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Abstract

This work presents a new technique for nonlinear system identification that utilizes near-resonant steady-state harmonically
excited vibration measurements to estimate the Nonlinear Normal Mode backbones. The algorithm is based on the previously
proposed Single Nonlinear Resonant Mode formula and uses it in a new and more effective way to estimate one point on
the nonlinear mode from only one steady-state measurement collected near the resonance. A by-product of this work is a
derivation of a novel formula expressing how the damping ratio changes with the motion amplitude. Several measurements at
various forcing amplitudes can be combined to estimate the nonlinear mode and damping as a function of amplitude, which can
be further used to predict the forced steady-state response of the structure in the vicinity of the mode of interest. Compared
to existing phase resonance methods, the proposed technique can reduce the time required to obtain measurements and avoids
difficulties due to e.g. the premature jump phenomenon. The algorithm assumes that the modes are well-separated and no
internal resonances are present in the system. Additionally, it requires the accurate identification of linear modes in the low-
amplitude vibration tests and it assumes that the nonlinear normal mode shape does not change significantly with response
amplitude. The method is first evaluated numerically using reduced models of clamped-clamped flat and curved beams
that exhibit both stiffening and softening-stiffening responses, respectively. Then the method is employed experimentally to
measure the NNM backbones of beams that were manufactured from polylactide using a 3D printer and experience significant
eigen-frequency shifts when the motion amplitude increases. The results are validated against measurements collected using
the traditional phase resonance testing approach.

Keywords: Nonlinear System Identification, Single Nonlinear Resonant Mode Formula, Nonlinear Normal Mode Estimation,
Phase-Resonance Testing, Nonlinear Experimental Dynamics

1. Introduction

The vast majority of industrial structural dynamic systems are still modeled and designed as linear. The reason for this
preference is that the theory behind this class of mechanical systems is well understood and many powerful tools are available
for their analysis. When a nonlinear characteristic is encountered in an industrial structure, it is a common practice to
approximate it locally with a linear model, i.e. to adjust the linear parameters to reflect the nonlinear behavior. However,
there are still cases where the nonlinearity present in the system is either ignored or the structure is redesigned such that the
nonlinear phenomena migrate out of the operating range.

Understanding the nonlinear nature of certain mechanical systems can bring invaluable benefits to the engineering design
and modeling processes. Recent works show that approaching the problems from this angle can be helpful in e.g. reduction
of the nonlinear vibrations [1, 2] or modeling systems whose responses/failures cannot be understood using linear vibration
theory [3, 4]. Moreover, a demand for strong and stiff enough structures, yet efficient from the material and weight stand-
points, is lately observed in the industry. Designing such mechanical systems might not be achieved solely with the linear
approach, thus the significance of going beyond the standard vibration analysis has been recently increasing.

1.1. Nonlinear Normal Modes

The response of an oscillating linear system can be expressed as a combination of its linear modes. This is possible
due to their mutual orthogonality, which can be further used to diagonalize the matrices describing the mass and stiffness
distributions. Additionally, this property implies that the natural frequencies are vibration-level-independent. In other words,
the maximum points of the response functions (RFs) calculated for different force levels lay one above/below another forming
a straight vertical line on an amplitude vs. frequency chart, as indicated in Fig. 1a.

The principle of superposition (by definition) does not apply to nonlinear systems, since their natural frequencies can
shift with the motion amplitude. They can exhibit a softening (stiffening) characteristic when the nonlinear eigen-frequency
decreases (increases) with the vibration level – which is usually expressed either with the displacement amplitude or the
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Fig. 1: Examples of response functions of (a) linear and (b) nonlinear systems obtained for different forcing levels. Parts of these response
functions can be measured with the Phase Tuning method, which allows for collecting the steady-state response of the structure via controlling

the frequency and amplitude of applied force.

energy accumulated in the oscillating system. An example of the softening characteristic is presented in Fig. 1b. The figure
also shows the natural frequency as a function of vibration level, which is called the Nonlinear Normal Mode (NNM) curve.

The concept of an NNM was first introduced by Rosenberg in the 1960s [5, 6, 7, 8], where it was defined as any type of
vibration in unison of a conservative nonlinear system (a synchronous oscillation). After approximately 30 years of being
considered only in the theoretical realm [9, 10, 11, 12, 13, 14, 15], the Nonlinear Normal Modes experienced their second youth
in 1990s thanks to the work of Vakakis et al. [16, 17, 18], as well as Shaw and Pierre [19, 20] who extended the NNM concept
to damped systems. Since the motion is still periodic even in the presence of internal resonances, the original Rosenberg
definition of an NNM has been generalized to include a (not-necessarily synchronous) periodic motion of the conservative
system [21]. In other words, any periodic motion of a conservative nonlinear system is considered to be an NNM.

Nonlinear system identification and further prediction of the structure’s motion is a complex effort because of a large
variety of input types, force levels and distributions, etc. that must be considered. If one can show that the measured NNMs
correspond well with those from a simulation model, then one can make some powerful statements about the applicability of
the model over a certain range of vibration amplitudes. There are many theoretical, numerical and experimental methods
available, which help in extracting the NNM based on particular input data. The most basic approaches are based on phase-
resonance testing, which is described in the following subsection. The algorithm proposed in this work can be classified –
according to [22] – as a modal method, hence the in-depth overview of the algorithms of this type is provided in subsection 1.3.

1.2. Phase Resonance Testing

Phase Tuning (also known as Phase-Resonance Testing) is a well known experimental technique for both linear and
nonlinear structures. Since the method provides very accurate measurements of the structure’s damping and is robust in the
presence of nonlinearities, it is frequently used in e.g. ground vibration testing [23], which is one of the critical tests performed
during aircraft development. In the case studies presented in this article, the experimental measurements (including those
collected in the numerical simulations) are generated using the single input (one shaker) Phase Tuning approach.

When using the phase resonance method, the structure is excited harmonically until it reaches steady-state, and then the
amplitude and/or frequency of the applied forcing signal is adjusted until the structure is resonant in the mode of interest.
If the force amplitude is kept constant then the forcing frequency can be adjusted in order to bring the vibrating structure
to its resonance. In other words – if the forcing amplitude is fixed, one could adjust the frequency to march up a branch of a
linear or nonlinear Response Function, as shown in Fig. 1 in the path that starts from point C, through B, ending at point A.

While Phase-Resonance testing has long been used for linear systems, Peeters et al. [24] recently showed that one can
use it to measure a system’s undamped Nonlinear Normal Modes [25]. Here we vary from their derivation to also provide
background on the SNRM method presented in [26]. Consider a multi-degree-of-freedom (MDOF) nonlinear equation of
motion (EOM) of certain structure, represented here with Eq. (1).

Mẍ + Kx + fnl(x) + gnl(ẋ) = f(t), (1)
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where M and K are the matrices modeling respectively the mass and linear stiffness distribution in the mechanical system,
x(t) is the displacement response of the structure excited with the force signal f(t). The quantities fnl and gnl represent,
respectively, the nonlinear restoring and dissipative forces present in the system. Note that the nonlinearities are presumed
to depend only on the displacements or velocities with no cross terms so that the undamped NNMs exist and the quadrature
condition introduced later can be satisfied. However, strictly speaking the SNRM function may be valid for more general
cases than shown here.

Equation (1) can be expressed in terms of the modal coordinates by applying the linear modal transformation (2) and
left-multiplying the equation with the matrix ΦT . The transformed EOM is presented in Eq. (3).

x = Φq (2)

q̈ +


. . .

ω2
0,k

. . .

q + θnl(q) + γnl(q̇) = ΦT f(t), (3)

where: q(t) is the vector of modal coordinates, ω0,k is the natural frequency of the k-th linear mode and the columns of
matrix Φ are the mass-normalized eigen-shapes of the linearized, undamped and homogeneous equation (1). The vectors θnl
and γnl are the nonlinear parts of the modal EOM, and consist of the stiffness and damping terms, respectively. Naturally,
θnl(q) = ΦT fnl(Φq) and γnl(q̇) = ΦTgnl(Φq̇).

The nonlinear modal equations of motion (3) are in general coupled with one another by the nonlinear stiffness and
dissipative terms. The most straightforward way to derive the SNRM method is to assume that the nonlinear coupling terms
in Eq. (3) are negligible, in which case the modal equations can be simplified as follows Eq. (4) .

q̈j + ω2
0,jqj + θnl,j(qj) + γnl,j(q̇j) = ΦT

j f(t) (4)

Note that the SNRM equations that will be presented in Sec. 2 are derived using the method of averaging [27] and so one
could alternatively assert that the coupling terms were negligible in an averaged sense, relaxing this assumption somewhat.

The nonlinear modal equation of motion (4) can be further split at resonance into Eqs. (5). This is because (at resonance)
the harmonics of the inertia and linear as well as nonlinear stiffness terms are 90 degrees out of phase with the corresponding
harmonics of the damping and forcing signals [28]. When this occurs, the resulting response is clearly a Nonlinear Normal
Mode, since it is a solution of the conservative nonlinear EOM. Indeed, equation (5a) represents motion of such system,
while (5b) shows that the forcing and velocity signals are synchronized at resonance, which is often called a (nonlinear) phase
quadrature criterion [24]. {

q̈j + ω2
0,jqj + θnl,j(qj) = 0

γnl,j(q̇j) = ΦT
j f(t)

(5a)

(5b)

The property (5b) is utilized in the Phase Tuning method to determine how far the oscillating system is from its resonance.
Namely, when the structure vibrates at its natural frequency – a straight line is seen in the force vs. velocity plot. In contrast,
if the response of a linear system is near but not exactly at the eigen-frequency then the plot will show an ellipse. The larger
the ellipse is the further the structure is from the resonance, as illustrated in Figs. 2a-c. When it comes to the Phase
Resonance Testing of a nonlinear system, the loop can have a more complex shape, as e.g. presented in Figs. 2d-f. This is
because the requirement stated in Eq. (5b) is usually difficult and tedious to satisfy directly, since there might be e.g. multiple
sub- or super-harmonics present in the system’s response. However, the Phase Tuning approach combined with certain clever
concepts can still be a convenient and reliable tool to estimate how close the structure is to its nonlinear resonance. An
in-depth description of one such concept, called the NNM Appropriation Indicator (NNMAI), is provided later in this article.

Phase-Resonance Testing is a simple and effective method for testing nonlinear structures, yet there is one important
drawback. While marching up the nonlinear Response Function curve, the mechanical system will often fall off of the stable
branch before reaching the actual turning point (marked with A in Fig. 1b). This is called the premature jump phenomenon
[29] and it can greatly increase the time required for testing (e.g. see Sec. 4 for further discussion). Since the NNM backbone is
often a border between the regions of stable and unstable motion, as one approaches the resonance even a slight perturbation
can nudge the system from the stable region. Control-based techniques, such as phase locked loop (PLL) [30] or control-based
continuation (CBC) [31] can stabilize the system and prevent premature jump, and can greatly accelerate measurements.
However, these techniques require hardware with feedback control capability; most vibration test equipment does not have
this capability and systems that do have it often have lower bandwidths than comparable open-loop acquisition systems.
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Fig. 2: The Phase Tuning method compares force and velocity signals to indicate whether the system oscillates at its resonance. Subplots (a),
(b) and (c) correspond to points A, B and C shown in Fig. 1a. Subplots (d), (e) and (f) illustrate examples of the steady-state responses that

are possible between points A and B on chart 1b.

Additionally, one must tune the control gains to stabilize the system near the resonance, which may require significant trial
and error while exciting the system at high amplitudes. On the other hand, when control-based methods are applicable,
they tend to be very fast as one can march up the NNM automatically. They may also stabilize systems that exhibit
period-doubling or quasi-periodic response. It is worth noting that the method proposed here could be combined with a
control-based technique to obtain the best of both worlds. One could use control-based continuation to measure the resonant
response near an NNM, but far enough away to avoid the bifurcation point, and then use the SNRM approach proposed
here to estimate the NNM from those measurements. For the present study the authors did not have access to a suitable
closed-loop system, but such an approach will be considered in future works.

Another often-encountered issue of Phase-Resonance Testing is the feedback of the oscillating structure, which usually
leads to distortions of the input force signal and can impact the measurements quality. Naturally, the closer the structure
is to its resonance the larger the feedback is, lowering the quality of the data collected. Moreover, precise Phase Tuning
measurements are often time consuming, as one must wait for steady-state at each point and then can only capture the
steady-state response for a single forcing amplitude and frequency at a time. If measurements are needed in a wider range
of frequencies or amplitudes, then the testing can become lengthy.

1.3. Nonlinear System Identification with Modal Methods

Modal methods seek to identify the nonlinear eigen-properties of the mechanical system, which can be further used
to approximate the solution to the nonlinear equation of motion, rather than trying to fit a differential equation to the
measurements (or to approximate the form of the nonlinear EOM). They are usually based on a frequency domain description
and thus require providing steady-state measurements.

Some of the modal methods used today are based on the Single Nonlinear Resonant Mode (SNRM) concept proposed by
Szemplińska-Stupnicka in [26]. The nonlinearity is introduced there via expressing the natural frequency, damping ratio and
(possibly) mode shape as functions of the vibration level. The SNRM-based method, in its original formulation, can only be
applied when the modes are well-separated and no internal resonances occur.
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One of the previously proposed system identification procedures based on the SNRM model function is implemented
in the COde for Nonlinear identifiCation from mEasured Response To vibratiOn, also known as CONCERTO [32]. The
software was successfully employed in estimating the nonlinear characteristics exhibited by anti-vibration mounts [33] and
a mechanical system replicating the complexity of a typical helicopter structure [32]. CONCERTO requires finding the
steady-state response at two points on a response function for a single vibration amplitude of the mode in question. That
can be limiting because the measurements must be taken on both sides of the Nonlinear Normal Mode backbone. However,
one of these sides is often on an unstable branch when the motion amplitude is high enough. Hence, the applicability of the
concept is narrowed to systems exhibiting very small natural frequency shifts.

Another example of a modal method can be found in the work of Arslan and Özgüven [34], where the nonlinear properties
of a cantilever beam with a cubic spring attached to its end were identified. The method presented there is limited to
structures with a single nonlinear element whose location must be known a priori. The Response-Controlled Stepped-Sine
Testing (RCT) proposed by Karaaǧaçli and Özgüven in [35] and further elaborated in [36, 37] is an extension of the method
presented in [34].

The RCT approach is based on the quasi-linearization of the multi-degree of freedom nonlinear systems obtained via
keeping the displacement amplitude of the driving point constant. The nonlinear parameters are identified as functions of
the modal amplitude by applying standard linear modal analysis techniques to the measured controlled-amplitude Response
Functions. The identified nonlinear modal parameters can then be used in the Single Nonlinear Resonant Mode formula to
synthesize near-resonant nonlinear RFs (including unstable branches). The RCT method can also be used to extract the
nonlinear Response Functions with accurately measured turning points and unstable branches, not only from the identified
modal model, but also directly from the experiment via the Harmonic Force Surface (HFS) concept [35]. Hence, it allows for
extracting the NNM backbone curves of strongly nonlinear systems.

The method was successfully applied to identify a T-beam benchmark with strong cubic stiffness and a real missile with
considerable damping nonlinearity due to bolted connections [35], as well as to a double clamped beam with strong geometrical
(distributed) nonlinearity in [36]. In [37], the authors employed the RCT technique to identify the NNM backbone curves of
the T-beam and a real control fin actuation mechanism that exhibits strong and complex nonlinear behavior due to backlash
and friction.

The Single Nonlinear Resonant Mode model function is also employed in the validation process of the algorithms presented
in e.g. [30] or [38]. In the former case, the authors measure the NNM backbone using an automated phase-controlled tracking
algorithm. In the latter, the system is identified using the Polynomial Nonlinear State-Space (PNLSS) algorithm [39, 40, 41]
with an assumption that the nonlinear damping ratio can be computed by equating the energy input into the system with the
dissipated energy averaged over one cycle. It is worth noting that the phase-control tracking is not the only algortihm that can
be employed in the automatic NNM backbone measurements. Another recently developed technique, called Control-Based
Continuation (CBC) also allows for the nonlinear mechanical systems testing in a controlled fashion. In [31], the authors used
this approach to identify a backbone curve of a SDOF nonlinear oscillator and compared their findings with those extracted
using the resonant-decay method.

1.4. Objectives and Contributions

The objective of this article is to propose a new algorithm based on the Single Nonlinear Resonant Mode model function,
which can be used to identify the NNM backbones of nonlinear structures and to reconstruct the near-resonant response. This
work builds on that in [30] where Peter, Scheel et al. measured the NNM directly with a control-phase tracking approach.
Then, they used the SNRM formula together with the obtained NNM curve to compute the Response Functions in its
vicinity. The strategy presented here is reverse. We utilize the SNRM function to find the NNM backbone using a near-
resonant measurements. Hence, the method presented in this work is called the inverse SNRM-based algorithm. Moreover,
in [30] the SNRM algorithm is combined with a model evaluating the nonlinear damping based on the power dissipated. In
this work, we propose a novel expression to model the effective damping, which is derived directly from the SNRM function
and hence is automatically compatible with any SNRM-based technique.

Therefore, the main contribution of this work is to show that the SNRM formula can be used to estimate the location
of a nonlinear resonant point using only one near-resonant steady-state measurement and to demonstrate the method
experimentally. The algorithm proposed here speeds up the testing process as one does not need to take the time to
tune the structure exactly to the resonance. Additionally, since one is not trying to test very close to the resonance, the
system is less likely to fall off of the stable branch – a phenomenon that often slows down this type of testing. Furthermore,
we use the identified NNM backbones to estimate the nonlinear Response Functions near of the resonance and compare them
with those measured experimentally. This validates the results and allows the reader to see the limits of the applicability of
the SNRM formula for the structures studied here.

The following section presents the theory behind the algorithm proposed and explains the nonlinear system identification
process. In section 3, the method is tested in simulated experiments by applying it to ICE-ROMs of flat and curved beams,
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and the outcomes are validated and discussed. Section 4 presents the results from the identification attempt performed on
beams 3D-printed from polylactide acid. Finally, section 5 presents conclusions and future work.

2. Algorithm Overview

2.1. Theoretical Background

This section begins with a derivation of the approximate solution to the nonlinear equation of motion of the oscillating
system. The solution shows that the natural frequencies and modal damping ratios of the structure might change with
the vibration amplitude. This observation will later serve as an argument to postulate the Single Nonlinear Resonant Mode
(SNRM) formula, which is the basis of the algorithm presented here. The derivation starts with Eq. (4) obtained in section 1.2.

Suppose that the mechanical system is excited with a sinusoidal forcing signal, Eq. (6a), and that the steady-state response
is well approximated with a single harmonic as in Eq. (6b).

f(t) = Re{−iFeiΩt} qj(t) = Re{Q̂jeiΩt}, (6)

where Ω is the forcing frequency, F is the force distribution (constant and real vector), Q̂j is the unknown complex amplitude

of the j-th modal coordinate and Qj = |Q̂j |. From a practical stand-point, including the tests presented later in this article,
one would at least hope that the excitation frequency is dominant in the system’s response. In order to use the SNRM
approach, we have to also assume that the modal coupling is negligible, in which case the eigen-shape of the dominant mode
will not change significantly with increasing vibration level, as indicated in Eq. (7).

∂Φj

∂Qj
≈ 0 (7)

Approximate analytical methods (such the averaging method [42]) can be employed in finding an explicit form of the
quantity Q̂j . The results obtained with the method of averaging are presented in Eqs. (8) and (9).

Q̂j = Qje
i(ϕj−π2 ) Qj =

ΦT
j F√

[(ω0,j + ∆ω0,j)2 − Ω2]
2

+ Ω2δ2
j

ϕj = tan−1

(
Ωδj

(ω0,j + ∆ω0,j)2 − Ω2

)
, (8)

and

∆ω0,j(Qj) =
1

2πω0,jQj

∫ 2π

0

θnl,j (Qj cos(β)) cos(β)dβ (9a)

δj(Qj) =
1

2πω0,jQj

∫ 2π

0

γnl,j (−QjΩ sin(β)) sin(β)dβ (9b)

The new quantities introduced in Eqs. (8) and (9) are: ϕj – the phase angle of the displacement response (determined
with respect to the phase of the input signal) as well as δj(Qj) and ∆ω0,j(Qj), which stand for – respectively – the nonlinear
modal damping ratio and correction to the linear natural frequency of the j-th mode. As indicated in Eq. (9), these two
“corrections” depend on the vibration amplitude.

The approximate solution, presented in (8), and the fact that the eigen-frequency and modal damping ratio change with
the motion amplitude serve as two base observations in postulating the more practical (from the system ID view-point)
solution form to the nonlinear EOM (1). This expression – shown in Eq. (10) – is called the Single Nonlinear Resonant Mode
(SNRM) function and was first proposed in [26]. The SNRM formula is expressed below in terms of the velocity, since in the
case studies presented later in this article the velocity response of the structure was measured.

v(t) = Re{VmeaseiΩt} (10a)

Vmeas ≈ Vmodel =

NRB∑
k=1

−ΦRB
k

(
ΦRB
k

)T
F

Ω︸ ︷︷ ︸
VRB

+
ΦjΦ

T
j FΩ

ω̃2
0,j − Ω2 + 2iζ̃jω̃0,jΩ︸ ︷︷ ︸

Vnl
j

+

Nlin∑
k=1
k 6=j

ΦkΦ
T
kFΩ

ω2
0,k − Ω2 + 2iζkω0,kΩ

︸ ︷︷ ︸
Vlin
j

, (10b)
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Fig. 3: Visualization of quantities from equations (6a) and (11–13)

where: v(t) stands for the experimentally measured full-field velocity response; Ω is the forcing frequency; Φi, ω0,i, ζi are,
respectively, the mass-normalized mode shape, natural frequency and modal damping ratio of the i-th mode; F is the already
mentioned distribution of a sinusoidal force excitation; ΦRB

i is the i-th rigid body mode; j is the index of the dominant
mode, and Nlin and NRB denotes the number of relevant linear and rigid body modes, respectively. The quantities marked
(∼) vary with the vibration level.

The objective of this work is to propose an algorithm, based on the model function (10), that allows for identification of
nonlinear structures. The strengths of the SNRM formula are: (i) an explicit mathematical form of the system’s steady-state
response and (ii) a straight-forward correlation to the linear vibration theory. Indeed, the response of the oscillating linear
system can be expressed as a sum of its linear modes. If we look at the SNRM function from this angle, we could state that
it extracts one of the sum components and models it as nonlinear, while keeping the remaining modes superimposed linearly.

As presented in Eq. (10), the nonlinearity is modeled via representing two physical properties – ω0,j and ζj – as functions
of the motion amplitude. In this work, the vibration level is expressed with the velocity amplitude of a specific point on the
oscillating object. Thus, instead of looking into the full-field response of the system (Vmeas, Vnl

j , Vlin
j , VRB), we focus on

the r-th entries of these vectors, defined respectively as (V measr , V nlj,r , V
lin
j,r , V RBr ). For notational simplicity, we will omit

the subscript r, but these non-bold quantities will be understood to come from the r-th point. Please refer to Eq. (11) and
Fig. 3 for their definition and visualization.

V meas = eTr Vmeas V nlj = eTr Vnl
j V linj = eTr Vlin

j V RB = eTr VRB , (11)

where er is a standard unit vector with a one in the r-th entry and zeros elsewhere.
Before presenting the algorithm steps, we would like to introduce quantities v and ϕ̃vel

j defined in Eqs. (12) and (13),
respectively. Explaining and understanding each step of the system identification process is easier when these two parameters
are defined. The former quantity, v, is the magnitude of the velocity complex amplitude measured at a specific point of the
structure. The latter one, ϕ̃vel

j , is the phase of the nonlinear velocity complex amplitude.

v =
∥∥∥V meas

∥∥∥ ≈ ∥∥∥V nlj + V linj + V RB
∥∥∥ (12)

ϕ̃vel
j = ∠

(
V nlj

)
= ∠

(
V meas − V linj − V RB

)
= tan−1

(−2ζ̃jω̃0,jΩ

ω̃2
0,j − Ω2

)
(13)

An interesting dependency between the nonlinear natural frequency and effective damping ratio can be derived from
Eq. (13). Namely, equation (13) can be brought to a quadratic form (14), which – as indicated in (15) – always has two
real solutions. Hence, the nonlinear natural frequency ω̃0,j can be expressed as a function of the nonlinear damping ratio ζ̃j ,
see Eq. (16).

ω̃2
0,j +

2ζ̃jΩ

tan(ϕ̃vel
j )

ω̃0,j − Ω2 = 0 (14)

4ζ̃2
jΩ2

tan2(ϕ̃vel
j )

+ 4Ω2 > 0 ∀ζ̃j ,Ω,ϕ̃vel
j

(15)
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ω̃0,j = f(ζ̃j) =

 −ζ̃j
tan(ϕ̃vel

j )
±

√√√√ ζ̃2
j

tan2(ϕ̃vel
j )

+ 1

Ω (16)
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Fig. 4: Visualization of the measured and
estimated quantities in each algorithm step

To assure that the nonlinear eigen frequency is always a
positive number one must detect which root in Eq. (16) is
positive. It is trivial to prove that regardless of the lag or lead
oscillation – ϕ̃vel

j ∈ (−180◦,−90◦) and ϕ̃vel
j ∈ (−90◦, 0◦),

respectively – the positive value of ω̃0,j is obtained at the
root presented in Eq. (17).

ω̃0,j = f(ζ̃j) =

 −ζ̃j
tan(ϕ̃vel

j )
+

√√√√ ζ̃2
j

tan2(ϕ̃vel
j )

+ 1

Ω (17)

Hence, the formula presented in Eq. (17) can be used to
model the nonlinear damping present in the system, and to
the best of the authors knowledge, this expression has not
been used previously to do so. This approach also proves
very effective when it comes to the system identification
process – as indicated in the case studies presented in this
work.

2.2. System Identification Process

This section describes the system identification and outcomes validation processes. For clarity, the algorithm steps are
additionally visualized in Fig. 4 and the proposed validation strategy is outlined in Fig. 5.

Algorithm Steps

The objective of the algorithm presented here is to estimate the Nonlinear Normal Mode backbone curve based on the
steady-state data measured in its vicinity. The algorithm consists of three steps:

1. Measure the steady-state response of the system to a sinusoidal forcing at various force amplitudes, to obtain (v, Ω, ϕ̃vel
j ).

These measured points are represented with blue dots in Fig. 4.

2. Use Eqs. (12) and (17) to assign ζ̃j and ω̃0,j values to every (v, Ω, ϕ̃vel
j ) triple (red dots).

3. Express ω̃0,j and ζ̃j as (e.g. piecewise linear) functions of the velocity magnitude v (red solid line).

A careful reader might ask how to extract ζ̃j and ω̃0,j parameters in the second step of the procedure presented above.
Please note that expressions (12) and (17) form a system of two equations and two unknowns, as indicated in Eq. (18).
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v(Ω; ω̃0,j , ζ̃j) ≈

∥∥∥ V nlj (Ω; ω̃0,j , ζ̃j) + V linj (Ω) + V RB(Ω)
∥∥∥

ω̃0,j(Ω, ϕ̃
vel
j ; ζ̃j) =

(
−ζ̃j

tan(ϕ̃vel
j )

+

√
ζ̃2j

tan2(ϕ̃vel
j )

+ 1

)
Ω

, (18)

where the expressions for V nlj , V lin and V RB are provided in Eqs. (11b,c,d) and (10b). The unknown parameters are ω̃0,j

and ζ̃j , while v, Ω and ϕ̃vel
j are measured variables. Matrix Φ and vector F from Eq. (10b) are measured and known, as well.

The system of equations (18) can be solved e.g. with any iterative method.
After completing the three steps presented above, one obtains the nonlinear natural frequency expressed as a function

of velocity magnitude: ω̃0,j = ω0,j(v). It represents the estimate of the NNM backbone. Additionally, the algorithm

approximates the shape of the function ζ̃j = ζj(v), which shows how the effective damping ratio changes with the vibration
level.

Validation Steps

The results of the proposed algorithm can be validated in two ways, both of which will be used in this work. First, one
could actually measure the NNM of the structure by tuning the phase of the nonlinear system to −90◦. Then, the measured
NNM curves could be compared with those found by the proposed approach (e.g. the red lines in Fig. 4), as shown in Fig. 5,
where the point on the NNM found with the proposed method is shown with a (?), while the one measured is shown with a
purple square. (In practice one would not measure the latter because it would increase the time required to test, but in this
work we do so in order to validate the approach.)
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(c) Nonlinear damping ratio vs. velocity amplitude

Fig. 5: Visualization of the validation steps

Second, one could use the SNRM function to reconstruct
the response function near the mode of interest and compare
that to other non-resonant measurements, as shown by the
curves in Fig. 5. One might find it interesting because it
allows one to understand the extent to which the SNRM
function can be used to model the system near resonance.
To do so, one must first find the intersection between the
response function and the NNM, denoted with (*), i.e. v∗
and ω∗ in Eq. (19), which is a simplified form of Eq. (12)
for the case where the phase is −90◦. Note that at the
nonlinear resonance, the forcing frequency and nonlinear
modal frequency must be equal: Ω = ω̃0,j(v∗) = ω∗.
Equation (19) can be solved for v∗ and ω∗ with e.g. a
derivative-free Picard-iteration (sometimes called a fixed-
point iteration) algorithm.

v∗ =

∥∥∥∥Φj,rΦ
T
j F

2iζ̃jω∗
+ V linj,r (ω∗) + V RBr (ω∗)

∥∥∥∥ (19)
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Once the point at the resonance is known (i.e. the point marked with a (?) in Fig. 5, Equation (10) can be used to
estimate the lag (upper) and lead (lower) branches of the Response Functions using the (v∗, ω∗, −90◦) triple as a start point.
A similar technique was presented in [30]. As shown in the cases presented subsequently, the SNRM function was often found
to perform quite well over a wide range of forcing frequency.

It is also interesting to highlight one additional point at this juncture. In terms of frequency (e.g. Fig. 4a), the
measurements of the steady-state response (blue dots) are often quite close to the estimated NNM points (red dots).
Considering Fig. 5, one can see that this occurs because the response function is quite narrow near the resonance if the
system is lightly damped. However, in terms of phase these points (blue dots) are actually quite distant from the resonance
(e.g. see Fig. 4b). This is further illustrated in Fig. 5a-b, where a typical measurement point, at about −45◦ phase, is shown
with an open blue circle. Hence, to actually measure the response at the NNM one would have to tune the forcing frequency
quite a bit (assuming forcing amplitude is kept constant). Furthermore, one can see that the measurement is quite far from
the NNM, and the point where the response is most likely to fall off of resonance, even though the corrections illustrated in
Fig. 4a seem small.

In the next two sections the outcomes from four case studies are presented. The algorithm is first evaluated numerically
using reduced order models of flat and curved clamped-clamped beams. Then the method is employed experimentally to
identify the first NNMs of two 3D printed beams.

3. Numerical Investigation

3.1. Flat Clamped-Clamped Beam

The algorithm is first evaluated with data generated numerically using the traditional phase tuning (PT) approach. The
test is performed on a flat beam with clamped-clamped boundary conditions. The beam is similar to the one studied in [43].
Its dimensions and mechanical properties are summarized in Tab. 1, while the parameters describing the underlying linear
system are displayed in Tab. 2.

Tab. 1: Dimensions and mechanical properties of the numerical flat clamped-clamped beam.

Length [mm] Width [mm] Thickness [mm]
Young’s

Density [ kg
m3 ]

Shear
modulus [GPa] modulus [GPa]

228.6 12.7 0.787 204.8 7870 80.0

Fig. 6: Numerical model of a flat beam excited with a uniformly distributed sinusoidal force.

The structure, modeled with 40 beam elements resulting in a total of 246 DOFs, is used to generate the 4-mode ICE-ROM
including the first four symmetric modes, i.e. modes 1, 3, 5 and 7. It is subjected to a uniformly distributed sinusoidal force
(Fig. 6) representing a base excitation. The data points (v, Ω, ϕ̃vel

j ) are collected near the first Nonlinear Normal Mode.
To be complete, we should also provide the nonlinear equations of motion expressed in the modal domain. However – if

the ICE-ROM of a beam consists of 4 modes, then its nonlinear part contains up to 30 polynomial terms per mode, and so
it is relegated to Appendix A.

Tab. 2: Linear modal properties of the numerical flat beam. Modal damping ratio values are assigned manually.

Mode ID 1 3 5 7

ω0,k [Hz] 79.02 427.46 1057.30 1970.70
ζk 0.05 0.0009 0.0008 0.0006

Figure 7 shows the collected (v, Ω, ϕ̃vel
j ) triples (measured at the beam’s center) as well as the corresponding estimates of

the NNM points. The data were collected by increasing the amplitude of the forcing and manually adjusting the frequency to
keep the steady-state response near but not exactly at resonance, as determined by monitoring the shape of the Lisajous figure
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(as shown in Fig. 2). The NNM Appropriation Indicator (NNMAI) was also computed for each point, and their values are
between 0.5 and 0.7. This indicator, which was first proposed in [28], is a convenient tool to estimate how close the structure
is to its nonlinear resonance. It requires decomposition of the response and forcing signals into user-specified harmonics via
least square fitting of a multi-sine model function. Then, instead of trying to match their phases – which is tedious and often
unsuccessful – the complex amplitudes, Xk, are used in calculating the value of NNMAI defined in Eq. (20).

∆NNM =
1

Nh

Nh∑
k=1

Re{Xk}TRe{Xk}
XH
k Xk

, (20)

where Nh is the number of harmonics specified, Xk is the response complex amplitude of the k-th harmonic (computed with
respect to the excitation complex amplitude and assuming that it is purely imaginary, as indicted in [28]) and ∆NNM = 1
when the system is at its nonlinear resonance.

The linear counterpart of the NNMAI is the well-know Mode Indicator Function (MIF) [44, 45], which is defined in in
Eq. (21). The MIF can be used in determining how close the mono-harmonic response of the oscillating system x(t) =
Re{XeiΩt} is to its Linear Normal Mode.

∆lin =
Re{X}TRe{X}

XHX
, (21)

where X is the complex amplitude of the system’s response computed with respect to the excitation complex amplitude.
Additionally, the forcing complex amplitude is assumed to be purely imaginary.
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Fig. 7: Data measured and estimated resonant points. Case study with
a numerical flat clamped–clamped beam model.

Since the algorithm is evaluated numerically, we have a
benefit of finding the true Nonlinear Normal Mode curve
using another and well-established algorithm. The NNM
curve, computed by the Multi-Harmonic Balance (MHB)
method [46, 47, 48, 49, 50, 51] using the first nine harmonics,
is marked on charts with a dashed black line showing that the
algorithm proposed here estimates the true NNM backbone
with a satisfactory precision.

To further validate the system identification outcomes,
the steady-state Response Functions estimated using Eq. 10
are compared to those measured numerically. Figure 8
presents four of such comparisons obtained for different
forcing magnitudes: 2.669×10−3, 4.448×10−3, 8.896×10−3,
and 1.334 × 10−2 Newtons. The points and curves shown
on the charts match each other. In this comparison the
magnitudes of the linear terms in Eq. 10 were at least 200
times smaller than the nonlinear terms, and so they could

have been neglected. There are some small discrepancies between the SNRM approximation and the true response, but
the SNRM approach proposed here gives an excellent estimate and the ability to predict other forced responses from a few
measured ones could prove very useful in practice.
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Besides finding an estimate of the NNM backbone, the algorithm also returns the nonlinear damping ratio expressed as
a function of velocity, see Fig.7c. In this particular example, where the system exhibits stiffening, ζ̃j = ζj(v) is found as
a decreasing function of the motion amplitude. This result was expected, since the damping distribution in the numerical
beam is modeled as vibration-level-independent (matrix C is constant).
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Fig. 8: System ID validation: estimated vs. measured resonant points and Response Functions.
Case study with a numerical flat clamped–clamped beam model.

3.2. Curved Clamped-Clamped Beam

The case study presented here is similar to the one from the previous section. This time, however, the numerical
test involves a curved clamped–clamped beam that exhibits both softening and stiffening response due to the geometric
nonlinearity. Table 3 shows the geometrical/mechanical properties of the beam.

Tab. 3: Dimensions and mechanical properties of the numerical curved clamped-clamped beam.

Length [mm] Width [mm] Thickness [mm]
Radius Young’s

Density [ kg
m3 ]

Poisson’s
of curvature [m] modulus [GPa] Ratio

304.8 12.7 0.508 11.43 204 7860 0.29

The beam is modeled with 400 shell elements resulting in a total of 3030 DOFs and it is excited with a uniformly
distributed sinusoidal force (Fig. 9). The test is performed in the vicinity of the first NNM using a one-mode ICE-ROM
(1st mode) to represent dynamics of the structure. The modal equation of motion is presented in (22), while the linear and
nonlinear coefficients are defined in Tab. 4.

q̈1 + 2ζ1ω0,1q̇1 + ω2
0,1q1 + α11q

2
1 + β111q

3
1 = ΦT

1 f(t) (22)

Tab. 4: Linear and nonlinear modal properties of the numerical curved beam.
The modal damping ratio value is assigned manually.

quantity ω0,1 [Hz] ζ1 α11

[
1√

kg m3/2 s2

]
β111

[
1

kg m2 s2

]
value 64.78 0.05 −3.4380× 109 6.2183× 1012

Similarly to the previous section, Figure 10 presents the measured steady–state inputs and the system identification
outcomes. The Nonlinear Normal Mode Appropriation Indicator values of the data collected range from 0.7842 to 1.0. It is
worth noting that most of the measured points have their NNMAI value closer to the lower bound of this set, as indicated
in Fig. 10b. A few of (v, Ω, ϕ̃vel

j ) triples (collected at the beam’s center) had to be measured very close of the nonlinear
resonance. This was necessary because – in a case of systems exhibiting softening-stiffening characteristic – the near-resonant
stability region switches from the lag (softening region) to lead (stiffening) side of the NNM backbone at a certain vibration
amplitude. The transfer point between these stable lead-lag sides is naturally the backbone’s point of minimum frequency.
This is the reason why we needed to carefully approach and cross the nonlinear resonance at this minimum point in order to
stay in the stable region.
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Fig. 9: The numerical model of a curved beam subjected to a uniformly distributed sinusoidal force.

Figures 11a-f illustrate the validation of the system ID outcomes. The estimated and true NNM curves match, as well as
the estimated Response Functions and those measured with the numerical phase tuning approach. The RFs presented there
correspond to three different forcing magnitudes, namely: 1.334× 10−4, 6.672× 10−4 and 1.779× 10−3 Newtons.

The model function of the nonlinear damping ratio ζ̃1 = ζ1(v), presented in Fig. 10c, behaves contrarily and complementary
to the the nonlinear modal frequency ω̃0,1. Namely, the effective damping ratio increases (decreases) when the system exhibits

softening (stiffening). Additionally, a relatively sharp spike occurs in the ζ̃1-characteristic when the frequency becomes
minimum.
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Fig. 10: Data measured and estimated resonant points. Case study
with a numerical curved CC beam model.
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Fig. 11: System ID validation: estimated vs. measured resonant points and
Response Functions. Case study with a numerical curved CC beam model.
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4. Experimental Application to 3D–Printed Beams

The experimental set-up considered here is shown in Fig. 12. The structure is excited using a Modal Exciter 100 lbf Model
2100E11 powered by a 2050E05 Linear Power Amplifier. The control system (created using LabView) allows for changing
the amplitude and frequency of the force applied to the structure with the voltage signal sent to the shaker [52, 53, 54].
The force applied is measured with a PCB208C04 load cell connected to a 3-channel Battery-powered ICPr Sensor Signal
Conditioner Model 480B21. The oscillations of the beam’s center point are measured with PSV-400 Scanning Vibrometer.
Specifically, the phase between the force applied and velocity measured is monitored in real time to determine how far the
structure is from its nonlinear resonance.

(a) (b)

Fig. 12: Photographs of the experimental setup: (a) back view; (b) front view.

Figure 13 shows the 3D–printed polylactide (PLA) samples used in the experiments. The thin and thick parts of the
sample, called respectively beam and backing, are 3D–printed together and are non-detachable from one another. Such
beam–backing connection prevents beam’s ends from slipping even when it oscillates at high amplitudes, which is an often-
encountered problem when the ends of a beam are tightened using bolted joints. On the other hand, eliminating the
frictional nonlinearity from the system might narrow the application of the algorithm presented. The authors are aware that
the identification of the bolted structures finds applications in many various branches of industry. However, the main goal
of this article is to introduce this new SNRM-based technique and an attempt of employing the algorithm in system ID of a
bolted structure will be a subject of the authors’ future work.

The approximated mass and nominal dimensions common to all the 3D–printed samples are summarized in Table 5.
The beams tested differ from one another with the radius of curvature, the values for which are specified in the sections
below. It is worth noting that the beams’ length and curvatures are nominal and subjected to very slight variation due to
the 3D printing process. Their mechanical properties, such as Young’s modulus or Poisson ratio, may also be difficult to
determine for the same reason. Instead of measuring these quantities, we define the dynamic properties of each sample with
their linear modal parameters, see e.g. Tab. 6 and Fig. 16.

Tab. 5: Nominal dimensions and mechanical properties common to all the 3D printed samples.

Length [mm] Width [mm] Thickness [mm] Approx. mass [g]

Beam 180 8 2 3.7696
Backing 200 30 30 130.00

The polycarbonate stinger connects the sample to the shaker. Moreover, the samples are designed such that the backing
part can be modeled as a rigid body. This allows for converting the external point–force, applied via the stinger to the
backing’s center, into a uniformly distributed force acting on the beam, see Fig. 14. The geometry of the beam is represented
with a rectangular grid of 44 points. In the tests performed, a LabView system [54] is used to bring the thin beam to the
near-resonant oscillations and then its full-field dynamic response is measured over a several cycles using the Polytec software.
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(a) (b)

Fig. 13: (a) Longitudinal cross-section of the SolidWorks [55] model of the curved beam
and (b) photograph of one of the 3D–printed samples.

Fig. 14: The external point-force applied at the backing’s center
is converted into the force distribution acting on the beam.

4.1. Voltage into Distributed Force Conversion

In this subsection, the conversion between the point force signal applied at the backing into the distributed forcing acting
on the beam is explained. This conversion is estimated via comparing the theoretical and measured low-amplitude Response
Functions. As presented in Figs. 15a-b, three and five low level RFs are measured for, respectively, the curved and flat beams
used in the case studies presented later in this article.

The low-amplitude Response Functions are measured on the curved beam for input voltage Fin ∈ {0.01, 0.02, 0.03}
volts, see Fig. 15a. The corresponding theoretical linear Response Functions – computed with Eq. (23) – are obtained for
Fmag ∈ {1.9138, 4.6678, 7.3752} × 10−4 newtons. The Fmag data expressed as a function of Fin is presented in Fig. 15c
together with the linear regression fit showing that Fmag ≈ 2.730673 × 10−2Fin − 8.090884 × 10−5 – where Fmag and Fin
are expressed in newtons and volts, respectively. It is worth noting that Figs. 15a-b show that the samples exhibits a slight
frequency shift even when the oscillations are low-level. However, the authors still decided to use Eq. (23) (with parameter
ω0,1 adjusted accordingly) to estimate the voltage-force conversion.

Vtheory
lin =

NRB∑
k=1

−ΦRB
k

(
ΦRB
k

)T
F

Ω
+

Nlin∑
k=1

ΦkΦ
T
kFΩ

ω2
0,k − Ω2 + 2iζkω0,kΩ

(23)

The conversion for the flat beam is obtained with analogical steps. Five low-level Response Functions are measured and
modeled for, respectively: Fin ∈ {0.02, 0.03, 0.04, 0.05, 0.06} volts and Fmag ∈ {2.5507, 4.5867, 6.6454, 8.5029, 10.8047}×10−4

newtons, as presented in Fig. 15b. Fmag is depicted as a function of Fin in Fig. 15d showing that Fmag ≈ 2.042420 ×
10−2Fin − 1.551595× 10−4. The Fmag and Fin quantities are again expressed in newtons and volts, respectively

4.2. Identification of Curved and Flat Beams

To verify the results obtained in the numerical study, the identification process is now performed on 3D-printed curved
and flat beams. The nominal geometric dimensions of the samples are summarized in Tab. 5 and the radius of curvature of
the curved beam is 3175 mm.
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Fig. 15: Comparison of the low-level response functions measured and modeled in the vicinity of linear mode 1 using,
respectively: (a) curved and (b) flat 3D-printed beams. Subplots (c) and (d) show the linear regression fits to

functions Fmag = Fmag(Fin) corresponding to the data presented in subplots (a) and (b), respectively.

The linear modal properties of the beams are measured in the low-amplitude vibration tests. The Frequency Response
Functions and parameters describing their underlying linear systems are presented in Fig. 16 and Tab. 6, respectively. The
dynamics of the beams is represented with modes 1 and 3 (first two symmetric modes) which, as indicated in Fig. 16, are
well-separated.

Tab. 6: Linear modal properties of the 3D-printed curved and flat beams.

Curved Beam Flat Beam
Mode ID 1 3 1 3

ω0,k [Hz] 153.2144 592.6020 97.4457 534.9189
ζk 0.0138 0.0195 0.0189 0.0243

The steps taken to identify both curved and flat beams are very similar. First of all, phase-resonance testing is performed
to collect the steady-state triples (v, Ω, ϕ̃vel

j ) in the vicinity of the first nonlinear mode. They are visualized in Figs. 17 and 18
with blue dots and their NNM Appropriation Indicators range from 0.4914 to 0.9373 (in a case with curved beam) and from
0.6831 to 0.9052 (flat beam). The proposed inverse SNRM-based algorithm was then used to estimate the NNM near each
of these points, and the estimated NNMs are shown with red dots. Similarly to the corresponding numerical case study, the
curved and flat samples exhibit softening-stiffening and pure stiffening characteristics, respectively.

The validation of the results is presented in Figs. 19 and 20. The nonlinear resonant points and Response Functions are
computed and compared to those collected experimentally for the same excitation levels. These quantities are measured on the
curved beam for Fmag ∈ {1.279, 4.000, 6.719}×10−3 Newtons, while in case of the flat sample Fmag ∈ {1.066, 2.287, 4.169}×
10−3 Newtons. As presented in the charts – they match when it comes to both frequency-amplitude and frequency-phase
characteristics. However, it is worth noticing that Figs. 19e-f and 20e-f show that there is only a slight discrepancy between
the lag (or upper) branches of the Response Functions when the excitation force is large.

This comparison illustrates that the inverse SNRM-based algorithm presented here allows for a successful system identification
of a mechanical system experiencing softening-stiffening characteristic with a significant nonlinear frequency shift. In the
case with curved beam, the eigen-frequency shift is approximately 25.71 Hz, which stands for a 16.78% change with respect
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Fig. 16: Linear Frequency Response Function of the 3D-printed (a) curved and (b) flat beams.
Fit to the FRFs computed using the Algorithm of Mode Isolation (AMI) [56].

to the linear natural frequency, ω0,1. The frequency shift exhibited by the flat beam is even more significant, it increases by
approximately 35.79 Hz, a relative change of 37.16%.

The case study performed on e.g. the curved beam shows that with only 31 steady-state and near-resonant measurements
(marked with blue dots in Fig. 17) we are able to reconstruct any frequency-amplitude-phase characteristic (see Fig. 19) in
the amplitude range of interest. To give the reader a way to quantify it, we collected 85 steady-state points to measure only
one nonlinear Response Function displayed in Figs. 19e-f. This shows how significant reduction of work and time spent on the
phase tuning testing is allowed by the inverse SNRM-based technique presented here. It is also worth noticing that besides
estimating the stable RF branches, the algorithm finds their unstable parts as well. These unstable branches can usually
not be measure using the traditional Phase Resonance Testing approach (i.e. a controller would be needed to stabilize the
system in order to measure them).

Another advantage of the inverse SNRM-based routine is that it allows one to estimate the NNM backbone without
collecting the resonant points directly. They can be estimated based on the near-resonant measurements, speeding up the
testing significantly. Indeed, when seeking to measure the nonlinear resonant point directly for the presented structures, we
found that the system would often fall off the stable branch. Typically multiple attempts were needed to measure one NNM
point in these cases, increasing the testing time. The algorithm proposed here allowed the backbone to be estimated without
a necessity of approaching it too closely, hence this was not a problem except near the point of minimum frequency for the
curved beam, where the NNM curve had to be crossed to remain in the stable region. In the case study presented in this
section, collecting one steady-state measurement took between 10 and 20 seconds. Thus, the algorithm proposed here reduced
the time spent in the laboratory from a couple of hours to just a few minutes. As a result, the structure was also exposed
to significantly fewer cycles of vibration at high amplitudes, and was less likely to be damaged or develop fatigue fractures.
In the early stages of this work several 3D printed beams were destroyed or developed fatigue cracks or delaminations after
testing for too long or at too high of amplitudes.

A careful reader will notice that there is a slight inconsistency between the measured linear data presented in Tab. 6
and the estimated damping curves in Figs. 17c and 18c. Namely, in order to be considered as physically accurate, the
nonlinear ζ̃j curve should converge to the linear damping ratio value when the motion amplitude approaches zero. In the
case study presented, it seems that the inverse SNRM-based algorithm estimates the damping ratio slightly incorrectly in
the low vibration range. This discrepancy might be caused due to the basic assumption that the shape of the nonlinear
normal mode is invariant of the response amplitude; however this requires more in-depth research and will be investigated by
the authors in their future work. To evaluate how important that error might be, we reconstructed the Response Functions
using the nonlinear damping curves before and after the manual adjustment. Figures 19 and 20 show that there is practically
no difference between them. An additional discussion on how this manual modification impacts the modal viscous damping
present in the system is provided in Appendix B.

18



0 0.5 1 1.5 2 2.5 3 3.5 4

Velocity Amplitude [m/s]

120

130

140

150

160
F

o
rc

in
g
 F

re
q
u
e
n
c
y
 [
H

z
]

(a)

-180 -135 -90 -45 0

120

130

140

150

160

F
o
rc

in
g
 F

re
q
u
e
n
c
y
 [
H

z
]

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

Velocity Amplitude [m/s]

0.01

0.012

0.014

0.016

0.018

0.02

N
o

n
lin

e
a

r 
d

a
m

p
in

g
 r

a
ti
o

(c)

Fig. 17: Data measured and estimated resonant points. Case study with a 3D-printed curved beam.
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Fig. 18: Data measured and estimated resonant points. Case study with a 3D-printed flat beam.
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Fig. 19: System ID validation: estimated vs. measured resonant points and
Response Functions. Case study with a 3D-printed curved beam.

20



0 0.5 1 1.5 2 2.5 3 3.5 4

Velocity Amplitude [m/s]

70

80

90

100

110

120

130

140

F
o
rc

in
g
 F

re
q
u
e
n
c
y
 [
H

z
]

(a)

-180 -135 -90 -45 0

70

80

90

100

110

120

130

140

F
o

rc
in

g
 F

re
q

u
e

n
c
y
 [

H
z
]

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

Velocity Amplitude [m/s]

70

80

90

100

110

120

130

140

F
o
rc

in
g
 F

re
q
u
e
n
c
y
 [
H

z
]

(c)

-180 -135 -90 -45 0

70

80

90

100

110

120

130

140

F
o

rc
in

g
 F

re
q

u
e

n
c
y
 [

H
z
]

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4

Velocity Amplitude [m/s]

70

80

90

100

110

120

130

140

F
o
rc

in
g
 F

re
q
u
e
n
c
y
 [
H

z
]

(e)

-180 -135 -90 -45 0

70

80

90

100

110

120

130

140

F
o

rc
in

g
 F

re
q

u
e

n
c
y
 [

H
z
]

(f)

Fig. 20: System ID validation: estimated vs. measured resonant points and
Response Functions. Case study with a 3D-printed flat beam.
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5. Conclusions and Future Work

This work has presented a new system identification technique, which can be classified as a modal method. The algorithm
can be successfully used in the system identification of structures with geometrical and/or physical nonlinearities. The
technique proposed, called the inverse SNRM-based method, is based on the original SNRM formulation but utilizes it in
a novel way. Namely, in order to estimate one point on the NNM curve it requires collecting only one steady-state and
near-resonant measurement. Moreover, the algorithm does not need to be combined with any additional formulas to model
the nonlinear damping present in the system. Instead, it utilizes an expression already contained in the original SNRM
function.

In the case studies presented, the inverse SNRM-based algorithm successfully identified mechanical systems that exhibits
stiffening and softening-stiffening characteristic, such as flat and curved beams, respectively. Moreover, the method managed
to capture the significant eigen-frequency shifts of up to 35.79 Hz, which represents a change of 37.16% with respect to the
linear natural frequency of the structure.

Since the algorithm estimates the Nonlinear Normal Mode backbone based on the near-resonant inputs, it can also be
considered as safe (or nondestructive) to the tested structures. Keeping a distance from the nonlinear resonance allows
additionally to minimize the issues with premature jump phenomenon, an often-encountered problem in the manual Phase
Resonance Testing. Additionally, thanks to this new SNRM-based strategy the Phase Tuning testing becomes more time
efficient. In order to find the NNM backbone, the measurements do not have to be taken precisely at the nonlinear resonances.
Instead, they can be collected in the NNM’s vicinity and provided to the inverse SNRM-based algorithm, which will then
estimate the location of the backbone curve. Moreover, the algorithm can be used to estimate both the stable and unstable
branches of the nonlinear Response Functions near the resonance.

The proposed approach is based on the Single Nonlinear Resonant Mode theory which limits the application of the
algorithm to structures with well-separated modes and no internal resonance. Moreover, the method requires the accurate
identification of linear modes in the low-amplitude vibration tests and it assumes that the shape of the nonlinear normal
mode is invariant of the response amplitude.

Future works will employ this SNRM-based technique to identify more complex mechanical systems, such as structures
with a friction nonlinearity. The application of the algorithm to the cases where the modes are not well-separated will also
be investigated. Moreover, the authors have already taken an initial step towards extending the algorithm such that it could
detect the presence of modal coupling and/or multi-harmonics in the system’s response [57]. However, this modification – if
at all feasible – requires more in-depth research.
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Appendix A. Modal EOM of the Numerical Flat Beam Model

This section presents the modal equation of motion of the flat beam from section 3.1. As presented in Eq. (A.1), the
ICE-ROM is created using 4 modes (the first four symmetric modes) and the nonlinear part of each modal EOM consists
of 30 polynomial terms. The linear and nonlinear coefficients values are defined in Tabs. 2 and A.1, respectively. Note that
the subscripts of the parameters correspond to the product of terms they multiply, e.g.: β111 multiplies term q3

1 , while β123

– term q1q2q3.

q̈1 + 2ζ1ω0,1q̇1 + ω2
0,1q1 + α1

11q
2
1 + α1

12q1q2 + · · ·+ β1
111q

3
1 + β1

112q
2
1q2 + · · · = ΦT

1 f(t)

q̈2 + 2ζ2ω0,2q̇2 + ω2
0,2q2 + α2

11q
2
1 + α2

12q1q2 + · · ·+ β2
111q

3
1 + β2

112q
2
1q2 + · · · = ΦT

2 f(t) (A.1)

q̈3 + 2ζ3ω0,3q̇3 + ω2
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11q
2
1 + α3
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111q
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1 + β3

112q
2
1q2 + · · · = ΦT

3 f(t)

q̈4 + 2ζ4ω0,4q̇4 + ω2
0,4q4︸ ︷︷ ︸

linear part

+α4
11q

2
1 + α4

12q1q2 + . . .︸ ︷︷ ︸
quadratic stiffness part

+β4
111q

3
1 + β4

112q
2
1q2 + . . .︸ ︷︷ ︸

cubic stiffness part

= ΦT
4 f(t)
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Tab. A.1: Values of the polynomial coefficients from the nonlinear modal equation of motion
of the flat beam. The reduced order model consists of modes 1, 3, 5 and 7.

Parameter \ Mode 1 3 5 7

α11

[
1√

kg m3/2 s2

]
1.858E+07 2.765E+06 -2.593E+06 4.293E+07

α22 -2.454E+07 1.983E+07 -7.412E+06 1.037E+06
α33 1.007E+06 3.689E+07 -1.271E+07 5.892E+06
α44 2.685E+07 -2.182E+07 -5.087E+06 1.148E+07
α12 5.530E+06 -4.908E+07 -6.979E+06 -5.048E+07
α13 -5.185E+06 -6.979E+06 2.014E+06 -1.954E+07
α14 8.585E+07 -5.048E+07 -1.954E+07 5.371E+07
α23 -6.979E+06 -1.482E+07 7.377E+07 1.100E+07
α24 -5.048E+07 2.075E+06 1.100E+07 -4.364E+07
α34 -1.954E+07 1.100E+07 1.178E+07 -1.017E+07
β111

[
1

kg m2 s2

]

1.375E+13 -1.107E+13 -8.587E+12 5.968E+12
β122 -3.321E+13 1.268E+14 -1.281E+13 1.183E+13
β133 -2.576E+13 -1.281E+13 3.053E+14 -2.231E+12
β144 1.790E+13 1.183E+13 -2.231E+12 5.691E+14
β211 1.268E+14 -2.670E+14 -2.341E+13 1.601E+13
β222 -8.901E+13 8.956E+14 -2.180E+14 1.975E+14
β233 -2.341E+13 -6.541E+14 2.487E+15 2.230E+14
β244 1.601E+13 5.924E+14 2.230E+14 4.603E+15
β311 3.053E+14 -2.073E+14 -5.593E+14 9.317E+13
β322 -2.073E+14 2.487E+15 -1.761E+15 3.681E+14
β333 -1.864E+14 -5.868E+14 6.279E+15 8.698E+14
β344 9.317E+13 3.681E+14 2.609E+15 1.217E+16
β411 5.691E+14 -4.317E+14 -3.327E+14 8.486E+14
β422 -4.317E+14 4.603E+15 -9.444E+14 3.119E+15
β433 -3.327E+14 -9.444E+14 1.217E+16 5.109E+15
β444 2.829E+14 1.040E+15 1.703E+15 2.267E+16
β133 -2.561E+13 -4.682E+13 -4.147E+14 -1.226E+14
β144 2.367E+13 3.202E+13 -1.226E+14 -8.634E+14
β144 -4.462E+12 -1.226E+14 1.863E+14 -6.655E+14
β244 -1.226E+14 4.460E+14 7.362E+14 -1.889E+15

Appendix B. Impact of the ζ̃j-curve Shape on the Validation Results

As mentioned in section 4.2 - the inverse SNRM-based algorithm seems to have estimated the nonlinear damping ratio
incorrectly at very low oscillation amplitudes. To be more precise, the ζ̃j-curves obtained in the experimental case studies
do not intersect their linear damping ratio values, which are found in separate linear experimental vibration analyses. Note
that the numerical case studies presented in this work do not suffer from this issue. The solution we propose in section 4.2 is
a manual adjustment of the damping functions such that they start from the linear values at low amplitudes, as illustrated
in Figs. 17c and 18c. In this section, we would like to investigate how this manual modification impacts one physical quantity
of the mechanical systems, namely the modal viscous damping.

According to the light damping approximation heuristic, the linear viscous damping of the k-th mode can be expressed
as in Eq. (B.1).

Ĉkk = ΦT
kCΦk ≈ 2ω0,kζk (B.1)

Since this work focuses on nonlinear structures, whose eigen-frequencies and damping ratios are vibration-level-dependent,
we decided to investigate if and how this viscous damping changes with the motion amplitude. To do so, we would like to
define a quantity called nonlinear modal damping, which is a product of the nonlinear frequency and effective damping ratio
functions, see Eq. (B.2).

˜̂
Cjj = 2ω̃0,j ζ̃j (B.2)

Figure B.1 summarizes how the nonlinear damping coefficient changes with the vibration amplitude in each of the four

case studies described in this article. As illustrated in Fig. B.1a, the
˜̂
C11 of the numerical flat beam tends to stay constant.

23



0 0.2 0.4 0.6 0.8 1

Velocity Amplitude [m/s]

40

45

50

55

60

(a)

0 0.5 1 1.5 2 2.5

Velocity Amplitude [m/s]

30

35

40

45

50

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

Velocity Amplitude [m/s]

18

19

20

21

22

23

24

25

(c)

0 0.5 1 1.5 2 2.5 3 3.5

Velocity Amplitude [m/s]

20

25

30

35

(d)

Fig. B.1: Modal damping computed for, respectively, numerical (a) flat and (b) curved,
as well as, 3D-printed (c) flat and (d) curved beams.

This result was expected, since the ICE-ROM generated contains the nonlinearity solely in the stiffness part of its equation

of motion, while the damping part is modeled as linear. In other words, matrix C in Eq. (B.1) is constant and thus
˜̂
C11

should also be vibration-level-independent. Nevertheless, the modal viscous damping increases slightly with the vibration
amplitude. This is most likely due to the fact that the inverse SNRM-based method estimates the NNM backbone to a
satisfactory extent, but not perfectly. As presented in e.g. Fig. 8a, the estimated NNM backbone lays slightly above the true
one computed with the Multi Harmonic Balance method. Recall that this SNRM-based algortihm assumes the solution to

the nonlinear EOM in a form presented in Eq. (10), which is an approximation, thus the
˜̂
C11 quantity is not guaranteed to

be found as constant even in a numerical case study.
A similar result is obtained in case of the 3D-printed flat beam, whose modal viscous damping seems to be vibration-

level-independent. It is worth noticing that the
˜̂
Cfb11 function becomes horizontal after the nonlinear damping ratio function

is tweaked manually to meet the ζlin1 when the vibration amplitude approaches zero. Without this adjustment there is a
noticeable drop in the low amplitudes range, which is most likely non-physical. This study shows that the manual adjustment
done to the nonlinear damping ratio curve might sometimes be necessary. It can also be claimed that the viscous damping
corresponding to the first mode of vibration is approximately equal to 23.0 1

s , see Eq. (B.3).

˜̂
Cfb11 = 2ω̃0,1ζ̃1 ≈ const = 23.0

1

s
, (B.3)

where the superscript fb stands for flat beam.
An interesting outcome is obtained in the cases of the numerical and 3D-printed curved beams. The simulated case study

revealed a decrease of the modal damping when the beam exhibits softening. In the stiffening range, the
˜̂
Ccb11 coefficient rapidly

increases to approximately 47.0 1
s (which is higher than its linear Clin11 value) and stays at this level when the motion amplitude

keeps increasing. This result is at first glance very surprising because the nonlinearity is, once again, contained entirely in
the stiffness part of the equation of motion. When it comes to the case with the 3D-printed curved beam (see Fig. B.1d),
the modal damping also exhibits an initial decrease followed by an increase of its value. However, it is not as abrupt as in

the numerical case study investigated. The authors suspect that this
˜̂
Ccb11-amplitude-dependency is most likely caused by the
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higher (or lower) harmonics present in the system’s response, however this phenomenon requires more careful and in-depth
investigation. On the other hand – the results on the nonlinear modal damping present in the flat beams are seemingly easy
to interpret even with the simple formulas which are well-established in linear vibration theory.
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