

A Gaussian Process Regression Reduced Order Model of GNL Structures Introduction - Presenter : Kyusic Park **Digital Twin of Geometrically Nonlinear Structures** · Thin structures of high-speed vehicles exhibit highly nonlinear dynamics when subjected to severe aerodynamic or aerothermal stress · The FE methods have been well-established to simulate the nonlinear dynamics Advanced vehicle under extreme aerothermal stress Time history responses Frequency response functions (FRFs) · Power spectral densities (PSDs) NNMs However, the computational overhead for integrating the nonlinear response becomes prohibitive as FE models (FEMs) become large · Brings a need of a Reduced Order Model FEM/FEA^[1] Experiment^[2] [1] K. Park, and M. S. Allen., Proceedings of IMAC 39th, 83-93. 2021 W WISCONSIN [2] D. A. Ehrhardt, et al., MAC 36th, 2018

A Gaussian Process Regression Reduced Order Model of GNL Structures	- Presenter : Kyusic Park	Introduction						
A Data-Driven ROM								
This study presents a regression-based, data-driven ROM methodology for geometrically nonlinear structures								
Issue #1) A Typical ROM only represents a single FEM configuration								
Issue #2) A Typical ROM is composed of redundant & sensitive nonlinear coefficients	fficients							
		6						

A Gaussian Process Regression Reduced Order Model of GNL Structures - Presenter : K	yusic Park Introduction
A Data-Driven ROM	
This study presents a regression-based, data-driven ROM methodology for geometrica	lly nonlinear structures
 Issue #1) A Typical ROM only represents a single FEM configuration The proposed ROM is a trained regression model, which incorporates the param Physical intuition can be transferred from FEM to ROM e.g.) Sensitivity/gradient of ROM w.r.t. FEM Eliminates a need of repetitive ROM computation, and directly predicts a ROM from 	eter variations in FEM m any new FEM configuration
Issue #2) A Typical ROM is composed of redundant & sensitive nonlinear coefficients	
	7

A Gaussian Process Regression Reduced Order Model of GNL Structures	- Presenter : Kyusic Park	Introduction
A Data-Driven ROM		
This study presents a regression-based, data-driven ROM methodology	for geometrically nonlinea	r structures
 Issue #1) A Typical ROM only represents a single FEM configuration The proposed ROM is a trained regression model, which incorpora Physical intuition can be transferred from FEM to ROM e.g.) Sensitivity/gradient of ROM w.r.t. FEM Eliminates a need of repetitive ROM computation, and directly pred 	ates the parameter variation	ons in FEM FEM configuration
 Issue #2) A Typical ROM is composed of redundant & sensitive nonlinear contract of the proposed ROM applies Gaussian Process Regression (GPR with respect to the applied loads for a given set of training data Enhances the robustness and computational efficiency of ROM by for the proposed regression of the proposed regression (GPR) applied loads for a given set of training data 	e <mark>fficients</mark>), and evaluates the uncer iltering out the sensitive n	tainty of ROM parameters onlinear ROM parameters
WISCONSIN		8

Numerical studies

- Presenter : Kyusic Park

1.1. 2DOF GPR ROM of Flat Beam • Number of training samples, $N_{\rm tr} = 20$ - The predicted quadratic terms were very uncertain and had large variances ($\overline{\sigma}_{{
m Knl}}$) from being zero • Total number of load cases: 20 x 7 = 140 • They were very sensitive to the load scaling factor, f_r Random load scaling factor, $f_r \in [0.25, 0.75]$ x beam thickness · Corresponds with the known physics: quadratic terms have negligible effect on the symmetric beams • Number of testsets for prediction, N_{tr} = 900 Observations GPR predictions 3 95% prediction <STD of the GPR ROM predicted by the test sets, Mode 1 > 1.5 2 a,1,22 7,22 $\beta_{1,111}$ β_{1,113} $\beta_{1,331}$ $\beta_{1,333}$ °1, 1 ₽ 1 $\alpha_{1,33}$ $\alpha_{1,13}$ $\alpha_{1,11}$ 0.5 0.770 0.924 0.485 0.003 0.008 0.003 0.003 $\bar{\sigma}_{\mathrm{y}}$ 0 0 -1 -0.5 -20 0.5 Axial Spring Stiffness 0.5 Axial Spring Stiffness 0.5 Axial Spring Stiffness <STD of the GPR ROM predicted by the test sets, Mode 3 > 6 3 4 Λ α_{3,13} $\beta_{3,111}$ $\beta_{3,113}$ $\beta_{3,331}$ $\beta_{3,333}$ α_{3,11} $\alpha_{3,33}$ a3, 22 $a_{3, 11}$ 2 1.346 1.247 0.663 0.003 0.032 0.012 0.005 de la $\bar{\sigma}_{v}$ 0 0 Observation -2 0 GPR prediction 95% prediction -20 0.5 Axial Spring Stiffness 0.5 Axial Spring Stiffness 0.5 Axial Spring Stiffness WISCONSIN 15

A Gaussian Process Regression Reduced Order Model of GNL Structures

A Gaussian Process Regression Reduced Order Mode	I of GNL Structures	- Presenter : Kyusic Park	Numerical studies
2. Curved Beam			
rinn E, r	Inputs Young's T T T Uniform	modulus (E) and radius of curvatur The parameters have a significant uncertain They also have a significant effect on the dy Ily sampled within the range of ±50%	e (r) ties due to the manufacturing variability namic response % of the nominal values
 Model parameters Length: 180mm Width: 8.32mm Thickness: 2.6mm Radius of curvature: 3,175mm Young's modules: 3.10 x 10⁹ N/m² Density: 1,248.36 kg/m³ Poisson's ratio: 0.33 60 beam elements 	Output: GF 3-DOF	PR-ROM GPR ROM (Mode 1 & 2 & 3)	
			22

A Gaussian Process Regression Reduced Order Model of GNL Structures

```
- Presenter : Kyusic Park
```

Numerical studies

A Gaussian Process Regression Reduced Order Model of GNL Structures **Numerical studies** - Presenter : Kyusic Park 2.2. GPR ROM Filtering for Redundant Coefficients • N_{tr} = 10 x 10 = 100 - The nonlinear coefficients could be reduced by less than 50% by the filtering $~(N_{\rm nl}$ = 48 \rightarrow 21) • Total number of load cases: 100 x 16 = 1,600 • The mean STD of the GPR ROM significantly decreased: $\overline{\sigma}_{\rm GPR}$ = 0.232 ightarrow 0.060 • *f*_r ∈ [0.25, 3.00] x beam thickness • N_{te} = 900 • $\overline{\sigma}_{max} = [0.10, 0.10, 0.30]$ Iteration #3 Iteration #5 Iteration #6 Iteration #7 Iteration #1 Iteration #2 Iteration #4 $N_{\rm pl}$ 48 38 29 24 23 21 21 $N_{nl, Mode 1} \pmod{\overline{\sigma}_y}$ 16 (4.1176) 11 (0.6116) 7 (0.0879) 6 (0.2151) 7 (0.0879) 7 (0.0879) 7 (0.0879) 6 (0.3871) $N_{\rm nl,\;Mode\;2}~({\rm max}\;\overline{\sigma}_{\rm y})$ 16 (0.5863) 14 (0.2612) 11 (0.3664) 8 (0.5014) 7 (0.0496) 7 (0.0496) $N_{\rm nl, \, Mode \, 3}$ (max $\overline{\sigma}_{\rm y}$) 16 (1.5380) 13 (0.3408) 11 (0.1897) 10 (0.5009) 9 (0.3919) 8 (0.2702) 7 (0.1784) 0.2323 0.1008 0.0713 0.1141 0.0803 0.0837 0.0601 $\overline{\sigma}_{\text{GPR}}$ WISCONSIN 24

A Gaussian Process Regression Reduced Order Model of GNL Structures

2.3. Comparison between GPR ROMs computed by different force scaling bounds

- Presenter : Kyusic Park

· Larger load scaling bounds resulted in a larger predictive confidence of each coefficient

· The coefficients kept in the ROM were mostly the same between the cases with different load scaling bounds

A Gaussian Proce	ess Regression Reduce	ed Order Model of GNL	Structures - Preser	ter : Kyusic Park Nu	merical studies			
2.5. Computational Efficiency								
 Offline stage: a considerable number of samples need to be trained Parallel computing is applicable to compute the static load displacement data 								
 Online stage 	: no computational effo	ort is needed to create a	ROM for any new input	t FEM parameters				
Computation Ex) 3-DC	al cost DF GPR ROM of curved be	eam model using 100 traini	Online computation	Time integration (s)	0)			
	GPR ROM	501.60	0.01	8.86				
	ICE ROM	-	4.93	8.87				
	FEM (62 elements)	-	-	5652.84				
			* used Intel Core i7-770	0K 4.2GHz quad-core computer v	vith 64 GB of RAM			
					28			

A Gaussian Process Regression Reduced Order Model of GNL Structures - Presenter : Kyusic Park					Numerical studies					
Appendix A. Effect of Random Load Scaling Factor (cont'd)										
$N_{tr} = 10 \times 10 = 100$ • Reduced bounds of f_r result in the decrease of $\overline{\sigma}_{GPR}$ and $\overline{\sigma}_y$ of each coefficients $f_r \in [0.25, 0.75] \times \text{beam thickness}$ • The optimal (filtered) coefficients of each mode are similar to the previous case $N_{te} = 900$ $\overline{\sigma}_{max} = [0.08, 0.08, 0.08]$										
	Iteration #1	Iteration #2	Iteration #3	Iteration #4	Iteration #5	Iteration #6	Iteration #7	Iteration #8	Iteration #9	Final
N _{nl}	48	42	38	35	30	25	22	20	20	21
$N_{\rm nl,\;Mode\;1}~({\rm max}\;\overline{\sigma}_{\rm y})$	16 (0.8375)	14 (0.1623)	13 (0.0512)	12 (0.0933)	11 (0.0266)	10 (0.0151)	9 (0.1885)	7 (0.0532)	6 (0.1147)	7 (0.0532)
$N_{\rm nl, Mode 2}$ (max $\overline{\sigma}_{\rm y}$)	16 (0.0771)	15 (0.0437)	14 (0.0689)	13 (0.1411)	11 (0.1195)	9 (0.3457)	8 (0.0154)	7 (0.1384)	8 (0.0154)	8 (0.0154)
$N_{\rm nl,\;Mode\;3}$ (max $\overline{\sigma}_{\rm y}$)	16 (0.3141)	13 (0.1813)	11 (0.0153)	10 (0.1199)	8 (0.2565)	6 (0.0512)	5 (0.1412)	6 (0.0512)	6 (0.0512)	6 (0.0512)
$\overline{\sigma}_{ ext{GPR}}$	0.0425	0.0204	0.0116	0.0279	0.0308	0.0262	0.0335	0.0292	0.0323	0.0181
										32

