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A B S T R A C T   

The use of shear wave propagation to noninvasively measure material properties and loading in tendons and 
ligaments is a growing area of interest in biomechanics. Prior models and experiments suggest that shear wave 
speed primarily depends on the apparent shear modulus (i.e., shear modulus accounting for contributions from 
all constituents) at low loads, and then increases with axial stress when axially loaded. However, differences in 
the magnitudes of shear wave speeds between ligaments and tendons, which have different substructures, sug-
gest that the tissue’s composition and fiber alignment may also affect shear wave propagation. Accordingly, the 
objectives of this study were to (1) characterize changes in the apparent shear modulus induced by variations in 
constitutive properties and fiber alignment, and (2) determine the sensitivity of the shear wave speed-stress 
relationship to variations in constitutive properties and fiber alignment. To enable systematic variations of 
both constitutive properties and fiber alignment, we developed a finite element model that represented an 
isotropic ground matrix with an embedded fiber distribution. Using this model, we performed dynamic simu-
lations of shear wave propagation at axial strains from 0% to 10%. We characterized the shear wave speed-stress 
relationship using a simple linear regression between shear wave speed squared and axial stress, which is based 
on an analytical relationship derived from a tensioned beam model. We found that predicted shear wave speeds 
were both in-range with shear wave speeds in previous in vivo and ex vivo studies, and strongly correlated with 
the axial stress (R2 = 0.99). The slope of the squared shear wave speed-axial stress relationship was highly 
sensitive to changes in tissue density. Both the intercept of this relationship and the apparent shear modulus were 
sensitive to both the shear modulus of the ground matrix and the stiffness of the fibers’ toe-region when the fibers 
were less well-aligned to the loading direction. We also determined that the tensioned beam model overpredicted 
the axial tissue stress with increasing load when the model had less well-aligned fibers. This indicates that the 
shear wave speed increases likely in response to a load-dependent increase in the apparent shear modulus. Our 
findings suggest that researchers may need to consider both the material and structural properties (i.e., fiber 
alignment) of tendon and ligament when measuring shear wave speeds in pathological tissues or tissues with less 
well-aligned fibers.   

1. Introduction 

The use of shear wave propagation to measure material properties 
and/or loading in tendons and ligaments is a growing area of interest in 
biomechanics. Ultrasound shear wave elastography has been used to 
measure the shear modulus of passively stretched or unloaded tendon 
(Cortes et al., 2015)– (Corrigan et al., 2019) and ligament (Wu et al., 
2020). Shear wave tensiometry is an emerging technique that is used to 

gauge loading in tendons and ligaments based on the speed of a shear 
wave propagating along the tissue (Martin et al., 2018). Using Timo-
shenko beam theory, we can deduce that the shear wave speed squared 
is proportional to the axial stress in the tissue, the density of the tissue, 
and the unloaded shear modulus of the tissue (Martin et al., 2018). Shear 
wave speeds have been shown to correlate with stress in tendon both in 
vivo (Martinet al., 2018) and ex vivo (Martin et al., 2019). This linear 
relationship has also been demonstrated in collateral ligaments ex vivo 
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(Blank et al., 2020a). 
Differences in tissue material properties may affect the relationship 

between the shear wave speed and axial stress. The material properties 
of tendon and ligament vary widely due to specimen-to-specimen or 
subject-to-subject differences, such as age (Woo et al., 1986), (Waugh 
et al., 2012), injury history (Reeves et al., 2009) or pathology (Arya and 
Kulig, 2010), and activity level (Reeves et al., 2003). Experimental ev-
idence also suggests that shear wave speeds can be highly variable be-
tween specimens ex vivo (Blank et al., 2020a), which may reveal 
differences in material properties from specimen-to-specimen that are 
commonly observed in mechanical testing (Gardiner and Weiss, 2003). 
The extent to which these variations in material properties can affect 
shear wave propagation remains largely unexplored. 

One key factor that might affect the mechanical behavior and/or 
material properties of tendons and ligaments is the tissue’s substructure. 
Both tendons and ligaments are composed of longitudinal collagen fibers 
arranged in bundles at different scales enveloped in a ground matrix 
(Kannus, 2000). However, ligaments generally have less well-aligned 
fibers than tendon (Amis, 1998), and both healthy tendon and liga-
ment can exhibit a collagen architecture with varying degrees of align-
ment (Provenzano and Vanderby, 2006). There are also several extrinsic 
factors that may further influence tendon or ligament substructure. For 
example, collagen organization is disrupted by injury in both tendon 
(Sivaguruet al., 2010) and ligament (Shrive et al., 1995), and healing 
sites in tendons are also known to have an unorganized collagen sub-
structure following graft removal (Burks et al., 1990). Finally, interac-
tion between the fibers and tissue ground matrix may alter the apparent 
shear modulus of the tissue (i.e., unloaded shear modulus determined by 
contributions from both the ground matrix and collagen fibers). How-
ever, it is unknown whether substructural differences alter shear wave 
propagation within the tissue. 

We have recently developed a dynamic finite element model of shear 
wave excitation and propagation (Blank et al., 2020b) in a transversely 
isotropic tissue that includes a probabilistic fiber distribution (Gouget 
et al., 2012). With this model, it is possible to leverage probabilistic 
high-throughput computing to systematically explore a wide parameter 
space of both material and substructural tissue properties that is 
otherwise challenging to explore experimentally. Accordingly, the ob-
jectives of this study were to (1) characterize changes in the apparent 
shear modulus induced by variations in constitutive properties and fiber 
alignment, and (2) determine the sensitivity of the shear wave 
speed-stress relationship to variations in constitutive properties and 
fiber alignment. 

2. Methods 

2.1. Finite element model 

All models/simulations were constructed/performed using the FEBio 
software suite (FEBio 3.0, Salt Lake City, UT). We modeled the tissue as a 
60-mm long, transversely isotropic rectangular prism with an aspect 
ratio of 8 (width = 16 mm, thickness = 2 mm) and a similar cross- 
sectional area as a porcine collateral ligament (Blank et al., 2020a). 
The mesh was composed 0f 15,360 linear hexahedral elements with four 
elements spanning the thinnest dimension (Fig. 1). The mesh density 
was determined with an a priori mesh convergence analysis (see Sup-
plementary material S1). 

2.2. Hyperelastic model 

2.2.1. Transversely isotropic material model 
We modeled the tissue as an incompressible, transversely isotropic 

hyperelastic material that represents a material with longitudinal fibers 
embedded in an isotropic, Mooney-Rivlin ground matrix (Weiss et al., 
1996). The ground matrix, collagen fibers, and tissue’s volumetric 
response to loading were characterized using the following uncoupled 

strain energy density function, Ψ: 

Ψ=F1

(
Ĩ1, Ĩ2

)
+F2

(
λ̃
)
+

K
2
(ln J)2 (1) 

Ĩ1 and ̃I2 represent the first and second invariants of the right Cauchy- 
Green deformation tensor, λ̃ indicates the deviatoric part of the stretch 
ratio along the fiber direction, K represents the bulk modulus, and 
finally J represents the volume change of the deformation. F1 (̃I1, Ĩ2)

represents the contribution of the ground matrix to the strain energy 
density function: 

F1

(
Ĩ1, Ĩ2

)
=C1

(
Ĩ1 − 3

)
+ C2

(
Ĩ2 − 3

)
(2) 

The transverse tangential shear modulus of the ground matrix (and 
thus the transversely isotropic tissue in the unloaded state) can be 
estimated as 2× (C1 + C2). F2(λ̃) represents the contribution of the 
collagen fibers to the strain energy density function: 

λ̃
∂F2

∂λ̃
= 0 λ̃ ≤ 1

λ̃
∂F2

∂λ̃
= C3eC4 (̃λ− 1) − 1 1 < λ̃ ≤ λ*

λ̃
∂F2

∂λ̃
= C5λ̃ + C6 λ̃ > λ*

(3)  

here, ̃λ represents the tissue stretch during loading, and λ* is the stretch 
at which the fibers engage. Prior to this stretch level, the fibers are either 
slack or uncrimping, where the term C3 scales the exponential stress and 
the term C4 controls the strain-dependent rate at which the fibers 
uncrimp. The term C5 corresponds to the elastic modulus of straightened 
fibers and C6 is determined using the requirement that the stress-strain 
curve be continuous at λ*. For a transversely isotropic material, the 
stretch of the collagen fibers is the same as λ̃, which is a function of 
deformation in the z-direction (Fig. 1). The following section will discuss 
the generalization of this concept to allow for an XZ-plane fiber 
distribution. 

2.2.2. Fiber distribution model 
Variation in the tissue’s intrinsic fiber alignment was represented 

using a semi-circular von Mises distribution (‘Mooney Rivlin von Mises 

Fig. 1. Our finite element model consisted of a transversely isotropic rectan-
gular prism with fibers oriented longitudinally (along the z-axis). The tissue was 
loaded to a constant strain in the z-direction. A shear wave was excited by 
displacing nodes (zA) through the tissue thickness (x-axis), and the shear wave 
speed was computed using spacing between two nodes downstream from the 
excitation (zB and zC) and the time delay in wave arrival at those two nodes. 
The nominal fiber direction was the z-direction. The distribution of fiber 
alignment was modeled according to a two-dimensional (2D) von Mises dis-
tribution (Fig. 2) in the XZ-plane. The shear wave excitation in this figure was 
idealized and amplified for visualization (see Methods 2.3 for description 
of excitation). 
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Fibers material in FEBio) (Gouget et al., 2012), (Girard et al., 2009), 
which has been previously used to model the loading response of liga-
ments from bovine hooves (Stender et al., 2018). The strain energy 
density function from 2.2.1 can be defined as the following: 

Ψ=Ψmatrix + Ψfiber (4)  

where Ψmatrix = F1 (̃I1, Ĩ2) and Ψfiber = F2(λ̃). The axial stress of the 
transversely isotropic model in response to loading was scaled using the 
following relationship: 

Ψfiber =

∫θp+
π
2

θp −
π
2

P
(
θ, kf , θp

)
F2

(
λ̃[θ]

)
dθ (5)  

here, the two-dimensional (2D) unimodal distribution function P (θ) can 
be represented as: 

P
(
θ, kf , θp

)
=

1
πI0

(
kf
)ekf cos(2(θ− θp)) (6) 

The principal fiber orientation, θp, represents the nominal fiber angle 
and was chosen to align with the longitudinal axis of the tissue (defined 
from positive z-axis in XZ-plane, Fig. 1). I0 represents the modified 
Bessel function of the first kind. and the fiber alignment factor, kf , de-
termines the degree of fiber alignment within the tissue. Fiber alignment 
factor values from 0 to 500 were chosen to represent highly unaligned (i. 
e., isotropic fiber distribution) and perfectly aligned fibers, respectively 
(Fig. 2) (Stender et al., 2018). 

The apparent shear modulus of the tissue depends on both the ma-
terial properties of the ground matrix and the alignment of collagen fi-
bers relative to the loading direction. The magnitude of the unloaded 
apparent shear modulus for each model was computed by loading a 

single element in simple shear and computing the slope of the shear 
stress-shear strain relationship close to a planar shear stress of zero MPa 
(see Supplementary material S2) (Weiss et al., 2002). This value was 
confirmed by comparison to the corresponding term in the spatial 
elasticity tensor in the transversely isotropic material model (kf = 500). 

2.3. Dynamic finite element simulations 

All finite element simulations were performed in FEBio version 3.0 
(Maas et al., 2012). The bottom surface of the structure was held fixed. 
In the initial, static portion of the simulation, we loaded the model to a 
constant axial (z-direction) strain and allowed it to settle. The top sur-
face of the structure was allowed to only translate in the vertical z-di-
rection during the static portion of the simulation, but was held fixed 
during the dynamic portion of the simulation. During the dynamic 
portion of the simulation, we excited a shear wave in the model by 
applying a transverse displacement ramp of 20 μm over 0.62 ms to nodes 
through the model’s cross-section (zA, Fig. 1). The excitation displace-
ment and timing was chosen to match the excitation signal of a piezo-
electric tapper from previous ex vivo experiments with ligaments (Blank 
et al., 2020a). We monitored the velocity profile of the transverse mo-
tion at two points on the surface of the tissue located 5 and 10 mm from 
the excitation location (zB and zC, respectively, Fig. 1) to match mea-
surement locations in previous ex vivo experiments (Blank et al., 2020a). 
We computed the shear wave speed using the spacing between mea-
surement locations (zB and zC) and the time delay in wave arrival at each 
location, which we computed using a normalized 2D cross-correlation of 
the two transverse nodal displacements (Martinet al., 2018), (Blank 
et al., 2020a), (Cespedes et al., 1995) (Fig. 1). This technique to measure 
the shear wave speed was chosen to match that in previous experimental 
shear wave speed measurements (Martin et al., 2019), (Blank et al., 
2020a). 

2.4. Parametric analysis 

We used a Monte Carlo modeling approach to determine sensitivities 
of the shear wave speed-stress relationship to model parameters. We 
chose ranges of constitutive parameter to cover those in previous studies 
using the same or similar material models (Table 1) (Martinet al., 2018), 
(Gardiner and Weiss, 2003), (Weiss et al., 2002), (Quapp and Weiss, 
1998). The bulk modulus, K, was chosen to be a factor of 103 greater 
than the stiffness of the ground matrix to enforce incompressibility. 

We created two groups of models: one with perfectly aligned fibers, 
and one with distributed fibers (Fig. 3). For both, we varied all consti-
tutive parameters according to a random uniform distribution between 
the limits specified in Table 1. The distributed fiber model incorporated 
a fiber alignment factor, kf (Eq. (5)), that was varied randomly using a 
one-sided normal distribution (mean = 0, standard deviation = 25). The 
randomly selected fiber alignment factors were all positive. We varied 
the applied strain, ε, in every simulation according to a random uniform 

Fig. 2. Our finite element model incorporated a von Mises fiber distribution, P 
(θ), in the XZ plane (Eq. (5) and (6)). As shown in Fig. 1, the z-direction is the 
longitudinal direction (θp=0◦) and the x-direction is through the tissue thick-
ness. A low fiber alignment factor, kf , corresponds to an evenly distributed 
probability distribution function (i.e., unaligned fibers), while a high fiber 
alignment factor has a probability distribution function with a high probability 
of fibers oriented in the preferred fiber orientation (in this case, along the z- 
axis). The fiber distributions shown are representative of the 2D unimodal 
distribution function (plots below fibers are normalized to enable visualization 
of the distribution). Fibers are not embedded in the model, but rather the strain 
energy density function is scaled to include the contribution of the fibers 
(Eq. (5)). 

Table 1 
Ranges of hyperelastic model parameters used in the Monte 
Carlo simulations.  

Parameter Value 

Applied strain, ε [%]  0–10 
Density, ρ [kg/m3]  1000–2000 
C1 [MPa]  0.01–0.4 
C2 [MPa]  0.01–0.4 
C3 [MPa]  0.1–1.5 
C4  30–70 
C5 [MPa]  300–900 

λ* [mm/mm]  1.04–1.1 

K [MPa]  103 × C1   
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distribution ranging from 0% to 10% strain. To access a wide parameter 
space, we generated 10,000 unique models per group using a custom 
Python script. All models were executed using FEBio v3.0 on compute 
nodes in parallel using a high-throughput computing grid. 

2.5. Statistical analysis 

For our first objective, we evaluated the relationship between 
changes in model parameters and changes in the apparent shear 
modulus. We first binned the models based on the fiber alignment factor, 
kf (i.e., one bin for kf = 0, one bin for kf = 1, etc.). Within each bin, we 
performed simple linear regressions between chosen constitutive prop-
erties (independent variables) and the apparent shear modulus 
(response variable). We also performed this analysis using the shear 
modulus of the ground matrix (i.e., 2× (C1 + C2)) as an independent 
variable (see Section 3.2). 

For our second objective, we evaluated the sensitivity of the shear 
wave speed-stress relationship to constitutive properties and fiber 
alignment in our three-dimensional finite element model. The squared 
shear wave speed-stress (c2-σ) relationship is based on a one- 
dimensional tensioned beam model (Martinet al., 2018), (Timoshenko, 
1922), (Timoshenko, 1921), which states that the axial stress in a tissue 
(i.e., tendon or ligament) under tension can be estimated using the 
following relationship (Martinet al., 2018): 

σ = ρc2 − k′μ (7)  

here, c is the shear wave speed, σ is the axial stress, μ is the apparent 
shear modulus tangential to the loading direction, k′ is a shear correc-
tion factor (k′

≈ 0.822 for a rectangular cross-section (Dong et al., 
1651)), and ρ is the effective density of the model. We first grouped the 
results into 40 separate bins between the minimum and maximum 
prescribed value (Table 1) of the corresponding constitutive parameter 
(i.e., 40 bins for C1, 40 bins for C2, etc.). Within each bin, we performed 
simple linear regressions between the squared shear wave speed and the 
axial stress (Cauchy Stress Tzz, Fig. 1). We performed this same analysis 
to models grouped by 50 separate bins corresponding to the fiber 
alignment factor (i.e., one regression for kf = 0, one for kf = 1, etc.). The 
fitted slope of the linear regression (ρA) theoretically corresponds to the 
tissue density, and the fitted intercept of the linear regression ( − k′μA) 
should represent the apparent shear modulus of the tissue in the 
unloaded state (Eq. (7)). We then evaluated the sensitivity of the fitted 

slope or intercept (response variable) to the entire range of constitutive 
properties and fiber alignment (independent variable) by performing a 
simple linear regression (see Section 3.3). 

3. Results 

3.1. Comparison to analytical model 

Shear wave speeds from both model groups increased monotonically 
with the axial stress. For the models with perfectly aligned fibers (kf =

500), finite element model-measured shear wave speeds were within the 
upper and lower bounds of our tensioned beam model, which were 
defined using the extrema of the model densities and ground matrix 
shear moduli (Fig. 4). However, when distributed fibers were repre-
sented, the simulated shear wave speeds shifted to higher values that 
exceeded the upper extrema of shear wave speeds predicted using the 
tensioned beam model (Eq. (7)). 

3.2. Changes in apparent shear modulus 

The presence of off-axis fibers modulated the apparent shear 
modulus of the tissue. For highly aligned fibers (i.e., high kf ), the 
apparent shear modulus converged to the shear modulus of the ground 
matrix. However, unaligned fibers (i.e., low kf ) dramatically elevated 
the apparent shear modulus of the unloaded tissue (Fig. 5). Our 
regression analysis revealed that the ground matrix properties (C1, C2) 

Fig. 3. (a) We varied constitutive parameters for two groups of 10,000 shear wave propagation and single element simple shear models according to random uniform 
distribution (Table 1). To ascertain sensitivity to fiber alignment, we incorporated a fiber distribution in the plane parallel to the shear wave excitation (Fig. 1) for one 
of the 10,000 model groups by randomly sampling the fiber distribution factor, kf , according to a one-sided normal distribution. (b) We executed all simulations in 
parallel on a high-throughput computing grid before (c) computing shear wave speeds and apparent shear moduli (see Methods 2.3 and Supplementary material S2, 
respectively). 

Fig. 4. Shear wave speeds measured using the finite element model increased 
with increasing axial stress. When fibers were perfectly aligned, these shear 
wave speeds fell within the bounds of our analytical model. 
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were better predictors of the apparent shear modulus for a fiber align-
ment factor, kf , higher than 6 (Fig. 6). However, the fiber exponential 
stress coefficient, C3, was the more dominant predictor of the apparent 
shear modulus for a fiber alignment factor, kf , lower than 6. 

3.3. Sensitivity of shear wave speed-stress relationship 

The slope of the c2-σ relationship was highly sensitive to the effective 
tissue density (R2 = 0.99) for both the perfectly aligned and distributed 
fiber models (Fig. 7i). We also detected a significant increasing rela-
tionship between the magnitude of the intercept of the c2-σ relationship 
and the stiffness of the ground matrix (C1, Fig. 7ii) for both model groups 
(R2 = 0.89 and R2 = 0.83, respectively). We detected that the magnitude 
of the intercept term also increased with an increase in the exponential 
stress coefficient, C3 (Fig. 7iv), for the distributed fiber model only (R2 =

0.74). Other constitutive properties only changed the shear wave speed 
to the extent that they scaled the axial stress of the model. In the 
distributed fiber model, the fiber alignment factor and shear wave speed 
squared-stress slope and intercept were not correlated. 

We evaluated the capacity to predict axial stress from shear wave 
speed using the tensioned beam model (Eq. (7)), with tissue density and 
unloaded apparent shear modulus taken from the finite element model. 
For the models with perfectly aligned fibers, there was a strong one-to- 
one correspondence between the predicted (σA) and simulated (σFE) 
stress (Fig. 8). The inclusion of distributed fibers tended to result in a 
slight over-prediction of the tissue stress. 

4. Discussion 

The objectives of this study were to (1) characterize changes in the 
apparent shear modulus induced by variations in constitutive properties 
and fiber alignment, and (2) determine the sensitivity of the shear wave 
speed-stress relationship to variations in constitutive properties and 
tissue fiber alignment. The first key finding was that non-aligned fibers 
increased the model’s apparent shear modulus and resulted in an 
increased in shear wave propagation speed. The second key finding was 

that the slope, intercept, and predictive ability of the analytical shear 
wave speed-stress relationship were sensitive to constitutive properties 
and fiber alignment. 

Regarding the first key finding, the apparent shear modulus was 
strongly dependent on the fiber distribution (Fig. 5). In general, the 
results showed that, when fibers were aligned with the loading direction 
(i.e., high kf ), the ground matrix properties were a good predictor of the 
apparent shear modulus. This result is consistent with transversely 
isotropic material behavior, in which the long-axis fibers do not stretch 
during shear deformation and thus do not affect the shear stiffness of the 
material (Gardiner and Weiss, 2001), (Murphy, 2013). However, as fi-
bers become less well-aligned, the fibers do contribute to the transverse 
material properties (i.e., stiffness in the x-direction and XZ-plane, 
Fig. 1), and therefore contribute to the apparent shear modulus. This 
was directly reflected via the sensitivity of the apparent shear modulus 
to the exponential stress coefficient, C3, at low fiber alignment (i.e., kf <

6, Fig. 6), where a 1-MPa increase in the C3 increased the apparent shear 
modulus by as much as 4.5 MPa. On the other hand, the apparent shear 
modulus was insensitive to changes in C3 when fibers became more 
highly aligned. It is feasible that similar changes in material anisotropy 
due to microstructure occur in biological tissues. It is known that liga-
ments exhibit less aligned fibers than tendons (Amis, 1998), and liga-
ments in the bovine hoof have been shown to have a similar distribution 
of fibers to those in our study in the longitudinal direction (average kf =

5.7 using a von Mises distribution) (Stender et al., 2018). Hence, 
changes in the apparent shear modulus could occur in select tissues with 
less well-aligned fibers, such as in ligaments (Amis, 1998), (Stender 
et al., 2018), and similarly, the joint capsule (Bey et al., 2005), (Gohlke 

Fig. 5. (left) For the distributed fiber model, the unloaded apparent shear 
modulus of the tissue decreases with increasing fiber alignment and converges 
to the shear modulus of the ground matrix for sufficiently highly-aligned fibers. 
(right) The fiber exponential stress coefficient, C3, causes an increase in the 
apparent shear modulus when fibers are less well-aligned (kf < 6), but not when 
fibers were sufficiently highly aligned. We used a scientifically derived color-
map to better enable visualization with regard to color-vision deficiencies and 
color-blindness (Crameri et al., 2020). 

Fig. 6. (top) The ground matrix shear modulus was on average a constant 
predictor of the tissue’s apparent shear modulus (average slope = 1.07 MPa/ 
MPa across all fiber alignment factor values). (bottom) We observed that the 
exponential stress coefficient, C3, described more of the variability in apparent 
shear modulus of the tissue for fiber alignment factor values less than kf = 6. 
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et al., 1994). 
Regarding the second key finding, the simulated relationship be-

tween shear wave speed and axial stress was generally consistent with a 
simple tensioned beam model (Martinet al., 2018) for tissues with highly 
aligned fibers. Further, shear wave speeds measured using the finite 
element model were in range with those from previous tensiometry 
studies, where shear wave speeds ranged from 20 to 90 m/s in tendons 
(Martin et al., 2019) and from 20 to 160 m/s in ligaments (Blank et al., 
2020a) during tensile loading with axial stresses ranging from 0 to 10 
MPa. The c2-σ relationship was highly linear (R2 = 0.99), with the slope 
of this relationship well represented by the density of the model (Fig. 7i). 
The y-intercept, or unloaded apparent shear modulus, was primarily 
determined by the C1 term, which governs the elasticity of the ground 
matrix (Fig. 7ii). Therefore, the tensioned beam model well predicted 
the axial stress of the transversely isotropic tissue, and these predictions 
were only sensitive to changes in constitutive properties to the extent 
that they changed the axial stress of the model. This is an important 
finding because it reveals that variations in constitutive properties, 
which are commonly seen from subject-to-subject or 
specimen-to-specimen, are not enough to cause systematic changes in 
shear wave speed that would in turn introduce errors when predicting 
axial stress. Only microstructural variations that changed the apparent 
shear modulus of the finite element model were enough to alter shear 
wave speeds and their relationship to the axial stress in a manner that 
was not predicted by the model. Finally, there was a consistent bias 
between the perfectly aligned fiber model and the distributed fiber 

model for both slope and intercept predictions. This bias is an effect of 
the influence of distributed fibers on the apparent shear modulus, where 
an increase in the intercept (and thus apparent shear modulus) caused a 
decrease in the predicted slope for shear wave speeds that were similar 
in magnitude. However, the general trends observed still provide 
important context into the effect of individual constitutive parameters 
on terms governing the tensioned beam model. 

The effect of fiber alignment on shear wave speeds differed based on 
the axial load. At low axial stresses, shear wave speeds for models with 
less well-aligned fibers were higher than those with perfectly aligned 
fibers. This increase is likely caused by the increase in the model’s 
apparent shear modulus caused by increasingly less well-aligned fibers 
(Fig. 5). This increase in shear wave speeds in models with distributed 
fibers is similar to the increase in shear wave speed with increasing fiber 
stretch shown previously in bulk transversely isotropic materials 
(Tweten et al., 2015). As the model is loaded further, the fibers stretch, 
and the contribution of off-axis fibers to the strain energy density 
function is scaled according to a 2D unimodal distribution function (Eq. 
(6)). In general, as a biological tissue with highly aligned collagen fibers 
is axially stretched, there is relatively less engagement of the collagen 
fibers in shear in comparison to a tissue with an isotropic fiber distri-
bution, as evidenced by less realignment of fibers oriented in the di-
rection of loading (Lake et al., 2012). Further, the ground matrix shear 
modulus is the primary material governing the shear modulus when fi-
bers are aligned in the loading direction (Gardiner and Weiss, 2001). 
Thus, for this particular case, there is relatively little change in the tis-
sue’s apparent shear modulus, which is already relatively low in 
magnitude (less than 1.6 MPa) (Weiss et al., 2002), (Tanakaet al., 2007). 
Therefore, when the tissue is loaded, the axial stress becomes the 
dominant term in the equation relating the shear wave speed to axial 
stress and apparent shear modulus (Eq. (7)). However, less well-aligned 
fibers may cause a load-dependent increase in the apparent shear 
modulus as fibers out of alignment with the loading direction are 
stretched (see Supplementary material Fig. S5.1), which may cause a 
slight overprediction of the tissue’s axial stress (as observed in Fig. 8) 
due to a calibration using the intercept of the c2-σ relationship (i.e., 
unloaded apparent shear modulus). Future studies will be designed to 
investigate whether an increase in the microstructure-dependent 
apparent shear modulus with load in tissues with less well-aligned fi-
bers is sufficiently high to change the relationship between the shear 
wave speed and axial stress with increasing tissue strain. 

The approach used in this study has limitations to consider when 
interpreting the results. In this study, we implemented a 2D fiber dis-
tribution to determine its effect on the measured shear wave speed. It is 
possible that, in tendon and ligament, fibers are just as likely to be 
distributed in any orientation about the longitudinal axis (i.e., a 3D fiber 
distribution). However, we chose to use a 2D fiber distribution in the 
present study because, in our preliminary work, we did not observe 

Fig. 7. The sensitivity of the fitted slope (top) and intercept (bottom) of the analytical relationship (Eq. (7)) (ρA (i.e., density) and − k′ μA (i.e., unloaded apparent 
shear modulus), respectively), to finite element model constitutive parameters was assessed across 40 separate bins composed of 250 models each. Asterisks indicate 
the strength of a linear fit (* = R2 > 0.7, ** = R2 > 0.9, *** = R2 > 0.99). 

Fig. 8. (left) The tensioned beam model predictions of axial stress agreed well 
with the measured axial stress for the models with perfectly aligned fibers 
(average RMSE = 0.34 MPa). (right). In contrast, for the distributed fiber 
model, the axial stress predicted using the tensioned beam model was greater 
than the measured axial stress (average RMSE = 1.86 MPa). The dashed line 
represents a unity line where the tensioned beam model-predicted axial stress is 
equal to the finite element model-measured axial stress. 
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changes in the c2-σ relationship when the 2D fiber distribution was in a 
plane whose normal was parallel to the tap direction (i.e., YZ plane in 
Fig. S1, Supplementary material S3). This finding is in agreement with 
Shcherbakova et al. who also determined that the shear wave speed did 
not vary due to fiber orientation or fiber dispersion (i.e., distribution) 
when fibers were distributed out-of-plane with the shear wave 
(Shcherbakovaet al., 2017). Thus, we likely captured the greatest effects 
of fiber alignment on shear wave propagation with fibers distributed in 
planes parallel to the tap. 

A second limitation is that our model cannot account for additional 
mechanisms that may modulate the fiber-dependent material properties 
of connective tissue in vivo, such as interfibrillar shear (Szczesny and 
Elliott, 2014), non-affine fiber kinematics (Lake et al., 2012), (Dhume 
and Barocas, 2019), (Chandran and Barocas, 2006), and 
orientation-dependent shear wave propagation (Brum et al., 2014), 
(Aubryet al., 2013), (Royer et al., 2011). Some of these mechanisms are 
known to change the shear engagement of collagen fibers during axial 
loading and contribute to the nonlinear response of tendon or ligament 
to shear, and thus may modulate the effect of less well-aligned fibers on 
the apparent shear modulus of a tissue. Further, kinematic fiber affinity 
is an assumption in our finite element model and an inherent assumption 
in many constitutive models, and we expect that a biological tissue with 
non-affine fiber kinematics may further complicate the relationship 
between axial load and microstructure-dependent shear modulus. 
Finally, shear wave speeds in the unloaded Achilles tendon are different 
when measured perpendicular to the fibers rather than parallel to fibers 
(Brum et al., 2014), (Aubryet al., 2013), which suggests there is 
anisotropy within the tissue. Our finite element model does not capture 
this anisotropy, with the isotropic ground matrix exhibiting a shear 
modulus that was the same in all three planes (Fig. 1). 

A third limitation is that we only analyzed shear wave propagation 
under pure, uniform, axial loading conditions. Non-uniform loading 
could give rise to substantial shear deformations, which could further 
alter the apparent shear modulus of the material. Thus, our findings may 
be conservative especially in tissues such as the medial collateral liga-
ment that are frequently loaded non-uniformly in situ and are often 
under small axial loads. In such tissues, accounting for increases in 
apparent shear modulus may be important for accurate predictions of 
axial stress from measured shear wave speeds. 

It has previously been shown that guided wave behavior can arise in 
tendons due to the finite thickness of the tissue, and thereby can alter the 
relationship between tissue material properties and shear wave speed 
(Helfenstein-Didieret al., 2016), (Dhume and Barocas, 2019). We did not 
incorporate analysis methods to account for guided wave effects but did 
utilize the same excitation and analysis methods between models to 
enable consistent evaluation of the effects of loading levels, constitutive 
properties, and fiber alignment. 

Finally, while many finite element models have been implemented to 
study shear wave propagation ,(Caenen et al., 2020), (Palmeri et al., 
2005), (Palmeri et al., 2017), (Sadeghi and Cortes, 2019), the primary 
purpose of this study was to use this dynamic model to study the shear 
wave speed-stress relationship that governs tensiometry. We found that 
transient shear wave speeds measured in our finite element model are 
consistent with those predicted using a simple tensioned beam model 
(Martinet al., 2018). However, the full richness of this dynamic finite 
element modeling technique remains to be studied. Future work should 
leverage this finite element model to study a range of physical phe-
nomena in soft tissues (e.g., guided wave behavior, viscoelasticity, ge-
ometry) and their effect on shear wave propagation. 

In summary, we used a dynamic finite element model to study the 
effects of material and microstructural properties on shear wave prop-
agation. This study elucidated important relationships between micro-
structure and material properties. Our key findings suggest that (1) non- 
aligned fibers increased the model’s apparent shear modulus, which 
causes an increase in shear wave propagation speed, and (2) the slope, 
intercept, and predictive ability of the analytical shear wave speed-stress 

relationship is sensitive to constitutive properties and fiber alignment. 
Further, the relationship between the shear wave speed and axial stress 
was sensitive to fibers that are less well-aligned to the loading direction 
due to increased material isotropy in the plane of the shear wave. More 
broadly, this study presented a high-throughput, dynamic finite element 
modeling framework that can be used to study shear wave propagation 
and tissue structure-function relationships and can be further used to 
identify cause-effect relationships in experimental tensiometry data. 
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