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Abstract

This work presents a novel technique for nonlinear system identification that operates in the frequency domain and
fits a model to measured spectra to estimate the parameters in a modal domain nonlinear equation of motion (EOM).
Nonlinear terms are added to the linear EOM in the form of polynomials, and the proposed algorithm estimates
the polynomial coefficients as well as the underlying linear Frequency Response Function (FRF). This method is an
extension to a popular nonlinear system identification algorithm called NIFO, from Nonlinear Identification through
Feedback of the Outputs. However, NIFO identifies the nonlinear parameters as complex numbers that may be
different at each frequency line, even though the mechanical system is expected to be governed by an EOM in
which the nonlinear parameters are real and constant with frequency. This might be problematic, because any
variation in the identified nonlinear parameters will distort the linear FRFs estimated by NIFO, and those linear
FRFs are important to tell the user whether all of the significant nonlinearity has been extracted from the system.
The proposed algorithm, here dubbed Nonlinear Identification through eXtended Outputs (NIXO), estimates the
nonlinear parameters as frequency-independent and real. Additionally, it is demonstrated that for the systems studied
here that the algorithm works when random and swept-sine inputs are used to excite the tested structure, while NIFO
only worked well when random inputs were used. The method is first evaluated numerically using benchmark case
studies, starting with the SDOF equation and then reduced models of a clamped-clamped flat beam, and the results
are compared to those obtained with NIFO. Then the algorithm is applied to swept-sine measurements from a 3D-
printed flat beam and the results are validated by computing the primary nonlinear normal mode of the identified
model and comparing it with measurements.

Keywords: Nonlinear System Identification, NIFO, Nonlinear Parameter Estimation, Nonlinear Experimental
Dynamics, Geometrically Nonlinear Structures, Swept-Sine and Burst-Random Vibration Testing
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1 Introduction

System identification plays a significant role in engineering design process, helping in correlating numerical
or mathematical models with the actual real-life structures. Once the virtual representation of a mechanical
system is found, it can be further used in: (i) predicting the structure’s motion or (ii) redesigning or
optimizing the structure. Many system identification methods are available and have found success in
identifying certain linear and/or nonlinear systems. However, there are many cases in which existing
algorithms are still not successful in identifying an accurate model from measurements. Much work is still
needed in this field to develop a toolbox of methods that can give adequate results when applied to any
system, just as linear system identification can handle almost any linear system.

When it comes to linear system ID, one of the most popular ways to identify these type of structures
is, so called, modal parameter estimation. The objective there is to extract the linear natural frequencies,
damping ratios and mode shapes [1, 2]. However, many mechanical systems exhibit nonlinear behavior
when oscillating at modest amplitudes; for example the bolted assemblies that are ubiquitous in industry
often exhibit nonlinearity due to micro-slip. Moreover, demand for lighter yet more durable structures
has encouraged the scientific community to pursue design and testing methods for structures that have
intentional nonlinearities. For example, geometric nonlinearities can be designed to limit resonant amplitudes
and hence the stresses that a structure experiences.

Following Kerschen et al. [3], the nonlinear system identification procedure can be divided into three
stages: detection, characterization and parameter estimation. In the first stage, one checks whether a
nonlinearity is simply present in the system or not. Then, the source and type of the nonlinearity can be
determined. One can then postulate a mathematical model to capture the nonlinear behavior. Finally, in
the parameter estimation step the values of the unknown coefficients in the model are found. The algorithm
presented in this work addresses the last of these stages.

Naturally, there are different kinds of the nonlinear system ID methods. In [4], Noël and Kerschen
used various classifications, with time- and frequency-domain being one important distinction, although
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even in that case the lines can become blurred as the input data can be transferred to the frequency
domain via a Fourier transform. However, the vast majority of nonlinear system identification techniques
share one feature in common, they treat the nonlinearities as auxiliary inputs that are known because
the nonlinearities are assumed to be known functions of the measured outputs. The algorithm proposed
here falls in this class. The following section reviews some of the most common methods that can also
be classified in this category, as well as some newer, emerging techniques and contrasts them with the
proposed approach.

Before proceeding, it is worth mentioning a few methods that do not belong to this category. (i)
The most common nonlinear system identification techniques are those brute-force methods that simply
integrate the equation of motion (EOM), compare it with measurements, and iterate on the model
parameters to bring the two into agreement. They are generally accepted to be inefficient and often
unlikely to converge to a local minimum, although they have proven effective in some cases. (ii) Time-
frequency methods such as the Hilbert transform [5] assume that the response at any instant can be
approximated by a linear system, but the parameters of that linear system are allowed to evolve with time
or as the amplitude of vibration changes. One example is the FORCED-VIB method by Feldman [6] and the
extension by Moldenhauer et al. [7] in which the system was assumed to be linear but with coefficients that
are smooth polynomial functions of time. This class of methods has been extremely successful in treating
systems with weak nonlinearities. For example, in [7] the authors identified a model of a single degree of
freedom (SDOF) system with a nonlinear, hysteretic Iwan element [8, 9] as well as the continuous, multi-
degree-of-freedom cylinder-plate-beam benchmark structure [10]. Finally, (iii) methods based on higher
order frequency response functions (FRFs) [11, 12] or Volterra series [13], while not used too often, could
be argued to provide non-parametric identification in the frequency domain. Some additional methods are
elaborated in [4].

Additionally, in the past decade various methods have emerged that directly identify the nonlinear
normal modes (NNMs) of a system, for example control based continuation (CBC) or phase locked loop
(PLL) [14–19]. This type of identification may at first seem to be in a different class, as rather than
identifying a differential equation governing the system, it produces the nonlinear modes, which are special
solutions to the differential equation. However, recent works in this area [20, 21] have shown that this
type of approach can produce a model that can be used to predict the near-resonant response and not
just the NNMs. These methods have proven powerful and efficient and have obtained excellent results on
structures with geometric nonlinearity such as the ones studied here (e.g. see [20,21]). In fact, the authors
proposed one such method in [22] and applied it to the geometrically nonlinear structures presented in
this work. However, it is important to note that these methods require that the inputs to the system be
modified in real time to drive the system to a desired condition, i.e. resonance for CPC or PLL or to a
specified amplitude using RCT method (from Response-Controlled Stepped-Sine Testing) in [20,21]. This
work focuses on methods in which the input and output signals are broadband and acquired in open loop,
and so these methods will not be considered further here.

1.1 Time- and Frequency-Domain System ID Methods

Most nonlinear system identification methods make use of the idea of nonlinear feedback, in which the
system is treated as linear but with nonlinear outputs treated as additional input forces. If the form of the
nonlinear force is known, i.e suppose fnl = Cx2 where C is a constant and x is the measured output, then
the force fnl may be treated as an input with an unknown scale factor and a least squares procedure used
to identify the scale factor.

The Restoring Force Surface (RFS) method, introduced in 1979 [23], is the most basic of these
approaches. For a single degree of freedom system, the measured response is integrated and/or differentiated
so that acceleration, velocity and displacement are known, and then one can plot the unknown nonlinear
force as a surface in the displacement-velocity plane and determine the nature of the nonlinearity. For
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higher order systems one must know the form of the nonlinearity, but if that is known then one can
formulate a least squares problem to find the coefficients on the nonlinear forces. The reader can refer
to [24] and [25] for examples where RFS was applied to mechanical systems exhibiting softening-stiffening
and pure stiffening characteristics respectively. A variation on the RFS method, proposed by Aykan and
Özgüven, can be found in [26]. Moldenhauer et al. [27] generalized the approach by allowing the polynomial
nonlinearities to have non-integer exponents, and while this improved the results for a hysteretic system
relative to the original RFS, none of the identified models was able to reproduce the response adequately
when subjected to the measured input forces.

One of the most significant challenges encountered when using this method is to accurately differentiate
or integrate the vibration measurements. By extension, that same difficulty is present for all continuous-
time methods that are based on the nonlinear feedback concept. That challenge is different at least
if one instead operates in the discrete-time domain. Perhaps the most common algorithm of this class
is NARMAX, from Nonlinear AutoRegressive Moving Average with eXogenous inputs [28, 29]. It has
proven to be successful in identifying various types of nonlinear systems. The Time-Domain Nonlinear
Subspace Identification (TNSI) methods [30, 31] are another example of such an approach. In both cases,
the nonlinearities become polynomial functions of the response at past time steps, rather than polynomial
functions of the response and its integral or derivative.

Several methods have sought to operate in the frequency domain rather than the time domain. This is
mainly because the features in the data are more apparent there, and this also allows one to easily exclude
frequency ranges where the response is noisy or contaminated.

The Conditioned Reverse Path (CRP) [32] and Nonlinear Identification through Feedback of the
Outputs (NIFO) methods are well-known frequency-domain algorithms, both of which are again based
on the extended input concept. NIFO was first presented by Adams and Allemang [33] as a H1-based
estimator and later an H2 version was developed by Haroon and Adams [34]. The term ”H” stands for the
linear part of the system being estimated in the form of the frequency response function, while subscripts
”1” and ”2” denote whether the inputs or outputs are used to form the cross spectra used in the NIFO
method (analogous to the well-known H1 and H2 linear estimators). Perhaps the most advantageous
feature of these methods is the fact that, if all of the nonlinear terms can be extracted, then the methods
return the linear frequency response functions. If the nonlinearity is correctly identified, then the linear
FRFs should converge to the expected shapes and not contain any nonlinear distortions. This provides a
valuable check on the methods. The methods are also computationally efficient because a large quantity of
data can be condensed into relatively compact cross-spectra. The CRP method was sucessfully applied to
both numerical and experimental nonlinear systems in [35] and [36] and NIFO was successfully applied to
a flat steel beam in [37]. However, in other cases the CRP method does not prove satisfactory, for example
in [38] where there were many nonlinear parameters to identify. In particular, the NIFO and CRP methods
treat each frequency line as independent, hence they identify nonlinear coefficients that are complex and
can vary with frequency. These must be averaged over frequency to obtain physically meaningful values.
Moreover, these methods work only when the nonlinear equation governing the dynamics of the system is
guessed correctly. Otherwise, the nonlinearity present in the structure’s response is not entirely filtered
out during the identification process and can affect the estimate of the linear FRF shape. Additionally, the
linear FRFs approximated by these methods are only valid for a nonlinear system with frequency-varying
nonlinear parameters, and hence they become misleading if the frequency variation is significant.

One promising alternative to these methods is the Frequency-Domain Nonlinear Subspace Identification
(FNSI) [36] method. While it is also based on the same nonlinear feedback concept, it formulates
the discrete time equations of motion in the frequency domain, allowing the algorithm to only need
measurements at frequencies near resonance, thus improving the computational efficiency significantly
as compared to the time-domain subspace methods. The identified nonlinear coefficients are complex
numbers, and when they are transferred back to the continuous-time domain they become frequency
varying. However, in the applications in [36] both the imaginary parts and the variations with frequency
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were practically negligible and far better than those identified by the CRP method. Even then, in other
cases it can prove more difficult to obtain parameters that are relatively constant with frequency and hence
physically reasonable, even with this advanced algorithm [18].

1.2 Objectives and Contributions

This article proposes a novel algorithm called NIXO (forNonlinear Identification through eXtended Outputs),
which is an extension to NIFO/CRP since it forces the nonlinear parameters to be real and constant with
frequency. The identification process with NIXO can be divided into three steps. In the first one, the
user must postulate an equation of motion describing the nonlinear structure. Then, the input and output
signals (collected in the experimental tests) are provided to NIXO and used to compute various auto- and
cross-spectra. In the final step, a least squares problem is solved to obtain the values of the parameters.
Once a model for the system has been identified, it is often helpful to validate the results, for example by
computing the nonlinear normal mode(s) of the system and overlaying them with swept sine measurements.

This work builds on that in [33] and [34] where Adams, Haroon et al. proposed the H1- and H2-
based NIFO algorithms, respectively. NIFO identifies structures via solving many relatively small sets of
equations, each corresponding to a different frequency line. The proposed NIXO algorithm creates one
large linear system of equations and solves it to obtain the underlying linear system representation at all
frequencies as well as a single estimate for each nonlinear coefficient, which is real and not a function
of frequency. Analogous to NIFO, two variations of NIXO are presented. Namely, the D1- and D2-
based NIXO. The term ”D” stands for the dynamic stiffness, since NIXO estimates the linear part of the
mechanical system in such form (whereas NIFO estimates the FRF directly). Subscripts ”1” and ”2” still
indicate whether the cross spectra are obtained via right-multiplying the equations of motion with the
inputs or outputs, respectively. While the derivation of NIXO is similar to that of the NIFO algorithm,
there are some important differences and few options are encountered that are addressed in the derivation.

The proposed NIXO method is also demonstrated both numerically and experimentally and the results
are compared against those obtained using the popular NIFO methods. The algorithms are first evaluated
numerically using benchmark single degree of freedom (SDOF) systems. Then, they are employed to
identify reduced models for two flat beams. The first using the numerical data generated using an ICE-
ROM of a beam (which is a reduced order model supported by the implicit condensation and expansion
method [39, 40]), while the second uses experimental measurements collected on an actual, 3D printed
beam to identify a model. In these case studies, two different types of forcing signals are used: swept sines
and burst random signals.

Section 2, presents a derivation of the proposed NIXO algorithm and discusses how the results can be
validated. In Section 3, the NIXO and NIFO methods are evaluated using simulated measurements from
benchmark SDOF systems. In Section 4, the techniques are further employed numerically by applying
them to ICE-ROM of a flat beam, and the outcomes are validated and discussed. Section 5 shows the
results using experimental measurements from a flat beam that was 3D-printed in polymer (polylactide
acid). Finally, Section 6 presents conclusions and future work.

2 Derivation of the NIXO Algorithms

The derivation starts with the steps common for all the algorithms presented in this work, and each
separate method is addressed. Consider a multi-degree-of-freedom (MDOF) nonlinear mechanical system,
with linear viscous damping, described with equation of motion defined in (1).

Mẍ+Cẋ+Kx+ fnl(x, ẋ) = f(t), (1)

where M, C and K are square matrices modeling mass, linear damping and stiffness distributions present
in the system. Vector f(t) represents the force distribution applied to the structure, while x(t) is its
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displacement response. Finally, fnl(x, ẋ) is the nonlinear restoring force that is a function of the displacement
and velocity terms.

Using the well-known modal transformation (2), the dynamics of the nonlinear system can be expressed
in the modal domain, as shown in (3).

x = Φq (2)

q̈+

2ζ1ω1

. . .

2ζNlin
ωNlin

 q̇+

ω
2
1

. . .

ω2
Nlin

q+ θnl(q, q̇) = ΦT f(t), (3)

where: ωk and ζk are, respectively, the natural frequency and damping ratio of the k-th linear mode,
the columns of matrix Φ are the the mass-normalized eigen-shapes of the linearized, undamped and
homogeneous equation of motion (1), θnl(q, q̇) are the nonlinear forces transformed into the modal domain
(or θnl(q, q̇) = ΦT fnl(Φ

†x,Φ†ẋ), where (†) represents the pseudo-inverse matrix operator), and Nlin stands
for the number of linear modes taken into consideration. The linear damping is assumed to be diagonalized
by the modes, i.e. classical damping is assumed. However, the modal EOM in Eq. (3) are coupled via the
nonlinear terms θnl,k(q, q̇), as indicated in Eqs. (4–6), and one could presumably add terms to account for
coupling due to the linear damping.

q̈k + 2ζkωkq̇k + ω2
kqk + θnl,k(q, q̇) = ψk(t), (4)

where:
ψk(t) = ΦT

k f(t) (5)

and

θnl,k(q, q̇) = ΦT
k fnl(Φ

†x,Φ†ẋ)
∆
= αv,k

11 q̇
2
1 + αv,k

12 q̇1q̇2 + · · ·+ αk
11q

2
1 + αk

12q1q2 + · · ·+
+ βv,k111q̇

3
1 + βv,k112q̇

2
1 q̇2 + · · ·+ βk111q

3
1 + βk112q

2
1q2 + . . . (6)

Equation (6) expresses the θnl,k(q, q̇) function in a polynomial form including squared and cubed terms,
which is a popular way to model the response of the geometrically nonlinear structures with material
assumed to be linear elastic. However, sometimes including higher order terms might also be necessary,
for example when a structure exhibits an unstable snap-through behaviors (as presented in [41]), or even
more sophisticated terms in order to capture phenomena going beyond geometric nonlinearities [42, 43].
The subscripts of the nonlinear parameters correspond to the product of polynomial terms they multiply;
for example: β111 multiplies term q31, while β123 – term q1q2q3. In most cases one will not require all of the
terms in Eq. (6) for a particular system. As a result, in this article a more general form, shown in Eq. (7),
is used.

θnl,k(q, q̇)
∆
= γv,k1 pv1 + γv,k2 pv2 + · · ·+ γk1p1 + γk2p2 + . . . , (7)

where γvr p
v
r and γrpr stand for the r-th nonlinear damping and stiffness terms, respectively. Functions pvr

and pr are the products of the modal coordinates’ time representations of the users choice. To clarify,
if the nonlinear stiffness of the structure can be modeled with q31(t) and q1(t)q2(t)q3(t) terms only, then
p1(t) = q31(t) and p2(t) = q1(t)q2(t)q3(t).

It is worth noting that, while this work focuses on geometrically nonlinear structures, or systems
with distributed nonlinearities that are more easily addressed in the modal domain, the algorithm is
potentially applicable to systems with localized nonlinearities. As shown above, a localized nonlinearity
can be expressed as a polynomial nonlinearity in the modal domain, typically including coupling terms
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between the modes, and hence can be identified using the approach presented here. Such an approach may
or may not be desirable, as one localized nonlinearity can lead to many terms in the modal domain and
many localized nonlinearities may produce only a single unique term in the modal domain; these issues are
left for a future work.

Using a Fourier series, the time functions defined above can be decomposed into sums of harmonically
related sinusoids, as presented in Eq. (8).

qk(t) = Re

{
n∑

s=0

Qs
k e

isΩ1t

}
(8a)

ψk(t) = Re

{
n∑

s=0

Ψs
k e

isΩ1t

}
(8b)

pvr(t) = Re

{
n∑

s=0

P v,s
r eisΩ1t

}
∀r (8c)

pr(t) = Re

{
n∑

s=0

P s
r e

isΩ1t

}
∀r (8d)

Each complex amplitude Qs
k, Ψ

s
k, P

v,s
r and P s

r corresponds to the s-th frequency sample sΩ1, where Ω1 is
the fundamental frequency in the Fourier series, and n is the total number of frequency samples. Now, the
equation of motion of the k-th mode can be expressed in the frequency domain, as presented in Eq. (9).

Dk(Ω) Qk(Ω) + γv,k1 P v
1 (Ω) + · · ·+ γk1 P1(Ω) + · · · = Ψk(Ω), (9)

where Ω = sΩ1, and Dk(Ω) is a dynamic stiffness defined in Eq. (10). The dynamic stiffness is the
reciprocal of the frequency response function (FRF), Hk(Ω), whose explicit mathematical form is provided
in Eq. (11). Note that by writing the equations of motion in the modal domain, the relationship between
the dynamic stiffness and the frequency response becomes merely a reciprocal relationship rather than a
matrix inverse.

Dk(Ω) = ω2
k − Ω2 + 2iζkωkΩ (10)

Hk(Ω) =
1

Dk(Ω)
=

1

ω2
k − Ω2 + 2iζkωkΩ

(11)

The equations above assume that the signals are obtained by taking the FFT of a single time signal,
when in practice it proves beneficial to break each time signal qk(t), p

v
r(t), pr(t), and ψk(t), into several

overlapping pieces and applying a window (e.g. the Hann window) to each signal. Then, Eq. (11) can
be written in a matrix form where matrices Qk, Pv

r , Pr, and Ψk in Eqs. (12a) and (12b) have size of
1 × Navg, where Navg is the number of blocks that the time signals have been split into. Additionally,
Eqs. (12a) and (12b) can be written for each frequency, s ∈ {0, . . . , n}.

Dk(Ω) [Qk,1, . . . , Qk,Navg ] + γv,k1 [P v
1,1, . . . , P

v
1,Navg

] + · · ·+ γk1 [P1,1, . . . , P1,Navg ] + . . .

= [Ψk,1, . . . , Ψk,Navg ] (12a)

Dk(Ω) Qk(Ω) + γv,k1 Pv
1(Ω) + · · ·+ γk1 P1(Ω) + . . . = Ψk(Ω) (12b)
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2.1 NIXO Algorithms

2.1.1 D1–based NIXO for ROMs

To derive the D1-based NIXO estimator, we post-multiply Eq. (12b) by ΨH
k (which is the Hermitian or

conjugate transpose of Ψk) to obtain Eq. (13).

Dk(Ω) QkΨ
H
k + γv1 Pk

1Ψ
H
k + · · ·+ γ1 Pk

1Ψ
H
k + · · · = ΨkΨ

H
k (13)

The term QkΨ
H
k is merely a sum over all of the windowed time blocks as shown in Eq. (14) and (if divided

by Navg) it becomes an estimate for a power spectrum SQΨ (also shown in Eq. (14)) between the signals
Qk and Ψk. Power spectra SP v

1 Ψ
, . . . , SP1Ψ, . . . , SΨΨ are obtained in the same manner.

1

Navg
QkΨ

H
k =

1

Navg

Navg∑
i=1

Qk,iΨ
H
k,i

 = SQΨ (14)

Hence, dividing both sides of Eq. (13) by Navg we obtain Eq. (15).

Dk(Ω) SQΨ + γv1 SP v
1 Ψ

+ · · ·+ γ1 SP1Ψ + · · · = SΨΨ (15)

Note that Eq. (15) is valid for every individual frequency line. The NIFO and CRP algorithms solve an
equation that is similar to this individually for each frequency line, and hence the estimates for the nonlinear
parameters that they obtain vary with frequency. However, knowing that the nonlinear parameters are
independent of frequency, one can collect the equations for all frequency lines and obtain the matrix form
presented in Eq. (16). The frequency sample number is indicated in the quantities’ sub- or superscripts,
e.g. SQΨ(Ωs) = S s

QΨ or Dk(Ωs) = Ds
k and n stands for the number of frequency samples.

S
0

QΨ S 0
P v
1 Ψ

S 0
P1Ψ

. . .
... . . .

... . . .
S n
QΨ S n

P v
1 Ψ

S n
P1Ψ


︸ ︷︷ ︸

Scross
D1



D0
k
...
Dn

k

γv1
...
γ1
...


=

S
0

ΨΨ
...

S n
ΨΨ


︸ ︷︷ ︸
Sauto
D1

, (16)

This equation forms the basis of the proposed algorithm, which is called the D1-based Nonlinear
Identification through eXtended Outputs (D1-based NIXO). However, Eq. (16) cannot be solved by inverting
the matrix on the left, because this system of linear equations is underdetermined. To be more precise,
the numbers of equations and unknowns are, respectively, 2n+ 1 and 2n+ 2 + pdamp + pstiff (since some
of the parameters in Eq. (16) are complex numbers in general). Quantities pdamp and pstiff represent
the number of the nonlinear damping and stiffness terms in Eq. (16), respectively. This indeterminacy is
addressed by applying at least two distinct inputs to the system and including the input and output data
sets in Eq. (16), so that the number of rows is at least doubled. This assumes that the system parameters
in Eqs. (4) and (7), namely ωk, ζk, γ

v
s and γs, are independent of the excitation type or time. Hence, the

(2n+ 2+ pdamp + pstiff ) unknowns in Eq. (16) are exactly the same for each vibration test. Furthermore,
measurements are used where the nonlinear structure is oscillating at, say, two different amplitudes, then
it is more likely that the equations will be linearly independent.

In order to clarify this and a few additional issues, this concept is defined mathematically below.
Consider the the equation for a single mode k, subjected to various forcing functions in multiple different
tests (e.g. they could be multiple swept sines of different forcing levels). Each response is the solution to
one of the differential equations in Eq. (17).
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q̈k + 2ζkωkq̇k + ω2

kq + θnl,k(q, q̇) = ψk,I(t)

q̈k + 2ζkωkq̇k + ω2
kq + θnl,k(q, q̇) = ψk,II(t)

...

q̈k + 2ζkωkq̇k + ω2
kq + θnl,k(q, q̇) = ψk,r(t)

, (17)

where r is the number of different forcing functions used to excite the mechanical system. Now, if the
derivation presented above is repeated for the equations of motion (17), one would end up with r-times the
number of equations presented in (16) and an unchanged number of unknowns, with the final form given
in Eq. (18).



Scross
D1,I

Scross
D1,II

...

Scross
D1,r





D0
k
...
Dn

k

γv1
...
γ1
...


=



Sauto
D1,I

Sauto
D1,II

...

Sauto
D1,r


(18)

Since some of the parameters in Eq. (18) are complex, the estimates of γvj ’s and γj ’s are not guaranteed
to be real numbers. To overcome this issue, the real and imaginary parts of the unknowns should be
estimated separately, so that the nonlinear parameters are forced to be real. To do so, Eq. (18) is broken
into real and imaginary parts as presented in Eq. (19). The σcross

D1 and σauto
D1 matrices computed using a

data measured in a single vibration test are defined in (20) and (21), respectively. The system of derived
equations, Eqs. (19), is overdetermined and the unknown parameters can be estimated by solving a linear
least squares problem.



σcross
D1,I

σcross
D1,II

...

σcross
D1,r





D0
k
...
Dn

k

γv1
...
γ1
...


=



σauto
D1,I

σauto
D1,II

...

σauto
D1,r


(19)

σcross
D1 =



Re{S 0
QΨ} −Im{S 0

QΨ} Re{S 0
Pv

1 Ψ} Re{S 0
P1Ψ

}
Im{S 0

QΨ} Re{S 0
QΨ} Im{S 0

Pv
1 Ψ} Im{S 0

P1Ψ
}

. . .
... . . .

... . . .
Re{S n

QΨ} −Im{S n
QΨ} Re{S n

Pv
1 Ψ} Re{S n

P1Ψ
}

Im{S n
QΨ} Re{S n

QΨ} Im{S n
Pv

1 Ψ} Im{S n
P1Ψ

}


(20)

σauto
D1 =


Re{S 0

ΨΨ}
Im{S 0

ΨΨ}
...

Re{S n
ΨΨ}

Im{S n
ΨΨ}

 (21)
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Notice that the system of equations (19) is far larger than those used for NIFO (see [33,34], or Appendix
A for their derivation). In NIFO one would have to solve multiple systems of equations with only a few
unknown parameters in each of them, whereas

[
D0

k, . . . , D
n
k

]
is a vector of the frequency response, typically

with thousands of lines. However, with today’s computers this does not pose serious challenge.

2.1.2 D2–based NIXO for ROMs

The derivation of the D1-based NIXO algorithm in the previous section started by post-multiplying the
equation of motion (12b) with the hermitian transpose of the input spectra ΨH , resulting in Eq. (13).
This post multiplication by the spectrum of the forces is akin to what is done in the commonly used
linear H1 estimator. Similarly, to obtain the D2-NIXO estimator, Eq. (12b) is post-multiplied by the
conjugate transpose of the output signal(s). However, because the set of output signals could also include
the nonlinear functions of the response, several different versions of this algorithm can be derived, as
illustrated in Eq. (22).

(
Dk(Ω) Qk + γv1 Pv,k

1 + · · ·+ γ1 Pk
1 + · · · = Ψk

)
QH

k (22a)(
Dk(Ω) Qk + γv1 Pv,k

1 + · · ·+ γ1 Pk
1 + · · · = Ψk

) [
QH

k (Pk
s)

H
]

(22b)(
Dk(Ω) Qk + γv1 Pv,k

1 + · · ·+ γ1 Pk
1 + · · · = Ψk

) [
QH

k (Pv,k
1 )H . . . (Pk

1)
H . . .

]
(22c)

The case studies presented in this work use the first of these, or the D2–NIXO estimator obtained
when the EOM (12b) are multiplied by the linear output spectra only (see Eq. (22a)). Hence, this section
presents the derivation for this estimator. One of the alternatives can be obtained when all the outputs
are used to right-multiply the EOM (see Eq. (22c)). Its derivation can be found in the extended version
of this article [44].

Expanding the product in Eq. (22a) produces Eq. (23), which becomes Eq. (24), after following similar
steps to those discussed in section 2.1.1. Equation (24) is valid for every individual frequency sample,
thus it is again put into a matrix form in Eq. (25) in order to force the nonlinear coefficients to be
constant. The frequency sample number is, once again, indicated in the quantities’ sub- or superscripts,
e.g. SQQ(Ωs) = S s

QQ or Dk(Ωs) = Ds
k.

Dk(Ω) QkQ
H
k + γv1 Pv,k

1 QH
k + · · ·+ γ1 Pk

1Q
H
k + · · · = ΨkQ

H
k (23)

Dk(Ω) SQQ + γv1SP v
1 Q

+ · · ·+ γ1 SP1Q + · · · = SΨQ (24)

S
0

QQ S 0
P v
1 Q

S 0
P1Q

. . .
... . . .

... . . .
S n
QQ S n

P v
1 Q

S n
P1Q


︸ ︷︷ ︸

Sauto
D2



D0
k
...
Dn

k

γv1
...
γ1
...


=

S
0

ΨQ
...

S n
ΨQ


︸ ︷︷ ︸
Scross
D2

(25)

Note that the system of equations (25) suffers form the same indeterminacy issues as those seen in
Eq. (16). To overcome them, one can once again use r sets of measurements to create an over-determined
system as in the previous section. Doing so, one obtains the linear systems in Eqs. (26) and (27), where
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the nonlinear parameters occur as complex and real numbers, respectively. The quantities σauto
D2 and σcross

D2

from Eq. (27) are defined in Eqs. (28) and (29). Equations (26) and (27) are the base formulas for this
version of the D2–NIXO method and can be solved via linear least squares.



Sauto
D2,I

Sauto
D2,II

...

Sauto
D2,r





D0
k
...
Dn

k

γv1
...
γ1
...


=



Scross
D2,I

Scross
D2,II

...

Scross
D2,r


(26)



σauto
D2,I

σauto
D2,II

...

σauto
D2,r





D0
k
...
Dn

k

γv1
...
γ1
...


=



σcross
D2,I

σcross
D2,II

...

σcross
D2,r


(27)

σauto
D2 =



Re{S 0
QQ} −Im{S 0

QQ} Re{S 0
Pv

1 Q} Re{S 0
P1Q

}
Im{S 0

QQ} Re{S 0
QQ} Im{S 0

Pv
1 Q} Im{S 0

P1Q
}

. . .
... . . .

... . . .
Re{S n

QQ} −Im{S n
QQ} Re{S n

Pv
1 Q} Re{S n

P1Q
}

Im{S n
QQ} Re{S n

QQ} Im{S n
Pv

1 Q} Im{S n
P1Q

}


(28)

σcross
D2 =


Re{S 0

ΨQ}
Im{S 0

ΨQ}
...

Re{S n
ΨQ}

Im{S n
ΨQ}

 (29)

2.2 Summary of the Algorithms

To understand the benefits of the proposed NIXO algorithms, this work compares them to the well-known
and popular NIFO algorithms (which are derived in Appendix A) and to the linear H estimators. The
two versions of each algorithm are used, denoted the D1 and D2 algorithms for NIXO and the H1 and H2

for NIFO and linear estimators. Note that the choice of whether to use an D1/H1 or D2/H2 approach is
usually dictated by the noise present in the input or output signals [45]; in this work both are demonstrated
in various cases. Additionally, the NIXO algorithms can be forced to identify the nonlinear parameters as
real numbers, or they can estimate a complex number and then take the real part. Considering all of these
varieties, there are 8 different possible algorithms that will be compared in the case studies that follow.

It is also worth noting that additional variations on the NIXO and NIFO algorithms’ are possible. If
the linear natural frequencies and damping ratios are known, then these can be used to reconstruct the
linear dynamic stiffness or frequency response function and provide them to the NIXO/NIFO algorithms.
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This variation was explored and called the Linear-Data-Provided, or LDP variation. Additionally, NIFO
could also use multiple data sets as is done in NIXO or it could use just one. Finally, there are at least
three different algorithms that could be used to solve the resulting set of linear equations. An in-depth
comparison of the 40 different possible algorithms is elaborated in the extended version of this article [44].
To avoid overwhelming the reader with too much data, this work presents only those variations of the above
mentioned algorithms that gave the best results, specifically: NIXO combined with the least squares solver
and NIFO with the linear equations solved using QR decomposition. The case studies also demonstrated,
as one might expect, that it was important that the structures vibrates at high enough amplitudes so that
the nonlinearities are exercised [44].

2.3 Validating the Identified Nonlinear Models

Nonlinear normal modes (NNMs) are used in this work to compare the various nonlinear models that are
identified from measurements, and also to qualitatively assess the accuracy of the models. Nonlinear normal
modes were first defined by Rosenberg [46–49] and his definition was relaxed in by Vakakis et al. [50–52],
defining an NNM as a not-necessarily synchronous periodic motion of a conservative system [53].

(a) (b)

Fig. 1: Swept sine signals of various amplitudes, each shown with a different color, applied to a structure
exhibiting (a) stiffening and (b) softening-stiffening characteristics. The nonlinear normal mode is also
overlaid (solid black line) and in most cases its location can be inferred from the swept sine measurements.

One of the simplest ways to estimate the NNM backbone curve of a system (or simply to check if the
structure behaves nonlinearly) is to subject the structure to swept sines of different forcing amplitudes, as
illustrated in Fig. 1. Such an approach is not very robust because of the ”premature jump phenomenon” [54],
and it may not work if the system exhibits softening-stiffening characteristics, but it is simple and often
is quite effective. It is used here to give the reader a qualitative view of the strength of the nonlinearity in
each experimental or simulated measurement.

3 Numerical Investigation: SDOF system

The algorithms were first evaluated using input and output signals collected during simulated experiments
on an SDOF system. The equation of motion for the system of interest is given in Eq. (30), and the forcing
is defined in Eq. (31). The values of the system parameters used are summarized in Tab. 1. Note that in
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the extended version of this article [44], a simpler system where c2 = 0 and k2 = 0 was studied and the
results were more or less similar.

mẍ+ cẋ+ kx+ c2ẋ
2 + k2x

2 + k3x
3 = f(t) (30)

f(t) = F cos(Ω(t)t) F ∈ {F1, F2} Ω(t) = Ω0 +
Ωf − Ω0

tf − t0
(t− t0) t ∈ [t0, tf ] (31)

Tab. 1: Parameters used for the numerical SDOF system and
those defining the swept-sine input signals.

m [kg] c
[
Ns
m

]
k
[
N
m

]
c2

[
Ns2

m2

]
k2

[
N
m2

]
k3

[
N
m3

]
1 0.2 1 0.5 0.3 0.5

F1 [N] F2 [N] Ω0 [Hz] Ωf [Hz] t0 [s] tf [s]

1.0 0.1 0.01
2π

3
2π 0 500

In every test, the initial conditions were x(0) = 0, ẋ(0) = 0 and the system was excited by a swept
sine signal at a certain amplitude. Then, the signals corresponding to two distinct amplitudes, {F1, F2} =
{1.0, 0.1} N , were provided to the algorithms. The sweeps were each 500 seconds long and they covered
the frequency range from 0.01 to 3 rad/s. This frequency range was chosen to encompass the linear natural
frequency at 1 rad/s. The input and output signals are shown in Fig. 2. Note that the response of the
system is clearly not symmetric due to the quadratic nonlinearity in Eq. (30).

These signals were then used to populate Eq. (12) by applying a 240-second-long Hann window with
an overlap of 50% to each time signal. This resulted three spectral averages (per signal), Navg = 3. Each
of the averages consisted of 1201 frequency lines ranging from 0 to 10π rad/s (n = 1201).

The size of the linear system of equations that NIXO needs to solve is a multiple of (n+1) (see Eqs. (16)
and (18)), where n = 1201. In contrast, NIFO solves 1201 much smaller linear systems of equations (one
for each individual frequency line), each of which is independent from all others, as shown for example
in Eq. (B2). To reduce the size of these algebraic problems, after the spectral averages were obtained for
the full range of frequency, the frequency range used in the identification can be narrowed, speeding up
both algorithms. This also focuses the identification on the measurements near resonance, which typically
contain the best signal to noise ratio. In this particular case, frequency range was narrowed from (0, 10π)
to (0.01, 3) rad/s, reducing the problem size from 1201 to 114 frequency samples.

To provide the reader with a visual indication of the level of nonlinearity in the system, the linear
H1-estimator was first applied to the measurements and the results are shown in Fig. 3a. The estimated
linear frequency response functions (FRFs) match the true linear FRF well. To quantify this, the natural
frequency and damping ratio were estimated from the linear FRFs using the Algorithm of Mode Isolation
(AMI) [55] and the results are shown in Tab. 2. They agree well with the true modal natural frequency
and damping ratio, having less than 1% and 6% error, respectively, in every case. On the other hand,
when input/output signals of higher amplitude are provided to the H-estimators, they return an estimates
of the linear FRFs that are distorted by the nonlinearities, as seen in the dashed lines in Fig. 3, and so no
attempt was made to fit a linear model to that measurement. It is worth noting that some systems are
essentially nonlinear [56, 57], so that a linear range does not exist; such a system might not exhibit linear
behavior at any vibration amplitude.

Next, NIXO was applied to the pair of measurements (high and low amplitude), assuming a model
that had three nonlinear terms, c2, k2, and k3, as in Eq. (30). The underlying linear FRFs estimated by
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Fig. 2: Simulated input and output signals used in the SDOF system case study. Subplot (a) presents
the forcing signals: f1(t) and f2(t). Subplots (b-c) show the output displacement and velocity signals
generated by integrating Eq. (30). That output signals x1(t) and v1(t) are the response to forcing f1(t)

and x2(t) and v2(t) are due to f2(t).
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Fig. 3: The estimates of the underlying linear system obtained with the (a) linear H1-estimator and
(b) NIXO algorithms. The results are compared to the true frequency response function.
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the NIXO algorithms are presented in Fig. 3b, and once again the linear modal parameters were extracted
from them using AMI and are shown in Tab. 2. The relative error between them does not exceed 3% for
flin and 8% for ζlin, confirming the accuracy of the linear FRFs estimated by NIXO. When it comes to
the nonlinear part of the system, NIXO identified all three nonlinear coefficients with relative error lower
than 2%, as shown in Tab. 3. There was not a clear pattern regarding whether NIXO was more accurate
when forcing the nonlinear parameters to be real rather than complex, so it appears that either approach
may be viable.

Tab. 2: The quantitative comparison of the linear frequency response function presented in Fig. 3. The
relative difference calculated with respect to the true values of the linear natural frequency and damping

ratio.

flin [Hz] (rel. diff. [%]) ζlin (rel. diff. [%])

Theory 0.1592 0.1
H1 0.1584 0.47 0.1055 5.45

D1 cmplx 0.1547 2.79 0.1056 5.64
D1 real 0.1548 2.77 0.1049 4.86

D2 cmplx 0.1550 2.60 0.1018 1.79
D2 real 0.1548 2.71 0.1041 4.11

Tab. 3: The estimates of the nonlinear c2, k2, and k3 parameters obtained with the NIXO algorithms.

NIXO c2
[
Ns
m

]
(rel. diff.) k2

[
N
m2

]
(rel. diff.) k3

[
N
m3

]
(rel. diff.)

D1 (real) 0.2996 0.12 % 0.3005 0.18 0.5016 0.33 %
D1 (cmplx) 0.2977 + i 0.0034 0.78 % 0.2985 + i 0.0073 0.49 0.5001 + i 0.0019 0.02 %
D2 (real) 0.3006 0.21 % 0.2959 1.37 0.4994 0.12 %

D2 (cmplx) 0.3006 + i 0.0022 0.21 % 0.2981 + i 0.0114 0.63 0.4999 + i 0.0065 0.01 %

For comparison purposes, the NIFO algorithm was also applied to these measurements and the results
are shown in Fig. 4. The NIFO algorithms were applied to the high amplitude signals (i.e. those generated
when F1 = 1 N). Figure 4 shows that the NIFO estimates of both the underlying linear FRF as well as the
nonlinear part of the system are highly inaccurate. The results obtained with the NIFO-based methods
are consistent with the authors’ other experiences trying to use this technique in case studies with the
swept-sine input signals. (In the extended version of this manuscript [44], NIFO was applied to a nonlinear
SDOF system that contained only a cubic nonlinearity and the results were better than those shown here
but still far from ideal.) It is worth noting that although the NIFO algorithms did not work well in this
case study, in which the system was excited with a swept-sine input, other case studies were also run in
which they did work well. Specifically, when a random broadband input was applied to this and similar
systems the NIFO algorithms gave results that were quite comparable to those shown above for NIXO.
This was documented in [58] as well as in the publications of other authors [39,59]. Moreover, a case study
where NIFO accurately identifies a structure excited with a random input is presented in section 4 of this
work.

15



0 0.1 0.2 0.3 0.4

Frequency [Hz]

10-2

100

102
L

in
e

a
r 

F
R

F
 [

s
2
/k

g
]

Theory

NIFO H1

NIFO H2

(a)

0.1 0.2 0.3 0.4

Frequency [Hz]

-15

-10

-5

0

5

10

N
o

n
lin

e
a

r 
p

a
ra

m
e

te
r 

v
a

lu
e

NIFO H1 c
2

NIFO H1 k
2

NIFO H1 k
3

NIFO H2 c
2

NIFO H2 k
2

NIFO H2 k
3

real{  }

imag{  }

(b)

Fig. 4: The estimates of the underlying linear system and nonlinear
c2, k2 and k3 parameters obtained with the NIFO algorithms.

4 Numerical Investigation: Flat Clamped-Clamped Beam

with Cubic Nonlinearity

In order to evaluate the performance of the algorithms for a multi-degree-of-freedom system, they were also
tested using simulated measurements from a two-mode ICE-ROM of a flat beam with clamped-clamped
boundary conditions, see Fig. 5. The beam is similar to the one studied in [37, 39, 59], and its dimensions
were 228.6 × 12.7 × 0.787 mm (length × width × thickness) with Young’s modulus, density and shear
modulus being 2.05× 1011 Pa, 7866 kg/m3 and 8.0× 1010 Pa, respectively.

Fig. 5: Numerical model of a clamped-clamped flat beam excited with a uniformly distributed force.

The structure was modeled with 40 beam elements (resulting in a total of 246 DOFs) and the finite
element model was used to generate a 2-mode ICE-ROM including the first two symmetric modes, i.e.
modes 1 and 3. It was subjected to a forcing that was uniformly distributed in space, as depicted in Fig. 5,
and which models a base excitation, and was either sinusoidal or random in time. Equation (32) presents
the nonlinear equations of motion expressed in the modal domain, which nonlinear part consists of four
cubic terms. Table 4 displays their values together with those describing the underlying linear system. The
units of the nonlinear β-coefficients used in this work are always kg−1m−2s−2. Their units are provided in
Tab. 4 but, for brevity, will be omitted in all other Tables and Figures.{

q̈1 + 2ζ1ω1q̇1 + ω2
1q1 + β1111q

3
1 + β1112q

2
1q2 + β1122q1q

2
2 + β1222q

3
2 = ΦT

1 f(t)

q̈2 + 2ζ2ω2q̇2 + ω2
2q2 + β2111q

3
1 + β2112q

2
1q2 + β2122q1q

2
2 + β2222q

3
2 = ΦT

2 f(t)
(32)

Initial trials revealed that the algorithms performed differently for different types of inputs, so both
swept-sine and broadband inputs were considered. Subsection 4.1 focuses on the case with swept-sine
excitation, while subsection 4.2 on the case with the random forcing. As with the prior case studies, our
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Tab. 4: Linear and nonlinear modal properties of the numerical flat beam.
Nonlinear coefficients values expressed in kg−1m−2s−2.

j ωj [Hz] ζj β111 β112 β122 β222

Mode 1 1 79.026 0.3 % 5.70× 108 1.49× 109 6.47× 109 4.89× 109

Mode 3 2 427.460 0.5 % 3.90× 108 5.08× 109 1.16× 1010 4.31× 1010

initial trials, documented in [44], revealed that nonlinear identification was only successful if the input
signals had large enough amplitude, and so only those case studies are presented here.

4.1 Identification of Mode 1 Using Swept-Sine Forcing Functions

This section presents the outcomes from the case study where the beam is excited near its first NNM with
a uniformly distributed swept-sine forcing function, defined in Eq. (33). The sweep rate, common to each
input signal used, was equal 0.667 Hz

s , see Eq. (34). The remaining parameters describing the case study
are summarized in Tab. 5.

f(t) = Fk cos(Ω(t)t) Ω(t) = Ωst +
Ωend − Ωst

tend
t t ∈ [0, tend] (33)

Ωend − Ωst

tend
= const = 0.667

Hz

s
, (34)

where tend stands for the signal’s length and can be calculated using Eq. (34) and information from Tab. 5.

Tab. 5: Parameters describing the high-amplitude swept-sine
input signals used to excite the numerical flat beam system.

Test Type F1 [N] F2 [N] Ωst [Hz] Ωend [Hz] ∆t [s]

High-Amplitude 4.40× 10−1 2.20× 10−1 50 250 1.50× 10−4

Figure 6 shows the responses measured at the beam’s center during the high-amplitude vibration tests.
The beam experiences extreme deflections, since the maximum displacement of its center is larger than 5
times the beam’s thicknesses. The well known jump phenomenon [54] occurs at approx. 241 Hz and 211 Hz
when the beam is excited with signals of F1 = 4.40 × 10−1 and F2 = 2.20 × 10−1 N, respectively. This
corresponds to the extreme nonlinear natural frequency absolute shifts of 305% and 267%, respectively.

In order to form the matrices required by NIXO, e.g. Eq. (12b), 15.75-second-long Hanning windows
with an overlap of 50% were applied to each time series. This resulted in 94 spectral averages, each
consisting of 52501 frequency samples. As in the previous section, in order to reduce the size of the linear
system of equations solved by NIXO, only the data for frequencies in the range (50, 250) Hz was used.
Based on the sample rate, the maximum frequency range was (0, 33331

3) Hz with a total of 52501 frequency
samples, so this reduced the number of equations to 3151, or by a factor of 16.7.

4.1.1 Results

Figure 7a shows the linear FRFs estimated using the linear H1-estimator as well as those estimated by
NIXO. In this case, both the low and high amplitude signals excited the nonlinearity significantly, as seen
in the linear H1 estimates, hence the linear natural frequency and damping ratio weren’t estimated.

The linear FRF estimates obtained with NIXO are displayed in Fig. 7b and the natural frequencies
and damping ratios estimated from them are shown in Tab. 6. The relative differences do not exceed 0.1%
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Fig. 6: Time and frequency representations of the output signals measured at the beam’s center
in the high-amplitude vibrations tests when the structure was excited with a swept-sine force.
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Fig. 7: The estimates of the underlying linear system obtained with the (a) linear
H1-estimator and (b) NIXO algorithms applied to the pair of swept-sine
signals. The results are compared to the true frequency response function.

for the linear frequencies and 8% for the damping ratios, confirming that NIXO has accurately estimated
the linear FRF from the measurements even though they show strong nonlinearity. Table 7 summarizes
the nonlinear β-coefficients estimated by all four versions of NIXO. The largest error was less than 3% and
most errors were far smaller.

Figure 8 presents the results returned by the NIFO methods. The content of the figure is organized
as follows: the pane on the far left shows the linear FRFs estimated by the H1- and H2-variations of
NIFO compared to the true FRF. The estimates of the nonlinear β-parameters (expressed as functions
of frequency) are displayed in a two by two grid on the right hand side. Each column there shows the
coefficients’ real and imaginary parts, while the two rows present the parameters using the logarithmic
and linear scales. A logarithmic scale is helpful in seeing whether there are frequency ranges where the
parameters are or are not constant, while the parameters of interest are easiest to read on the linear scale.

The outcomes displayed in Fig. 8 show, once again, that the NIFO-based algorithms did not work well
when the structure was excited with swept-sine signals (even if it oscillates at sufficiently high-levels to
excite the nonlinearity). It seems that it is not advisable to use the NIFO identification approach when
swept sine excitation is used.
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Tab. 6: Linear natural frequencies and damping ratios estimated from the linear FRF curves in Fig. 7
and the errors relative to the true values. Identification was not applied to the results of the linear

H1-estimator, so those results are marked with (×).

flin [Hz] (rel. diff. [%]) ζlin (rel. diff. [%])

True 79.0260 0.0030
H1 × × × ×

D1 cmplx 78.9817 0.056% 0.0028 6.33%
D1 real 78.9793 0.059% 0.0028 7.39%

D2 cmplx 78.9787 0.060% 0.0030 1.55%
D2 real 78.9770 0.062% 0.0028 7.40%

Tab. 7: The estimates of the nonlinear β-parameters obtained with the D1- and
D2-based NIXO algorithms applied to the swept-sine signals.

NIXO D1 βreal (rel. error) βcmplx (rel. error)

β111 5.70e+08 (0.01%) 5.70e+08 - i 8.10e+04 (0.00%)
β112 1.50e+09 (0.13%) 1.49e+09 - i 3.21e+05 (0.12%)
β122 6.48e+09 (0.04%) 6.44e+09 + i 4.46e+07 (0.48%)
β222 4.89e+09 (0.09%) 4.76e+09 + i 3.63e+08 (2.77%)

NIXO D2 βreal (rel. error) βcmplx (rel. error)

β111 5.70e+08 (0.03%) 5.70e+08 - i 8.47e+05 (0.01%)
β112 1.50e+09 (0.38%) 1.49e+09 - i 2.51e+07 (0.09%)
β122 6.49e+09 (0.19%) 6.45e+09 - i 3.78e+07 (0.42%)
β222 4.96e+09 (1.25%) 4.78e+09 - i 1.24e+08 (2.32%)

4.2 Identification of Mode 3 Using Random Forcing Functions

The beam was then excited with a uniformly distributed random forcing function, defined in Eq. (35),
where Un(t) is uniform random variable in the range [−1, 1]. Each input signal was 120 seconds long and
had a sample rate of ∆t = 9.00× 10−5 s.

f(t) = F rand × Un(t) F rand ∈ {F rand
1 , F rand

2 } t ∈ [0, 120] s (35)

Figure 9 shows the two responses, x1(t) and x2(t), measured at the beam’s center, obtained using
the inputs {F rand

1 , F rand
2 } = {4.40 × 10−1, 2.20 × 10−3} N, respectively. In the latter test, the maximum

displacement of the beam’s center is slightly larger than 1% of its thickness, thus the beam most likely stays
in the linear regime. On the other hand, the maximum deflection due to the former input reaches 146%
of beam’s thickness, so that significant nonlinearity should be excited. Furthermore, when that signal is
applied to the beam, the peak in the frequency spectra shifts to the right, as illustrated in Fig. 9.

To obtain the NIXO matrices in Eq. (12b), 6.3-second-long Hanning windows with an overlap of 50%
were applied to each time series. This resulted in 37 spectral averages each consisting of 35001 frequency
lines ranging from 0 to 5555.6 Hz. Then, the frequency range was narrowed to (390, 530) Hz reducing the
size of the algebraic problem to be solved by NIXO by a factor of 39.6.
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Linear FRF estimate Nonlinear parameters estimates

50 100 150 200 250

Frequency [Hz]

10-7

10-6

10-5

10-4

10-3

L
in

e
a

r 
F

R
F

 [
s

2
]

True

NIFO H1

NIFO H2
50 100 150 200 250

Frequency [Hz]

10
5

10
10

|R
e
{

}|

111

112

122

222

NIFO H1

NIFO H2

50 100 150 200 250

Frequency [Hz]

10
5

10
10

|I
m

{
}|

111

112

122

222

NIFO H1

NIFO H2

50 100 150 200 250

Frequency [Hz]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

R
e
{

}

10
12

111

112

122

222

NIFO H1

NIFO H2

50 100 150 200 250

Frequency [Hz]

-1.5

-1

-0.5

0

0.5

1

Im
{

}

10
12

111

112

122

222

NIFO H1

NIFO H2

Tab. 1: The estimates of the underlying linear system and nonlinear β-parameters obtained
with the NIFO algorithms applied to the high-amplitude swept-cosine signals.
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Fig. 8: The estimates of the underlying linear system and nonlinear β-parameters obtained
with the NIFO algorithms using high-amplitude swept-sine input signals.
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Fig. 9: Time and frequency representations of the output signals measured at the beam’s center
in the high-amplitude vibrations tests when the structure was excited with a random force.

4.2.1 Results

Figure 10a and Table 8 show the linear frequency response functions and natural frequencies and damping
ratios as in prior sections. The linearH1 estimator nearly produces the underlying linear FRF when applied
to the lower-level signals (corresponding to F rand

2 = 2.20 × 10−3N), and the relative errors between the
natural frequency and damping ratio estimated from that FRF do not exceed 1%. In contrast, significant
distortions are visible for F rand

1 = 4.40× 10−1N , and so once again the linear modal parameters were not
estimated from that measurement. Interestingly, the underlying linear FRFs estimated when NIXO was
applied to the pair of input signals look very similar to that obtained by the H1 estimator for F rand

2 =
2.20×10−3N . All four NIXO algorithms produce results that are visually indistinguishable and are covered
by the NIXO D2 real result shown in Fig. 10b. These results are all shifted to slightly lower frequencies
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than the true FRF, but the relative errors in the linear natural frequencies and damping ratios estimated
from them are all smaller than 1%, as seen in Table 8.
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Fig. 10: The estimates of the underlying linear system obtained with the (a) linear
H1-estimator and (b) NIXO algorithms applied to the burst random

signals. The results are compared to the true frequency response function.

Tab. 8: The quantitative comparison of the linear FRFs presented in Fig. 10. The relative difference
calculated with respect to the true values of the linear natural frequency and damping ratio.

flin [Hz] (rel. diff. [%]) ζlin (rel. diff. [%])

True 427.4600 0.0050
H1 424.8890 0.6015% 0.00496 0.831%

D1 cmplx 425.3758 0.4876% 0.00495 0.959%
D1 real 425.3756 0.4876% 0.00495 0.985%

D2 cmplx 425.3732 0.4882% 0.00495 0.955%
D2 real 425.3736 0.4881% 0.00496 0.861%

Table 9 lists nonlinear parameters identified by NIXO. The D1-based NIXO method found accurate
(less than 3% error) values for all four β-parameters, while its D2-based twin estimated three of the

Tab. 9: The estimates of the nonlinear β-parameters obtained with the D1- and
D2-based NIXO algorithms applied to the high-amplitude burst random signals.

NIXO D1 βreal (rel. error) βcmplx (rel. error)

β111 3.89e+08 (0.34%) 3.89e+08 + i 1.08e+06 (0.36%)
β112 5.07e+09 (0.14%) 5.07e+09 - i 4.66e+03 (0.13%)
β122 1.13e+10 (2.63%) 1.12e+10 + i 3.34e+07 (2.68%)
β222 4.35e+10 (0.98%) 4.33e+10 - i 5.29e+06 (0.65%)

NIXO D2 βreal (rel. error) βcmplx (rel. error)

β111 3.73e+08 (4.38%) 3.75e+08 + i 5.28e+06 (4.01%)
β112 5.04e+09 (0.74%) 5.04e+09 - i 1.80e+07 (0.76%)
β122 9.14e+09 (20.91%) 8.99e+09 + i 8.91e+07 (22.19%)
β222 4.45e+10 (3.28%) 4.46e+10 + i 2.75e+09 (3.47%)
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four accurately. The methods that forced the parameters to be real gave similar results to those that
identified complex parameters. It is worth noting that the case studies shown in [44] found that the D2-
NIXO algorithm would identify a more accurate value for β122 if the forcing amplitude was increased. In
contrast, if excitation signals of lower amplitudes were used, the algorithms would return the correct values
of only one or two of the nonlinear coefficients.

Figure 11 presents the results obtained with the NIFO method. In contrast to the prior case study where
swept-sine signals were used, for the random input signals the NIFO algorithm estimated the underlying
linear FRF very accurately. Furthermore, the real parts of all four β-parameters were estimated as nearly
constant functions of frequency and the imaginary parts of these β-frequency functions are a few orders of
magnitude smaller then their real-counterparts. Hence, one could take the mean of these frequency-varying
functions to estimate the desired nonlinear parameters. The mean values of these β-frequency functions
are summarized in Tab. 10 (the averages were taken over the [390, 530] Hz frequency range). The relative
error between their true and estimated values was less than 1% for all four nonlinear parameters. Similar to
what occured for NIXO, if the amplitude of the random forcing was decreased, then NIFO would accurately
estimate only some of the four β-parameters; the others would show significant variation with frequency
and inaccurate average values [44].
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Tab. 1: The estimates of the underlying linear system and nonlinear β-parameters obtained
with the NIFO algorithms applied to the high-amplitude burst random signals.

Tab. 2: The post-processed numerical representations of the nonlinear parameters
from Fig. 1. The averages taken over the (390, 530) Hz frequency range.

Re{·|avg} NIFO-H1 (rel. error) NIFO-H2 (rel. error)

β111 3.90e+08 (0.03%) 3.90e+08 (0.05%)
β112 5.08e+09 (0.03%) 5.08e+09 (0.00%)
β122 1.16e+10 (0.67%) 1.16e+10 (0.05%)
β222 4.31e+10 (0.13%) 4.30e+10 (0.07%)

1

Fig. 11: The estimates of the underlying linear system and nonlinear β-parameters obtained
when the NIFO algorithms were applied to the signals with random excitation of F rand

1 = 4.40× 10−1 N.

Tab. 10: Nonlinear parameters obtained by NIFO by averaging the values
in Fig. 11 over the (390, 530) Hz frequency range.

Re{·|avg} NIFO-H1 (rel. error) NIFO-H2 (rel. error)

β111 3.90e+08 (0.03%) 3.90e+08 (0.05%)
β112 5.08e+09 (0.03%) 5.08e+09 (0.00%)
β122 1.16e+10 (0.67%) 1.16e+10 (0.05%)
β222 4.31e+10 (0.13%) 4.30e+10 (0.07%)
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4.3 Performance Analysis

Table 11 presents a comparison of the computational time NIXO and NIFO needed to solve the three
numerical case studies. All calculations were run on a standard desktop computer using Intel® Core�

i7-8550U CPU processor. In all cases the computation time of the NIXO algorithm is similar to that of
NIFO. This is surprising, as the NIXO algorithm solves one much larger linear system while NIFO inverts
a much smaller system, although NIFO must repeat that inversion at every frequency line. Because the
time needed to solve a linear system typically scales with the square of the size of the matrix, one would
expect NIXO to be slower. However, this outcome could be explained by the fact that Matlab solves linear
systems of equations by sending them to libraries of highly optimized routines while all of the data transfer
required to set up thousands of smaller linear systems happens in the slower scripting environment.

Tab. 11: Computation times for NIXO and NIFO for various case studies.

Case i NIXO-Di [s] NIFO-Hi [s] Ratio NIXO/NIFO

SDOF system with swept sine input
1 15.1 14.3 1.05
2 20.1 17.0 1.18

Numerical beam with swept sine input
1 15.1 14.3 1.05
2 20.1 17.0 1.18

Numerical beam with burst random input
1 2781 4904 0.57
2 3433 5057 0.68

5 Experimental Investigation: Identification of 3D-Printed

Flat Beam

The experimental set-up considered here is shown in Fig. 12a. The structure was excited using a Modal
Exciter 100 lbf Model 2100E11 powered by a 2050E05 Linear Power Amplifier. The voltage input signal
was generated using Polytec software and then sent to the shaker. The motion was measured at the three
points of the beam; namely, the PSV-400 Scanning Vibrometer recorded the velocity at the beam’s center,
while two PCB352C23 accelerometers (attached to the structure) recorded the vibrations of the points
located 37.08 millimeters from the beam’s ends (see also Fig. 12b).

Figure 12 also shows the 3D-printed polylactide (PLA) sample used in the experiment. The thin and
thick parts of the sample, called respectively beam and backing, are 3D-printed together as one piece. This
prevents the beam’s ends from slipping even when it oscillates at high amplitudes, so that the nonlinearity
is purely geometric. When bolted joints are used as in [37] then one has to take care that the joints do not
slip. That said, bolted structures are an important source of nonlinearity in industry and would certainly
be of interest in a future work, but this study focuses on geometric nonlinearity only.

Tab. 12: Nominal dimensions and masses of the 3D printed sample and accelerometers.

Length [mm] Width [mm] Thickness [mm] Approx. mass [g]
Approx. mass of one
accelerometer [g]

Beam 180 8 2 3.7696
0.1984

Backing 200 30 30 130.00

The estimated mass and nominal dimensions of the 3D-printed sample and accelerometers are summarized
in Table 12. It is worth noting that the beam’s dimensions are nominal and subject to variation due to the
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(a) (b)

Fig. 12: Photographs of (a) the experimental setup and (b) the longitudinal
cross-section of beam model with the accelerometers attached.

3D printing process. The mechanical properties, such as the Young’s modulus and Poisson ratio, would
also be difficult to know precisely as they depend on the manufacturing process. Instead of measuring these
quantities, the dynamic properties of the system, consisting of the sample with the attached accelerometers,
are defined using their linear modal parameters, which were extracted from the frequency response function
in Fig. 13 and are summarized in Table 13.
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Fig. 13: Measured low-amplitude FRF of the beam-accelerometer assembly. Fit to the FRF computed
using the Algorithm of Mode Isolation (AMI) [55]. The fit is done to the first two peaks only, since those

are the modes of primary interest. The peaks at 887.5 and 1337.0 Hz are the modes of the backing.

A steel stinger connected the sample to the shaker. Moreover, the samples were designed such that the
backing part can be modeled as a rigid body in the frequency range of the modes of interest. This allows
the external point-force, which was applied via the stinger to the center of the backing, to be converted into
a uniformly distributed force acting on the beam, see Fig. 14. The geometry of the beam-accelerometer
assembly is represented with 3 points that correspond to the locations of the two accelerometers and laser.
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Tab. 13: Linear modal properties of the flat beam-accelerometer assembly.

Mode ID ω0,k [Hz] ζk Mode shape

1 91.076 0.0119 1st bending of thin clamped-clamped beam

2 462.6952 0.0466
3rd bending of thin clamped-clamped beam

(2nd symmetric bending)

In the tests performed, the Polytec software system was used to excite the structure with swept-sines of
different amplitudes and to record the time responses.

(a) (b)

Fig. 14: (a) Locations of the input and output channels and (b) visualization of the external point-force
applied at the backing’s center being converted into a distributed inertial force.

5.1 Conversion of the Input Voltage Signal into a Distributed Force

In order to model the system with a reduced order model as was done in Sec. 4, the point force applied to
the beam backing was converted into a distributed forcing acting on the thin beam. The conversion was
validated using low amplitude measurements as described below. As presented in Fig. 15, measurements
were performed with four low level swept-sine input signals and the results were used to validate the
conversion.

The low-level responses were measured on the beam for input voltages Fin ∈ {0.010, 0.015, 0.025,
0.050} volts, and are shown in Fig. 15. Then, a distributed force F = Fmag[1, 1, 1]

T was applied to
a linear modal model, Eq. (36), for the structure and Fmag was adjusted until the two agreed. The
resulting values of Fmag were {1.6670, 2.8763, 5.1968, 11.054} × 10−3 newtons. The Fmag data was then
expressed as a function of Fin as shown in Fig. 15b together with the linear regression fit showing that
Fmag ≈ 0.2343Fin − 6.5897× 10−4 – where Fmag and Fin are expressed in newtons and volts, respectively.
It is worth noting that Fig. 15a shows that the tested sample exhibits slight frequency shifts even when
the oscillations are low-level. Nevertheless, the linear system model, Eq. (36), with the parameters ω0,1

and ζ1 adjusted accordingly, was assumed to be adequate to estimate the voltage-force conversion.

Vtheory
lin =

NRB∑
k=1

−ΦRB
k

(
ΦRB

k

)T
F

Ω
+

Nlin∑
k=1

ΦkΦ
T
kFΩ

ω2
0,k − Ω2 + 2iζkω0,kΩ

, (36)

where Φk and ΦRB
k are, respectively, the k-th columns of the mass-normalized elastic and rigid body mode

shapes presented in Eq. (37).

25



Φ = [Φ1,Φ2] =

10.60 22.58
25.96 −20.99
10.60 22.58

 1√
kg

(37a)

ΦRB = ΦRB
1 =

8.633× 10−2

8.633× 10−2

8.633× 10−2

 1√
kg

(37b)

The relation between these two quantities does not have to stay linear with increasing vibration
amplitude [60]. However, in the author’s previous work on a different nonlinear system identification
method [22] the experimental tests were run using the same shaker and very similar beams. Moreover, the
voltage was converted into evenly distributed force using similar idea to that presented in this section, and
the nonlinear normal modes of the object were successfully identified up to the input signals exceeding
300 mV. Hence, the linear conversion between the voltage and forcing is assumed to be accurate enough
for the case study presented in this work.
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Fig. 15: Comparison of (a) the low level velocity response measured at the beam’s center and modeled
using Eq. (36). Chart (b) presents the input voltage amplitudes that were applied to the backing and the

corresponding force magnitudes used in the model, as well as a linear regression.

5.2 Identification of Mode 1 Using Swept-Sine Forcing Functions

5.2.1 Distinguishing Between the Coherent and Incoherent System ID Attempts

To identify the first nonlinear mode of the beam-accelerometer assembly, the modal equation of motion
presented in Eq. (38) is postulated. It contains the usual linear terms and a single cubic nonlinear term.
Because the beam is flat, it is reasonable to assume that the nonlinearity is only cubic.

q̈1 + 2ζ1ω1q̇1 + ω2
1q1 + β1111q

3
1 = ΦT

1 f(t) (38)

The structure was excited with nine swept-sines from 50 to 150 Hz, and the displacement and velocity
obtained at the three measurement points defined in Fig. 14a are shown in Fig. 16. This range was chosen
to encompass the first linear natural frequency, which was at 91 Hz. The measured accelerations a1 and
a3 in Fig. 14a were integrated by dividing the FFT of the signals by iω and high-pass filtered with a
butterworth filter to estimate velocity and again for displacement. The same approach was used to obtain
the displacement from the laser vibrometer signal. Finally, these signals were used with the identified
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mode shape matrix in Eq. (37a) to estimate q1 and q̇1 in Eq. (38) as [q1, q2]
T = Φ†[x1, x2, x3]

T. Every
swept-sine signal was 204.8 seconds long, and was sampled with ∆t = 3.9063× 10−4 seconds. The voltage
sent to the shaker amplifier varied from 10 mV to 300 mV to activate the nonlinearity to varying degrees.
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Fig. 16: Filtered (a, c, e) displacement and (b, d, f) velocity signals
measured with the laser vibrometer and two accelerometers. Subscripts

k ∈ {1, 2, 3} of xk(t) and vk(t) correspond to those in Fig. 14a.
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In total, the structure was excited with the swept-sines of the following amplitudes: Fin ∈ {10, 15, 25,
50, 100, 150, 200, 250, 300} mV, or Fmag ∈ {1.684, 2.856, 5.199, 11.056, 22.771, 34.486, 46.201, 57.916,
69.631} × 10−3 N. The i/o signals collected in 7 tests were grouped into 21 pairs, listed in Tab. 14, and
provided to the NIXO algorithms. These signals come from experiments where Fin ∈ {25, 50, 100, 150,
200, 250, 300} mV; those with Fin ∈ {10, 15} mV were not included because the structure was oscillating
at too small of amplitudes to excite the nonlinearity significantly. To form Eqs. (12b), a 15.75-second-long
Hanning windowing with an overlap of 50% was applied to each time series. This resulted in 25 spectral
averages, each consisting of 20161 frequency samples. To reduce the size of the linear least squares problem,
the frequency range was narrowed from (0, 1280) Hz to (50, 150) Hz (1575 frequency lines), reducing the
size by a factor of 12.8.

Tab. 14: NIXO algorithms operated on pairs of input/output signals as listed below.

Voltage Amplitude [mV ]

1st Signal 2nd Signal # of pairs

50 { 25} 1
100 { 50, 25} 2
150 {100, 50, 25} 3
200 {150, 100, 50, 25} 4
250 {200, 150, 100, 50, 25} 5
300 {250, 200, 150, 100, 50, 25} 6

Together: 21 pairs

The identification process can be divided here into three steps: (i) first, NIXO was applied to all
21 pairs; then, (ii) the nonlinear coefficients obtained by the real and complex versions of the algorithm
were compared; (iii) finally the nonlinear coefficients obtained were evaluated to assess their accuracy, as
explained below. Those case studies that met the accuracy criteria are highlighted in green in Tab. 16 and
are listed in Tab. 15. They all correspond to cases where the excitation amplitude was relatively large.

Tab. 15: The nine case studies considered to be valid.

Voltage Amplitude [mV ]

1st Signal 2nd Signal # of pairs

150 {100} 1
200 {150, 100} 2
250 {200, 150} 2
300 {250, 200, 150, 100} 4

Together: 9 pairs

Two metrics, defined in Eq. (39), were found to be helpful in identifying the cases that gave reasonable
results. The γreal and γcmplx parameters occurring in Eq. (39) represent the estimates of the nonlinear
coefficients returned by, respectively, the real- and complex-versions of NIXO. Hence, ∆∗ expresses the
relative difference between the coefficient that is forced to be real and the real part of the complex one.
On the other hand, ∆∗∗ is defined as the relative difference between the real and imaginary parts of the
complex solution.

∆∗ =
∥γreal −Re {γcmplx} ∥

γreal
(39a)

∆∗∗ =
∥Re {γreal} − Im {γcmplx} ∥

∥Re {γreal} ∥
(39b)
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NIXO was judged to have accurately identified the system when: (i) ∆∗ is a small number, meaning
that γreal and γcmplx are similar, and (ii) ∆∗∗ is close to 1.0, meaning that the imaginary part of the
complex solution is relatively small. For the case studies used to date, the two consistency criteria were
quantified using the tolerances shown in Eq. (40), and both were required to be satisfied simultaneously
for the identification to be judged as accurate.{

∆∗ ≲ 0.10

∆∗∗ ≳ 0.90
(40)
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Tab. 16: Estimated values of the nonlinear coefficients obtained with the D1- and D2-based NIXO
methods. Rows in which the β111 satisfies the consistency criteria (40) are marked with green.

D1-based NIXO

Case Signal 1 Signal 2 β111 estimate βreal111 Re
{
βcmplx
111

}
Im

{
βcmplx
111

}
∆∗ ∆∗∗

1 50 25 -1.144e+12 -1.144e+12 -1.144e+12 4.351e+12 0.00 280.23
2 100 50 4.784e+12 4.784e+12 4.784e+12 3.482e+12 0.00 27.20
3 100 25 2.996e+12 2.996e+12 2.996e+12 3.724e+12 0.00 24.28
4 150 100 1.107e+13 1.107e+13 1.107e+13 1.184e+12 0.00 89.30
5 150 50 8.032e+12 8.032e+12 8.032e+12 2.229e+12 0.00 72.25
6 150 25 6.257e+12 6.257e+12 6.257e+12 2.643e+12 0.00 57.76
7 200 150 1.320e+13 1.320e+13 1.320e+13 1.028e+12 0.00 92.21
8 200 100 1.125e+13 1.125e+13 1.125e+13 1.143e+12 0.00 89.84
9 200 50 8.832e+12 8.832e+12 8.832e+12 1.828e+12 0.00 79.30
10 200 25 7.297e+12 7.297e+12 7.297e+12 2.135e+12 0.00 70.74
11 250 200 1.620e+13 1.620e+13 1.620e+13 1.426e+12 0.00 91.20
12 250 150 1.315e+13 1.315e+13 1.315e+13 1.377e+12 0.00 89.53
13 250 100 1.125e+13 1.125e+13 1.125e+13 1.392e+12 0.00 87.63
14 250 50 8.941e+12 8.941e+12 8.941e+12 1.897e+12 0.00 78.79
15 250 25 7.575e+12 7.575e+12 7.575e+12 2.110e+12 0.00 72.14
16 300 250 1.860e+13 1.860e+13 1.860e+13 1.173e+12 0.00 93.70
17 300 200 1.564e+13 1.564e+13 1.564e+13 1.348e+12 0.00 91.38
18 300 150 1.309e+13 1.309e+13 1.309e+13 1.293e+12 0.00 90.13
19 300 100 1.140e+13 1.140e+13 1.140e+13 1.364e+12 0.00 88.03
20 300 50 9.266e+12 9.266e+12 9.266e+12 1.775e+12 0.00 80.85
21 300 25 7.992e+12 7.992e+12 7.992e+12 1.968e+12 0.00 75.38

D2-based NIXO

Case Signal 1 Signal 2 β111 estimate βreal111 Re
{
βcmplx
111

}
Im

{
βcmplx
111

}
∆∗ ∆∗∗

1 50 25 -4.624e+11 -4.624e+11 -4.624e+11 3.828e+12 0.00 727.87
2 100 50 5.306e+12 5.306e+12 5.306e+12 3.300e+12 0.00 37.81
3 100 25 3.436e+12 3.436e+12 3.436e+12 3.453e+12 0.00 0.49
4 150 100 1.093e+13 1.093e+13 1.093e+13 1.104e+12 0.00 89.90
5 150 50 7.635e+12 7.635e+12 7.635e+12 2.651e+12 0.00 65.29
6 150 25 5.826e+12 5.826e+12 5.826e+12 2.976e+12 0.00 48.93
7 200 150 1.112e+13 1.112e+13 1.112e+13 6.032e+11 0.00 94.58
8 200 100 1.043e+13 1.043e+13 1.043e+13 9.600e+11 0.00 90.80
9 200 50 8.082e+12 8.082e+12 8.082e+12 2.152e+12 0.00 73.38
10 200 25 6.605e+12 6.605e+12 6.605e+12 2.437e+12 0.00 63.10
11 250 200 1.236e+13 1.236e+13 1.236e+13 1.588e+12 0.00 87.15
12 250 150 1.093e+13 1.093e+13 1.093e+13 1.324e+12 0.00 87.88
13 250 100 1.011e+13 1.011e+13 1.011e+13 1.310e+12 0.00 87.04
14 250 50 8.242e+12 8.242e+12 8.242e+12 2.162e+12 0.00 73.77
15 250 25 6.970e+12 6.970e+12 6.970e+12 2.374e+12 0.00 65.95
16 300 250 1.322e+13 1.322e+13 1.322e+13 6.080e+11 0.00 95.40
17 300 200 1.201e+13 1.201e+13 1.201e+13 1.104e+12 0.00 90.81
18 300 150 1.094e+13 1.094e+13 1.094e+13 1.111e+12 0.00 89.85
19 300 100 1.010e+13 1.010e+13 1.010e+13 1.279e+12 0.00 87.35
20 300 50 8.491e+12 8.491e+12 8.491e+12 2.006e+12 0.00 76.37
21 300 25 7.326e+12 7.326e+12 7.326e+12 2.210e+12 0.00 69.84
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5.2.2 System Identification Results

Table 16 presents the estimates of the nonlinear part of the system obtained with the D1- and D2-based
NIXO methods. If one considers all of the estimates that satisfy the criteria in Eq. (40) to be independent
and equally valid, then the statistics of the β111 parameter can be computed. The minimum and maximum
observed values as well as the average and standard deviation are reported in Tab. 17.

Tab. 17: Statistical analysis of the results marked with green in Table 16.

β111 estimate min max average st. dev.

NIXO D1 1.11× 1013 1.86× 1013 1.37× 1013 17.69%
NIXO D2 1.01× 1013 1.32× 1013 1.13× 1013 8.28%

The true value of the nonlinear parameter β111 is unknown, so the NNM of the system was visualized
to seek to validate these results. Figure 17 presents the NNM curves computed from Eq. (38), using
various values for β111, superimposed on the velocity time signals. The β111 values used were in the range
(1.10, 1.60) × 1013 kg−1m−2s−2. Those NNMs seem to qualitatively capture the jump-down behavior of
the nonlinear system, so this seems to be a reasonable range for the β111 parameter. Even then, the actual
system seems to stiffen more slowly at first and then more rapidly at higher amplitudes, so perhaps there
are additional polynomial terms that need to be added to capture the true behavior more accurately. This
will be explored in future works.
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Fig. 17: The NNM curves computed from Eq. (38) and
the velocity time signals measured at the beam’s center.

When it comes to the linear part of the system, the linear H1-estimator was applied to the measured
signals and (as expected) returned approximations of the linear FRFs that were distorted by the structure’s
nonlinearity, as shown in Fig. 18. On the other hand, Figure 19 shows the average of the frequency response
functions obtained with NIXO, where the average was over those obtained from the 9 valid case studies.
The reference FRF, obtained with the linear H1-algorithm applied to the low level data, is also shown.
The nine individual results can be seen in Appendix B.
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The curves displayed in Fig. 19 show that NIXO removes most of the nonlinear distortions seen in
Fig. 18 from the system, capturing them with the β111 term. The curves are compared quantitatively
in Tab. 18, as in prior sections. The relative differences between the estimated and reference natural
frequencies are less than than 5.03%, while the differences between the linear damping ratios are as high
as 165%.
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Tab. 18: Comparison of the average and reference linear FRFs presented in
Fig. 19. Relative differences are calculated with respect to the data obtained

with the linear H1-estimator applied to the low-amplitude i/o signals.

Algorithm nat. freq [Hz] rel. diff. lin. damping rel. diff.

H1 91.076 0.0119

NIXO D1 cmplx 86.686 (4.82%) 0.0273 (129.94%)
NIXO D1 real 86.492 (5.03%) 0.0314 (164.52%)

NIXO D2 cmplx 87.763 (3.64%) 0.0230 (94.07%)
NIXO D2 real 87.593 (3.82%) 0.0279 (135.51%)

6 Conclusion and Future Work

This paper has introduced a novel system identification method called NIXO (Nonlinear Identification
through eXtended Outputs), which is an extension of NIFO (Nonlinear Identification through Feedback of
the Outputs) that forces the nonlinear modal parameters to be identical at each frequency line. NIFO solves
many individual linear systems of equations at each frequency sample, what implies that the calculated
nonlinear parameters can vary with frequency. The NIXO algorithms return only a single value for the
nonlinear modal parameters, but in turn must solve a much larger linear system of equations.

Two variations of NIXO were presented; namely, the D1- and D2-based NIXO. In the examples studied
to date, both seem to give similar results and considering the fact that both can be easily applied to the
same measurements, it seems advisable to try both approaches and compare the results. That said, if the
measurements were known to have significantly more noise on either the input or output then one could
evaluate the statistical performance of the D1 and D2 approaches and one or the other may be clearly
superior.

The proposed NIXO algorithms were validated by applying them to simulated measurements from a
single degree-of-freedom nonlinear system, a two-mode ICE-ROM of a flat beam and to real measurements
from a 3D-printed flat beam, whose response exhibited geometric nonlinearity. The input forces used to
excite the structures are either burst random or swept sine signals. In all case studies, it was observed that
all algorithms gave erroneous results if the input signals used did not have large enough magnitudes. This
is certainly not surprising, although what constitutes a ”large enough” magnitude is not easy to define in
general. In the case studies presented here, the inputs that were large enough induced an easily measurable
shift in the natural frequency of the mode in question; in other words, if the linearH1-estimator was applied
to the input and output signals it would produce an FRF that was significantly distorted. When NIXO
and NIFO were successful, they removed these distortions and produced the FRF for the linearized system,
i.e. the system oscillating at low amplitude.

Both NIXO and NIFO were successful in many of the case studies presented here. The algorithms
are similar to some extend, i.e. analogous concepts are used in their derivation and they require almost
exactly the same steps to identify a mechanical system. However, certain difference between the two
methods can also be pointed out. First, the results returned by NIXO are constant and real, while those
obtained with the NIFO method are frequency-dependent and complex, thus they require an additional
post-processing step. Moreover, the NIFO method seems to be incompatible with the swept-sine inputs,
since it produced erroneous results when such signals were used. On the other hand, NIFO works very
well when the mechanical system was excited with a random forcing signal. In contrast, in all of the case
studies performed to date, NIXO worked for either type of forcing signal.

Finally, while the results of the NIXO algorithm are promising to date, it did not fully capture the
nonlinear dynamics of the 3D-printed, geometrically nonlinear beam. It is worth mentioning that already
existing powerful methods such as PLL, CBC, and RCT have provided accurate estimates of the NNMs
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geometrically nonlinear structures similar to that studied here [19, 21]. However, it is important to note
that these approaches require specialized hardware to implement the closed-loop control scheme. They
also typically do not identify a model that can be used to predict the response to a general input, which
was the goal in this work.

Future work will further investigate the application of NIXO to structures with geometric nonlinearity,
possibly by considering more complicated nonlinear models for the system, including interactions between
modes. To explore the limitations of the method, NIXO should also be applied to more complex mechanical
systems, such as structures with friction or material nonlinearity, or to nonlinear systems where the modes
are not well-separated. Additionally, a comparison of the algorithm to effective and popular nonlinear
identification methods that are currently available (such as TNSI, FNSI, or the methods using closed-loop
control mentioned earlier in this section) should be conducted to determine if NIXO can identify mechanical
systems that these methods can handle.
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[21] Karaağaçlı, T., and Özgüven, H. N., 2022. “Experimental Quantification and Validation of
Modal Properties of Geometrically Nonlinear Structures by Using Response-Controlled Stepped-Sine
Testing”. Experimental Mechanics, 62(2), Feb., pp. 199–211.

[22] Kwarta, M., and Allen, M. S., 2022. “Nonlinear Normal Mode backbone estimation with near-resonant
steady state inputs”. Mechanical Systems and Signal Processing, 162, p. 108046.

[23] Masri, S. F., and Caughey, T. K., 1979. “A Nonparametric Identification Technique for Nonlinear
Dynamic Problems”. Journal of Applied Mechanics, 46(2), 06, pp. 433–447.

[24] Bonisoli, E., and Vigliani, A., 2007. “Identification techniques applied to a passive elasto-magnetic
suspension”. Mechanical Systems and Signal Processing, 21(3), pp. 1479 – 1488.
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Appendices

A NIFO Algorithms for Reduced Order Models

A.1 H1–based NIFO for ROMs

The original NIFO estimator was proposed in [33]. It is derived by first rearranging Eq. (12b) into the
form presented in (B1a) and then post-multiplying the equation by matrix

[
ΨH

k (Pv
1)

H . . . (P1)
H . . .

]
,

vide Eq. (B1b). The modified H1 algorithm is based on Eq. (B2), where the quantity H stands for the
Frequency Response Function (FRF) defined in Eq. (11). Note that Eq. (B2) can be written and solved
separately for each individual frequency sample.

Qk =
[
Hk −γv1Hk . . . −γ1Hk . . .

]

Ψk

Pv
1
...
P1
...

 (B1a)

Qk
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H . . . (P1)
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]
=

=
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1
...
P1
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ΨH

k (Pv
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H . . . (P1)
H . . .

]
(B1b)
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SQΨ SQP v

1
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]︸ ︷︷ ︸
Scross
H1

=
[
Hk γv1Hk . . . γ1Hk . . .

]︸ ︷︷ ︸
x
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Sauto
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(B2)
Hermitian Matrix

The H1–based NIFO algorithm results in multiple systems of linear equations of a form Scross
H1 = xSauto

H1 .
Matrix Sauto

H1 is square and – for the structural dynamics problems considered in this work – it is usually
non-singular. Hence, it might be possible to accurately estimate the frequency response function H(Ω)
and parameters γvj and γj via solving Eq. (B2). It is worth mentioning that these linear problems are of
much smaller size than their NIXO-counterparts. However, NIFO requires solving multiple systems (each
corresponding to a different frequency line), while the focus of NIXO is solving only one relatively large
linear problem.

Note that the nonlinear parameters γvj and γj are introduced in Eq. (7) as real and constant numbers.
However, if the Eq. (B2) is solved, they will be found as complex and possibly frequency-dependent, since
(as already mentioned above) some of the parameters in Eq. (B2) are complex and the system of equations
is solved for each individual frequency sample.
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A.2 H2–based NIFO for ROMs

The H2–based NIFO algorithm was first presented in [34]. Its derivation starts with extending Eq. (B1a)
with additional pseudo-outputs. They correspond to the nonlinear terms in the EOM, as shown in
Eq. (B3a). Then, in order to obtain Eq. (B4), which is the base formula of the modified H2 algorithm, one

must right-multiply Eq. (B3a) by matrix
[
QH (Pv,k

1 )H . . . (Pk
1)

H . . .
]
, see Eq. (B3b).
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Analogous to theH1–based NIFO, itsH2-based twin also estimates the nonlinear γvj - and γj-parameters
as complex and frequency-dependent. A detailed derivation of the method together with the case studies
illustrating its accuracy and performance are presented in [34].
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B Linear FRFs From the Nine Valid Experimental Case

Studies

Figure 20 presents the linear frequency response functions found by NIXO in the nine case studies marked
with green in Tab 16. In these system identification attempts only, the ∆-parameters – specified in
Eq. (39) – satisfy the accuracy criteria (40). Additionally, the FRF curves are compared to the reference
ones obtained with the popular linear H1-estimator applied to the low-amplitude i/o signals. The results
presented in the nine subplots below were used to calculate the average linear FRF presented in Fig. 19
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Fig. 20: Linear FRFs found in the case studies marked with green in Tab. 16.
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