 [
1√

kg m3/2 s2

]
3.34E+09 -4.62E+07 3.44E+09 2.99 98.62

α22 3.04E+09 1.95E+08 3.78E+09 19.62 93.59
α33 1.58E+11 1.86E+10 8.66E+09 1722.15 88.23
α12 4.29E+09 2.36E+08 3.73E+09 14.96 94.50
α13 -1.31E+08 -3.81E+09 3.27E+09 104.02 2799.63
α23 -3.76E+09 -2.42E+10 8.18E+09 145.96 544.40
β111

[
1

kg m2 s2

]
1.94E+13 -4.71E+11 2.03E+13 4.71 97.57

β112 6.47E+13 -2.59E+12 6.28E+13 3.00 95.99
β113 3.22E+13 -4.39E+13 1.09E+14 70.59 36.56
β221 1.54E+14 2.84E+12 1.36E+14 12.82 98.15
β222 2.17E+14 7.61E+13 2.81E+13 670.85 64.90
β223 -2.76E+15 -1.06E+15 2.55E+14 1181.73 61.44
β331 2.66E+15 -1.26E+15 2.21E+15 19.96 52.54
β332 1.19E+16 -1.10E+16 1.17E+16 2.14 7.54
β333 2.72E+16 -5.16E+15 6.01E+15 352.15 81.01
β123 -2.02E+14 -5.40E+14 4.71E+14 143.02 166.71

4.4 Step 4 of the System ID Procedure

In this particular case study, the black-box identification results obtained after Step 3 are already
satisfactory. However, the linear FRFs computed by NIXO are potentially influenced by all of the
nonlinear terms, both dominant and non-dominant, so one should repeat the identification using
EOM with only the dominant terms α1

11q
2
1, α

1
12q1q2, β

1
111q

3
1, and β1

112q
2
1q2. This also serves to check
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Tab. 7: Comparison of the true and estimated values of the four terms pointed out by NIXO.

D1-NIXO D2-NIXO
Parameter \ Value True Avg. estimate Rel. error [%] Avg. estimate Rel. error [%]

α11
[

1√
kg m3/2 s2

] 3.42E+09 3.42E+09 0.00 3.39E+09 0.88
α12 3.87E+09 3.94E+09 1.81 4.01E+09 3.62
β111

[
1

kg m2 s2

] 2.02E+13 2.01E+13 0.49 1.99E+13 1.73
β112 6.74E+13 6.58E+13 2.37 6.38E+13 5.42

that the values obtained for those four polynomial coefficients are not influenced by the terms that
have been discarded.

The outcomes from Step 4 are presented in Fig. 6b and Tab. 8. Figure 6b shows that the estimate
of the underlying linear system still matches the truth model, however a slight degradation can be
observed. Apparently the discarded terms do affect the estimate of the linear FRF even though
their influence is very small. When it comes to the nonlinear part of the structure, the estimated
values of the α and β coefficients are presented in Tab. 8. It is worth noting that the ∆-metrics
of all four coefficients obtained with D1-NIXO and three out of four returned by D2-NIXO satisfy
the accuracy criteria in Eq. (13). Furthermore, comparing the values of the nonlinear parameters
with those obtained in Step 2 reveals that only α1

11 and β1
111 values were consistent and were

identified accurately relative to the true parameters. This makes one question whether the other
two parameters are indeed important to the studied mechanical system’s response.

To explore this, three additional NNM curves were computed and are presented in Fig. 7. The
first NNM curve (marked with yellow dashed line) is the NNM for the EOM in Eq. (16) with the
nonlinear coefficient values from Tab. 8. This NNM is still very close to the true one, even though
the values of α1

12 and β1
112 are not very close to their true values. However, when the NNM is

computed using EOM with only the polynomial terms α1
11q

2
1 and β1

111q
3
1 (see Eq. (18)) with the

average parameter values in Tab. 8, the black dotted line in Fig. 7 shows that the NNM is not
quite as accurate as when the structure’s nonlinearity is described with all four terms in Eq. (16).
Even though there is considerable uncertainty in the values of α1

12 and β1
112, the model appears to

be slightly more accurate when they are included.

q̈1 + 2ζ1ω1q̇1 + ω2
1q1 + α1

11q
2
1 + β1

111q
3
1 = ΦT

1 f(t) (18)

The last NNM (purple dashed line in Fig. 7) uses Eq. (19), where the nonlinear part is described
by all of the nonlinear terms except α1

11q
2
1 and β1

111q
3
1. The nonlinear coefficients are assigned their

true values from Tab. 3. The NNM for this case is also a straight line, further demonstrating that
most of the nonlinearity in the first mode of this particular beam comes from α1

11q
2
1 and β1

111q
3
1.
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Tab. 8: Nonlinear parameters estimates obtained in Step 4 of the black-box identification procedure.
The units of α and β coefficients are 1√

kg m3/2 s2
and 1

kg m2 s2
, respectively.

D1–NIXO Re{·cmplx} Im{·cmplx} ·real ∆∗ [%] ∆∗∗ [%] True
Avg. Rel.
estim. error [%]

α11 3.31E+09 -2.89E+07 3.42E+09 3.15 99.13 3.42E+09 3.36E+09 1.68
α12 3.18E+09 1.36E+08 2.92E+09 8.94 95.71 3.87E+09 3.05E+09 21.29
β111 1.95E+13 -1.86E+11 2.06E+13 5.58 99.05 2.02E+13 2.01E+13 0.67
β112 4.53E+13 6.93E+11 4.87E+13 7.03 98.47 6.74E+13 4.70E+13 30.28

D2–NIXO Re{·cmplx} Im{·cmplx} ·real ∆∗ [%] ∆∗∗ [%] True
Avg. Rel.
estim. error [%]

α11 3.11E+09 -3.35E+06 3.33E+09 6.45 99.89 3.42E+09 3.22E+09 5.84
α12 2.99E+09 1.89E+08 1.66E+09 80.18 93.67 3.87E+09 2.32E+09 39.94
β111 1.74E+13 -3.26E+10 1.91E+13 9.02 99.81 2.02E+13 1.82E+13 9.74
β112 3.53E+13 1.23E+12 3.36E+13 5.20 96.53 6.74E+13 3.44E+13 48.90

4.5 Discussion

In summary, using the proposed black-box procedure, an EOM that initially consisted of 16 nonlinear
terms was reduced to one containing only two or four that are the most dominant (depending on
which step the algorithm is terminated). The other fourteen (or twelve) of the terms were found
to contribute little to the response and were removed from the EOM. Discarding the nonlinear
terms did introduce some errors into the linear FRF estimates, but they were quite small. The
errors regarding the dominant nonlinear coefficients increased slightly from approximately 5.5% to
less than 10%. As this case study showed, the number of dominant nonlinear terms is somewhat
subjective as the true equation of motion that was used to generate the simulated measurements
had many more terms than those that were found to be important.

The results shown so far pertain only to a pair of data sets of input-output signals specified in
Tab. 5. Many other case studies, which are not reported here, were performed using various pairs
of the signals displayed in Fig. 5.

Those studies revealed that if neither of the i/o signals used had large enough amplitude then
fewer nonlinear terms estimated in Step 2 would satisfy criteria (13), and the nonlinear dynamics
of the structure would definitely not be captured accurately during the accuracy check in Step 4.
The other finding that resulted from the various case studies was that is the i/o signals used were
of higher amplitude then more nonlinear terms would be detected in Step 3 as dominant in the
system. However, the overall quality of such black-box identification would be lower than the one
presented in this section (the one using signals from Tab. 5), since the objective here is to detect
the smallest model that can capture the dynamics of the system.

It is also worth noticing that this section has focused on describing how to perform black-box
identification with the minimum set of data (two pairs of input and output signals). In practice,
it would probably be best to collect a surplus of data shown in Fig. 5, and then to use some of it
for identification and other data for validation. This approach is commonly used in the machine
learning community and has proven very effective. Future studies will explore this in more detail
to understand what cross validation methodology yields the most accurate and reliable system
identification.

Lastly, the case study presented in this section utilized noise-free signals generated numerically.
The purpose of this study was to demonstrate the application of the NIXO-based black-box algorithm
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for a relatively simple system. There is a wealth of literature that discusses the statistical properties
of spectral estimators such as the H- and NIXO estimators that are used in this work, and the
interested reader can infer much from these works about how NIXO might behave in the presence
of noise [44]. In Section 5 the algorithm is applied to real-life experimental measurements that are
affected by noise, and hence it gives a good indication of the potential obstacles that the black-box
NIXO-based method may encounter in the presence of noise. Further theoretical studies of the
effect of noise on NIXO and the black-box identification algorithm should be addressed in future
research.

5 Black-box Identification with NIXO: Experimental Case Study

5.1 Experimental Test Description

The NIXO-based black-box identification procedure was applied to the signals measured on a
3D-printed flat beam with two accelerometers attached. A CAD drawing of the test structure
and a photo of the test setup are shown in Fig. 8.

(a) (b)

Fig. 8: (a) A photograph of the experimental setup and (b) the longitudinal
cross-section of beam model with the accelerometers attached.

The sample used in the experiment was 3D-printed using polylactide (PLA). It consists of two
parts, thin and thick, that were printed as one unit and so are not-detachable from one another. In
this work, these parts are referred to as beam and backing, respectively. This design prevents the
beam’s ends from slipping even when it oscillates at high amplitudes, which is an often-encountered
circumstance when the ends of a beam are held in place using bolted joints (as was done in other
similar systems [20]). While identifying nonlinearities due to bolted joints is very important in many
industrial applications, this test structure was designed to focus only on the geometric nonlinearity.
In future works, it would be interesting to use this approach on systems with frictional nonlinearity
as well.

Table 9 summarizes the dimensions and mass of the 3D-printed sample and accelerometers.
It is worth noting that the values displayed in Tab. 9 are nominal and subject to the variations
inherent in the 3D printing process. Even though the beam itself is designed to be nominally flat, it

20



still could contain significant curvature due to manufacturing variation or thermal stress/expansion.
The mechanical properties, such as Young’s modulus or Poisson ratio, are also difficult to determine
for the same reason. The natural frequency and damping ratio of two modes of the structure were
identified by exciting the structure at very low amplitude, with the results shown in Fig. 9, and the
values obtained are given in Tab. 10.

Tab. 9: Nominal dimensions and masses of the 3D printed sample and accelerometers.

Length [mm] Width [mm] Thickness [mm] Approx. mass [g]
Approx. mass of one
accelerometer [g]

Beam 180 8 2 3.77
0.198

Backing 200 30 30 130.00
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Fig. 9: Linear Frequency Response Function of the 3D-printed flat beam with the accelerometers
attached. Fit to the first two modes in the FRF computed using the Algorithm of Mode Isolation

(AMI) [45]. The peaks at 887.5 and 1337.0 Hz are modes of the backing.

Tab. 10: Linear modal properties of the flat beam-accelerometer assembly.

Mode ID ω0,k [Hz] ζk Mode shape

1 91.076 0.0119 1st bending of thin clamped-clamped beam

2 462.6952 0.0466
3rd bending of thin clamped-clamped beam

(2nd symmetric bending)

The mass of the accelerometers is not negligible in this case study. Table 11 presents a
comparison of the modal characteristics of the beam with and without the attached accelerometers.
When the accelerometers were added, the natural frequencies of modes 1 and 3 are shifted by
6.37 Hz and 72.22 Hz, respectively. Additionally, the damping ratios of these modes were impacted
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Tab. 11: Comparison of the modal characteristics of the 3D-printed
beam with and without accelerometers attached.

beam with beam without
accelerometers accelerometers

k ωk [Hz] ζk ωk [Hz] ζk ∆ωk [Hz] ∆ζk ∆ωk/ωk [%] ∆ζk/ζk [%]

1 91.076 0.0119 97.446 0.0189 6.370 0.007 6.99 58.81
2 462.695 0.0466 534.919 0.0243 72.224 -0.022 15.61 -47.89

by the addition of accelerometers, with ζ1 decreasing by approximately 58.81% and ζ2 increasing
almost twofold. These changes can be attributed to the mass of each accelerometer (0.198 g) in
comparison to that of the thin beam (3.77 g), which shows that the former represents approximately
5.25% of the latter. The accelerometer cables likely also contribute to these differences, especially
the damping.

A photograph of the experimental setup is shown in Fig. 8a. The backing was connected to the
shaker via a steel stinger and the response was measured with a PSV-400 Scanning laser vibrometer
(pointing at the beam’s center) and with two PCB352C23 accelerometers located 37.08 millimeters
from the beam’s ends (see Fig. 8b). The shaker was a 100 lbf Modal Exciter Model 2100E11 powered
by a 2050E05 Linear Power Amplifier. The voltage input signal sent to the shaker was generated by
the Polytec software. Polytec was also used to collect the output velocity and acceleration signals
coming from the vibrometer and accelerometers, respectively.

5.2 Conversion of the Input Voltage Signal into Distributed Force

Because the system of interest is a fixed-fixed beam, and not the assembly that includes the backing,
it was necessary to convert the point force applied at the backing into an inertial load acting on the
beam. This was done by assuming that the inertial force was uniformly distributed along the thin
beam, and using the modal model to reconstruct the response to a uniform force F = Fmag[1, 1, 1]

T

(see Fig. 10). The measured velocity in response to such a force is given by Eq. (20).

(a) (b)

Fig. 10: The external point-force applied at the backing’s center (shown in (a)) is
converted into a force distributed along the length of the beam (shown in (b)).
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Vtheory
lin (Ω) =

NRB∑
k=1

−ΦRB
k

(
ΦRB

k

)T
F

Ω
+

Nlin∑
k=1

ΦkΦ
T
kFΩ

ω2
0,k − Ω2 + 2iζkω0,kΩ

, (20)

where Φk is k-th mass-normalized mode shape of the beam assembly, and ΦRB
k is the k-th

mass-normalized rigid-body mode of the structure. Since the response of the system is measured at
three physical points, the vectors Φk have three rows, and the values of the identified mode shapes
at these locations are given in Eq. (21). Note that to obtain the mode shapes the accelerometer
measurements were integrated to obtain velocity.

Φ = [Φ1,Φ2] =

10.60 22.58
25.96 −20.99
10.60 22.58

 1√
kg

(21a)

ΦRB = ΦRB
1 =

8.633× 10−2

8.633× 10−2

8.633× 10−2

 1√
kg

(21b)

Then, the velocity at the center of the beam was measured experimentally and compared to a set
of measurements with various voltages sent to the shaker Fin ∈ {0.010, 0.015, 0.025, 0.050} volts.
The force magnitude Fmag was then adjusted until the measurements overlaid with the model. An
example of this comparison is presented in Fig. 11.
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Fig. 11: FFT of the low-level velocity of the beam’s center measured and obtained by the model in
Eq. (20) near mode 1.

The values obtained for Fmag were {1.6670, 2.8763, 5.1968, 11.054} × 10−3 N. Hence, the
correlation between the input voltage and force amplitudes was found to be Fmag ≈ 0.2343Fin −
6.5897 × 10−4, where Fmag and Fin are expressed in newtons and volts, respectively. It is worth
noting that the response functions shown in Fig. 11 exhibit slight frequency shifts even though the
vibration amplitude was very low. Nevertheless, their responses were still modeled using Eq. (20)
although with the parameters ω0,1 and ζ1 adjusted slightly.
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5.3 Black-box System ID Set-up: Experimental Case Study

When applying the proposed black-box identification procedure to this system, the general form of
the equation of motion describing a geometrically nonlinear structure was again assumed, as shown
in Eq. (22). Since the dynamics of the system is represented here with the two first symmetric
modes, the nonlinear part of each modal equation of motion in Eq. (22) contains 7 polynomial
terms.

q̈1 + 2ζ1ω1q̇1 + ω2
1q1 + α1

11q
2
1 + α1

12q1q2 ++α1
22q

2
2 + β1

111q
3
1 + β1

112q
2
1q2 + β1

122q1q
2
2 + β1

222q
3
2 = ΦT

1 f(t) (22a)

q̈2 + 2ζ2ω2q̇2 + ω2
2q2︸ ︷︷ ︸

linear part

+α2
11q

2
1 + α2

12q1q2 ++α2
22q

2
2︸ ︷︷ ︸

quadratic stiffness part

+β2
111q

3
1 + β2

112q
2
1q2 + β2

122q1q
2
2 + β2

222q
3
2︸ ︷︷ ︸

cubic stiffness part

= ΦT
2 f(t) (22b)

To identify nonlinear mode 1, the structure was subjected to nine swept-sine input signals of
different magnitudes. Each of these linear up-sweeps was 204.8-second-long and covered a frequency
range from 50 to 150 Hz. The measurements were recorded with a sample increment of ∆t =
3.9063× 10−4 s. The signals measured with the laser vibrometer and two accelerometers were then
filtered and integrated in the frequency domain in order to obtain the velocity and displacement
measurements presented in Fig. 12. Namely, the measured accelerations a1 and a3 in Fig. 10a
were high-pass filtered with a Butterworth filter and integrated via dividing the FFT of the signals
by iΩ to estimate velocity and again for displacement. The same approach was used to obtain
the displacement from the laser vibrometer signal. Then Eq. (23) was used to obtain the modal
coordinates [q1(t), q2(t)] as a function of time.

[
q1
q2

]
= Φ†

x1

x2

x3

 , (23)

where Φ is defined in Eq. (21), and (†) denotes the pseudo-inverse.
The identification strategy used here was similar to that reported in Section 4. Namely, the

input-output signals were paired with one another and then these pairs were provided to the NIXO
algorithms. (As explained in Section 2, providing more than one set of input-output signals to
NIXO is necessary to formulate a set of equations that has a unique solution.) The resultant 21
pairs are summarized in Table 12.

Tab. 12: Input-output signals are first grouped into 21 pairs and then provided to the NIXO algorithms.

Input signal voltage amplitude [mV]
1st signal 2nd signal # of pairs

50 { 25} 1
100 { 50, 25} 2
150 {100, 50, 25} 3
200 {150, 100, 50, 25} 4
250 {200, 150, 100, 50, 25} 5
300 {250, 200, 150, 100, 50, 25} 6

Together: 21 pairs
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Fig. 12: Filtered (a-c) displacement and (d-f) velocity signals measured with the laser vibrometer and
two accelerometers. Subscripts k ∈ {1, 2, 3} of xk(t) and vk(t) correspond to those presented in Fig. 10a.
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Tab. 13: Estimated values of the nonlinear coefficients obtained with the D1- and D2-based
NIXO methods in Step 2 of the identification procedure. Rows in which the β111

satisfies the accuracy criteria (13) are marked with green. None of the other αuv and βlmn

parameters satisfied these accuracy criteria. The units of β111 are 1
kg m2 s2

.

NIXO D1

Case Signal 1 Signal 2 β111 estimate βreal
111 Re

{
βcmplx
111

}
Im
{
βcmplx
111

}
∆∗ ∆∗∗

1 50 25 3.164e+13 3.077e+13 3.251e+13 -1.971e+13 5.36 39.37
2 100 50 2.317e+13 2.519e+13 2.115e+13 -3.986e+12 19.14 81.15
3 100 25 2.365e+13 2.444e+13 2.286e+13 -1.346e+13 6.89 41.11
4 150 100 1.958e+13 1.769e+13 2.148e+13 -4.201e+12 17.62 80.44
5 150 50 2.439e+13 2.290e+13 2.587e+13 -9.827e+12 11.50 62.02
6 150 25 2.399e+13 1.916e+13 2.883e+13 -1.029e+13 33.53 64.31
7 200 150 2.398e+13 2.396e+13 2.401e+13 -1.262e+12 0.22 94.74
8 200 100 2.311e+13 2.227e+13 2.396e+13 -1.832e+12 7.06 92.36
9 200 50 2.353e+13 2.406e+13 2.301e+13 -6.664e+12 4.54 71.04
10 200 25 2.345e+13 2.173e+13 2.516e+13 -1.257e+13 13.63 50.04
11 250 200 2.641e+13 2.632e+13 2.649e+13 1.461e+12 0.61 94.48
12 250 150 2.765e+13 2.772e+13 2.758e+13 3.936e+11 0.53 98.57
13 250 100 2.559e+13 2.545e+13 2.573e+13 -6.727e+11 1.10 97.39
14 250 50 2.474e+13 2.539e+13 2.410e+13 -4.264e+12 5.36 82.31
15 250 25 2.565e+13 2.382e+13 2.748e+13 -9.178e+12 13.30 66.60
16 300 250 3.245e+13 3.188e+13 3.303e+13 9.704e+11 3.50 97.06
17 300 200 3.168e+13 3.179e+13 3.157e+13 2.191e+12 0.72 93.06
18 300 150 3.131e+13 3.098e+13 3.165e+13 1.042e+12 2.11 96.71
19 300 100 2.864e+13 2.862e+13 2.865e+13 6.510e+11 0.11 97.73
20 300 50 2.683e+13 2.762e+13 2.604e+13 -3.446e+12 6.08 86.77
21 300 25 2.761e+13 2.838e+13 2.684e+13 -8.703e+12 5.76 67.57

NIXO D2

Case Signal 1 Signal 2 β111 estimate βreal
111 Re

{
βcmplx
111

}
Im
{
βcmplx
111

}
∆∗ ∆∗∗

1 50 25 3.359e+13 3.972e+13 2.745e+13 -1.856e+13 44.70 32.39
2 100 50 2.053e+13 2.263e+13 1.842e+13 -5.121e+12 22.83 72.20
3 100 25 2.044e+13 2.040e+13 2.048e+13 -9.919e+12 0.37 51.56
4 150 100 1.733e+13 1.418e+13 2.047e+13 -2.337e+12 30.75 88.59
5 150 50 2.416e+13 2.709e+13 2.122e+13 -6.825e+12 27.63 67.84
6 150 25 2.227e+13 2.313e+13 2.141e+13 -1.097e+13 8.05 48.73
7 200 150 2.244e+13 2.303e+13 2.184e+13 -2.347e+12 5.46 89.25
8 200 100 2.129e+13 1.964e+13 2.294e+13 -1.290e+12 14.41 94.38
9 200 50 2.208e+13 2.373e+13 2.043e+13 -4.475e+12 16.13 78.09
10 200 25 2.198e+13 2.732e+13 1.665e+13 -7.664e+12 64.13 53.96
11 250 200 2.044e+13 2.094e+13 1.995e+13 2.158e+12 4.97 89.18
12 250 150 2.423e+13 2.475e+13 2.371e+13 -1.327e+12 4.36 94.40
13 250 100 2.343e+13 2.311e+13 2.374e+13 -1.815e+12 2.63 92.36
14 250 50 2.329e+13 2.525e+13 2.133e+13 -4.012e+12 18.39 81.19
15 250 25 2.510e+13 3.078e+13 1.942e+13 -5.597e+12 58.53 71.17
16 300 250 2.472e+13 2.569e+13 2.376e+13 -4.513e+11 8.13 98.10
17 300 200 2.344e+13 2.436e+13 2.252e+13 4.902e+11 8.16 97.82
18 300 150 2.435e+13 2.401e+13 2.468e+13 -2.319e+12 2.70 90.61
19 300 100 2.409e+13 2.371e+13 2.447e+13 -2.200e+12 3.13 91.01
20 300 50 2.301e+13 2.457e+13 2.144e+13 -5.043e+12 14.59 76.48
21 300 25 2.603e+13 3.239e+13 1.968e+13 -7.691e+12 64.63 60.91
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5.4 Steps 2 and 3 of the System ID Procedure

The 21 signal pairs listed in Tab. 12 were provided to NIXO, and the algorithm returned the
estimates of the linear and nonlinear parts of the model function in Eq. (22a). When it comes to
the nonlinear part, the estimated values of seven polynomial coefficients were first computed, and
then the ∆-metrics for each of the α and β parameters in each of the 21 cases run were found. The
only parameter which consistently satisfied the criteria from Eq. (13) was β111 – and it only satisfied
them in nine of the cases marked in green in Tab. 13. Interestingly, these correspond to cases where
the first input signal was near its largest amplitude (200 to 300 mV) and the second signal was
relatively large as well. These nine cases are summarized in Tab. 14. Even in these cases, the other
nonlinear coefficients α11, α12, α22, β112, β122, and β222 did not consistently satisfy the criteria from
Eq. (13), and so they are not shown.

Tab. 14: The nine case studies that produced β111 terms satisfying the error metrics.

Voltage Amplitude [mV ]
1st Signal 2nd Signal # of pairs

200 {150, 100} 2
250 {200, 150, 100} 3
300 {250, 200, 150, 100} 4

Together: 9 pairs

Figure 13 presents the linear frequency response function returned by the NIXO procedure in
this stage of the identification, i.e. when the nonlinear equation of motion was assumed to consist
of seven polynomial terms. This frequency response function is the average of the nine FRF curves
obtained in the cases specified in Tab. 14. The FRF curves found in each of these nine case studies
can be viewed in Fig. 16 in Appendix A. Additionally, the average linear FRF is compared to the
reference FRFs computed with the popular linearH1-estimator [46,47] applied to the low-amplitude
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Fig. 13: Reference vs. average estimated linear FRFs. Step 2 of the identification procedure.
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i/o signals. All four NIXO algorithms returned similar estimates for the FRF, although the results
obtained with the D2-NIXO algorithm were much noisier away from the resonance.

Table 15 presents a quantitative comparison of the linear FRF estimates in Fig. 13; the natural
frequency and damping were estimated from each FRF using AMI [45]. The relative differences
between the linear natural frequencies is less than 1%, while the differences between the linear
damping ratios are as large as 36%.

Tab. 15: Comparison of the modal parameters extracted from the average estimated and reference linear
FRFs. Relative differences are calculated with respect to the results obtained with the linear

H1-estimator applied to the low-amplitude i/o signals.

Algorithm nat. freq [Hz] rel. diff. lin. damping rel. diff.

H1 91.076 0.0119
NIXO D1 cmplx 90.702 (0.41%) 0.0076 (36%)
NIXO D1 real 90.526 (0.60%) 0.0099 (16%)

NIXO D2 cmplx 90.274 (0.88%) 0.0084 (30%)
NIXO D2 real 90.651 (0.47%) 0.0110 (7.2%)

The proposed procedure found that out of the seven assumed nonlinear terms, only the cubic
term β111 was identified as dominant. With only this term the equation of motion (22a) becomes Eq. (24).

q̈1 + 2ζ1ω1q̇1 + ω2
1q1 + β1

111q
3
1 = ΦT

1 f(t) (24)

To obtain a best estimate for β111 at this stage, the average was computed over all of the values in
Table 13 whose ∆-metrics satisfy the accuracy criteria (i.e. the rows marked in green). The value of
the β111 parameter thus obtained withD1-based NIXO is in the range (2.31, 3.25)×1013 1

kg m2 s2
, with

an average value of 2.79×1013 1
kg m2 s2

and a relative standard deviation of 11.54 %. Results obtained

withD2-based NIXO are: β111 ∈ (2.04, 2.47)×1013 1
kg m2 s2

with an average of 2.32×1013 1
kg m2 s2

and

relative standard deviation of 6.01%. However, the value obtained in this phase is not necessarily
trustworthy and so the identification proceeds to the 4th step, where the identification is repeated
with nonlinear EOM including only the β111 term.

5.5 Step 4 of the System ID Procedure

This section presents the outcomes from the identification attempt using the equation of motion
in Eq. (24). Figure 14 and Table 16 show the results related to the linear part of the mechanical
system. It is interesting to note that the average estimated linear FRFs is less accurate than that
obtained previously. (Similarly to what was described in the Section 5.4 – the criteria from Eq. (13)
were satisfied by the β111 coefficient only in the cases where the structure was oscillating at high
enough amplitudes. These nine cases are marked in green in Tab. 17.) Quantifying the results in
Table 16, this produces up to a 5% error in the natural frequency and up to 164% in the linear
damping ratio. The FRF curves obtained in each of the above-mentioned nine individual cases are
relegated to Appendix B.

Table 17 presents the estimates of the nonlinear β111 parameter for each of the 21 pairs of signals
provided to NIXO. The rows in which the estimated β111 coefficients are strongly-real-valued are
marked with green. From a statistical perspective, the value of the β111 parameter (obtained with
D1-NIXO) ranges from 1.11 × 1013 to 1.86 × 1013 1

kg m2 s2
with the average of 1.37 × 1013 1

kg m2 s2
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Fig. 14: Reference vs. average estimated linear FRFs. Step 4 of the identification procedure.

Tab. 16: Quantitative comparison of the average estimated and reference linear frequency response
functions. Relative differences calculated with respect to the values obtained with the linear

H1-estimator applied to the low-amplitude i/o signals.

Algorithm nat. freq [Hz] rel. diff. lin. damping rel. diff.

H1 91.076 0.0119
NIXO D1 cmplx 86.686 (4.82%) 0.0273 (129.94%)
NIXO D1 real 86.492 (5.03%) 0.0314 (164.52%)

NIXO D2 cmplx 87.763 (3.64%) 0.0230 (94.07%)
NIXO D2 real 87.593 (3.82%) 0.0279 (135.51%)

and relative standard deviation of 17.69%. The D2-based algorithm produced fairly similar results,
giving β111 ∈ (1.01, 1.32) × 1013 1

kg m2 s2
with the average and the relative standard deviation of,

respectively, 1.13× 1013 1
kg m2 s2

and 8.28%.
In order to evaluate the nonlinear parameter values returned by NIXO, the NNMs of the system

in Eq. (24) were computed for the identified range of β111. They are overlaid on the displacement
and velocity time signals in Fig. 15. Additionally, the nonlinear normal modes computed for the
average β111 values from Steps 2 and 3 of the proposed procedure (i.e. β111 = 2.79 × 1013 1

kg m2 s2

and β111 = 2.32 × 1013 1
kg m2 s2

) are also shown. The NNMs obtained using the values of β111 from
Steps 2 and 3 clearly do not agree with the signals, but the range of β111 values identified in Step 4
does seem to be more accurate. However, even these values of β111 do not capture the peaks of
the swept-sines for 25-100 mV, so perhaps the the model would be more accurate if an additional
nonlinear term, not identified by the NIXO algorithms, was added to equation of motion (24). This
also might explain why the linear FRFs obtained in Steps 2 and 3 appeared to be more accurate
for this particular structure.
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Tab. 17: Estimated values of the β111 coefficient obtained with D1- and D2-based NIXO in Step 4 of the
identification procedure. The rows where the β111 coefficient satisfies the accuracy criteria (13) are

marked with green. The units of β111 are 1
kg m2 s2

.

NIXO D1

Case Signal 1 Signal 2 β111 estimate βreal
111 Re

{
βcmplx
111

}
Im
{
βcmplx
111

}
∆∗ ∆∗∗

1 50 25 -1.144e+12 -1.144e+12 -1.144e+12 4.351e+12 0.00 280.23
2 100 50 4.784e+12 4.784e+12 4.784e+12 3.482e+12 0.00 27.20
3 100 25 2.996e+12 2.996e+12 2.996e+12 3.724e+12 0.00 24.28
4 150 100 1.107e+13 1.107e+13 1.107e+13 1.184e+12 0.00 89.30
5 150 50 8.032e+12 8.032e+12 8.032e+12 2.229e+12 0.00 72.25
6 150 25 6.257e+12 6.257e+12 6.257e+12 2.643e+12 0.00 57.76
7 200 150 1.320e+13 1.320e+13 1.320e+13 1.028e+12 0.00 92.21
8 200 100 1.125e+13 1.125e+13 1.125e+13 1.143e+12 0.00 89.84
9 200 50 8.832e+12 8.832e+12 8.832e+12 1.828e+12 0.00 79.30
10 200 25 7.297e+12 7.297e+12 7.297e+12 2.135e+12 0.00 70.74
11 250 200 1.620e+13 1.620e+13 1.620e+13 1.426e+12 0.00 91.20
12 250 150 1.315e+13 1.315e+13 1.315e+13 1.377e+12 0.00 89.53
13 250 100 1.125e+13 1.125e+13 1.125e+13 1.392e+12 0.00 87.63
14 250 50 8.941e+12 8.941e+12 8.941e+12 1.897e+12 0.00 78.79
15 250 25 7.575e+12 7.575e+12 7.575e+12 2.110e+12 0.00 72.14
16 300 250 1.860e+13 1.860e+13 1.860e+13 1.173e+12 0.00 93.70
17 300 200 1.564e+13 1.564e+13 1.564e+13 1.348e+12 0.00 91.38
18 300 150 1.309e+13 1.309e+13 1.309e+13 1.293e+12 0.00 90.13
19 300 100 1.140e+13 1.140e+13 1.140e+13 1.364e+12 0.00 88.03
20 300 50 9.266e+12 9.266e+12 9.266e+12 1.775e+12 0.00 80.85
21 300 25 7.992e+12 7.992e+12 7.992e+12 1.968e+12 0.00 75.38

NIXO D2

Case Signal 1 Signal 2 β111 estimate βreal
111 Re

{
βcmplx
111

}
Im
{
βcmplx
111

}
∆∗ ∆∗∗

1 50 25 -4.624e+11 -4.624e+11 -4.624e+11 3.828e+12 0.00 727.87
2 100 50 5.306e+12 5.306e+12 5.306e+12 3.300e+12 0.00 37.81
3 100 25 3.436e+12 3.436e+12 3.436e+12 3.453e+12 0.00 0.49
4 150 100 1.093e+13 1.093e+13 1.093e+13 1.104e+12 0.00 89.90
5 150 50 7.635e+12 7.635e+12 7.635e+12 2.651e+12 0.00 65.29
6 150 25 5.826e+12 5.826e+12 5.826e+12 2.976e+12 0.00 48.93
7 200 150 1.112e+13 1.112e+13 1.112e+13 6.032e+11 0.00 94.58
8 200 100 1.043e+13 1.043e+13 1.043e+13 9.600e+11 0.00 90.80
9 200 50 8.082e+12 8.082e+12 8.082e+12 2.152e+12 0.00 73.38
10 200 25 6.605e+12 6.605e+12 6.605e+12 2.437e+12 0.00 63.10
11 250 200 1.236e+13 1.236e+13 1.236e+13 1.588e+12 0.00 87.15
12 250 150 1.093e+13 1.093e+13 1.093e+13 1.324e+12 0.00 87.88
13 250 100 1.011e+13 1.011e+13 1.011e+13 1.310e+12 0.00 87.04
14 250 50 8.242e+12 8.242e+12 8.242e+12 2.162e+12 0.00 73.77
15 250 25 6.970e+12 6.970e+12 6.970e+12 2.374e+12 0.00 65.95
16 300 250 1.322e+13 1.322e+13 1.322e+13 6.080e+11 0.00 95.40
17 300 200 1.201e+13 1.201e+13 1.201e+13 1.104e+12 0.00 90.81
18 300 150 1.094e+13 1.094e+13 1.094e+13 1.111e+12 0.00 89.85
19 300 100 1.010e+13 1.010e+13 1.010e+13 1.279e+12 0.00 87.35
20 300 50 8.491e+12 8.491e+12 8.491e+12 2.006e+12 0.00 76.37
21 300 25 7.326e+12 7.326e+12 7.326e+12 2.210e+12 0.00 69.84
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Fig. 15: The NNM curves computed for the identified EOM
overlayed on the (a) displacement and (b) velocity time signals.

6 Conclusion and Future Work

This work has presented a novel black-box system identification technique, which is based on the
NIXO algorithm, and its application to geometrically nonlinear structures. The procedure begins
with postulating a general form of the nonlinear equation of motion. Then NIXO is applied to
the input and output signals collected experimentally, and two metrics that are inherent to NIXO
are used to identify and eliminate the unimportant nonlinear terms from the postulated governing
equation. The process ends with repeating the identification, however, this time utilizing the reduced
nonlinear EOM.

The proposed black-box technique was evaluated by applying it to two case studies, one numerical
and the other one experimental. In the numerical case study, the algorithm needed only the
first three steps, in which it identified which four polynomial terms (out of initially assumed 16
terms) should be considered dominant in the mechanical system. Additionally, the algorithm
simultaneously found accurate values for the polynomial coefficients. In Step 4, the method revealed
that two of these terms were most likely more important than the other two. However, trial and
error disclosed that all four polynomial terms should be kept in order to accurately estimate the
NNM of the numerical system.

As one might expect, it was more challenging to apply the algorithm to actual experimental
measurements, which are subject to noise and other contamination. Namely, the three-step procedure
found a relatively accurate estimate of the underlying linear system and pointed out which nonlinear
term was dominant in the equation of motion. However, if the algorithm was terminated at that
point then the values obtained for the nonlinear parameter seemed to be significantly in error. In
the fourth step, NIXO returned more accurate values of the nonlinear coefficient, but the linear
system was approximated with less accuracy. It seems reasonable to speculate that reducing the
size of the postulated EOM improves the numerical conditioning of the nonlinear identification

31



problem, allowing the nonlinear parameter to be identified more accurately. However, with the
other nonlinear terms absent, the nonlinear model proves somewhat inadequate to describe all that
is present in the measurements, and so the estimate of the linear FRF becomes less accurate.

The observations above may indicate that the nonlinear model might be considered not complete.
The general form used was based on the assumption that geometric nonlinearity was the dominant
effect. However, nonlinear damping and cross-terms such as c1q̇

2
1 + c2q̇1q

2
1 + ... may be missing from

Eq. (22a), which is the general EOM postulated. These missing terms could account for the impact
of the environment on the oscillating beam, such as aerodynamic drag. Recent studies suggest that
including such terms in the EOM is important, even for structures designed to be predominantly
geometrically nonlinear [48]. Hence, even though the model form considered here is suitable to
capture a very wide range of geometrically nonlinear behavior, including softening and hardening
effects, it may not be general enough.

Future work will investigate potential differences between the simulated and experimental studies
presented in this paper. One possible approach would be to introduce simulated noise into the
numerical output signals to determine whether this explains the discrepancies. However, it should
be noted that the noise present in real measurements is often not simply Gaussian. Additionally, a
case study should also be conducted examining the impact of potentially missing nonlinear damping
and cross terms, such as c1q̇

2
1 + c2q̇1q

2
1 + ..., on the identification results. Finally, to explore the

limitations of the NIXO-based technique, it would be interesting to apply it to mechanical systems
with non-geometric nonlinearities, such as frictional nonlinearity, or to systems with two nonlinear
normal modes that have close natural frequencies and may interact with each other.
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Appendices
A Individual Linear FRF Results from Steps 2 and 3 of the

Experimental Case Study

Figure 16 presents the linear frequency response functions found in the nine case studies marked
with green in Tab. 13. In these system identification attempts only, the ∆-metrics satisfy the criteria
from Eq. (13). Additionally, the FRF curves are compared to the reference ones obtained with the
linear H1-estimator applied to the low-amplitude i/o signals. The results from these nine subplots
shown were averaged to obtain the linear FRF estimate shown in Fig. 13.
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Fig. 16: Linear FRFs pertaining to the identification attempts marked with green in Tab. 13.

33



B Individual Linear FRF Results from Step 4 of the Experimental

Case Study

Figure 17 presents the linear frequency response functions found in the nine case studies marked
with green in Tab. 17. In these system identification attempts only, the ∆-metrics satisfy the
criteria introduced from Eq. (13). Additionally, the FRF curves are compared to the reference ones
obtained with the linear H1-estimators applied to the low-amplitude i/o signals. The results from
these nine subplots were averaged to obtain the linear FRF estimate shown in Fig. 14.
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Fig. 17: Linear FRFs pertaining to the identification attempts marked with green in Tab. 17.
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