
NIXO-Based Identification of the Dominant Terms
in a Nonlinear Equation of Motion

Michael Kwarta1, Matthew S. Allen2

1Graduate Student, 2Professor, University of Wisconsin–Madison, Engineering Physics Dept.
email: [kwarta, matt.allen]@wisc.edu

Abstract

While many algorithms have been proposed to identify nonlinear dynamic systems, nearly all methods require that
the form of equation of motion is known a priori. Examples of very effective methods of this kind are NIFO, CRP and
NARMAX. Several works have sought to extend NARX or NARMAX to a black-box modeling technique. They have
proven to be successful in finding accurate mathematical models for certain types of nonlinear systems yet no method
has proved universally successful. This work presents and evaluates a new black-box identification approach based on
a new NIFO/CRP type algorithm called Nonlinear Identification through eXtended Outputs (NIXO). The proposed
algorithm expresses the nonlinear part of equation of motion as a polynomial of high order and then removes the
terms which are classified (with high probability) as irrelevant in the mechanical system’s response. This division
into dominant and irrelevant nonlinear terms relies on the values of two novel indicators that are particular to NIXO.
This technique is demonstrated on a numerical case study employing a curved beam. Then the method will be used
to estimate the NLEOM of flat and curved beams that were manufactured using a 3D printer. The experimental
results will be validated against those obtained using phase resonance testing, which identifies a nonlinear normal
mode (NNM) of the system using a vastly different approach.

Keywords: Nonlinear system identification, Nonlinear parameter estimation, Black-box methods, Nonlinear Normal
Modes, NIXO methods

Definition of the ∆-indicators

The objective of this publication is to propose a new technique for black-box nonlinear system identification. This
work builds on that presented in [1] where the authors introduced a new frequency-domain system ID algorithms
called D1- and D2-NIXO, for Nonlinear Identification through eXtended Outputs. The NIXO base formulas are
proposed in two versions. The first one estimates the nonlinear coefficients as complex numbers, while the second
enforces them to be found as real. The reader can refer to [1] for a detailed derivation of these expressions.

While testing NIXO in several case studies, the authors noticed an interesting feature of the algorithm. Namely,
it was observed that if the tested structure: (i) is excited with a swept (co)sine forcing signal and (ii) oscillates at
low (but sufficiently high) amplitudes during the experiment, then the nonlinear terms that are not dominant in the
system’s response tend to be complex-valued. Hence, if we analyze the structure assuming the most general form of
the nonlinear EOM – see e.g. Eq. (2) – then the NIXO algorithms will point out which nonlinear terms should be
kept and which could be removed from the equation of motion. The complexity of the result can be quantified by
two system identification metrics called ∆∗ and ∆∗∗, which are defined in Eq. (1).

∆∗ =

∣∣∣∣Re {βcmplx} − βreal
βreal

∣∣∣∣ ∆∗∗ =

∣∣∣Re {βcmplx}
∣∣∣− ∣∣∣Im {βcmplx}

∣∣∣∣∣∣Re {βcmplx}
∣∣∣

{
∆∗ < ε

∆∗∗ > 1− ε
(1)

where βreal and βcmplx are the parameters identified by the complex and real versions of the NIXO algorithms,
respectively.

As shown in Eq. (1), the ∆∗-indicator expresses the relative difference between the coefficient that was enforced
to be found as real and the real part of the complex one. Hence, ∆∗ will be small when the two algorithms produce
consistent results. In contrast, ∆∗∗ is defined as the relative difference between the real and imaginary parts of the
complex solution, and gives a measure of how large the imaginary part of the solution is. Hence, the nonlinear term
is considered to be dominant when its ∆∗ value is low enough and ∆∗∗ is close to 1. Note that these two requirements
must be satisfied simultaneously. The accuracy thresholds could be specified with a parameter ε, as presented in
Eq. (1c). The value of ε should be a small number, say ε = 0.05. With the two ∆-indicators defined, we are ready
to illustrate the black-box capabilities of the NIXO algorithms. The next sections present a successful black-box
identification performed on a numerical model of a curved beam.



Simulated Black-Box Identification of a Curved Beam
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Fig. 1: The NNM curve is overlayed on the
response at the beam’s center to swept cosine

input forces of varying amplitudes.

The numerical test is performed on an ICE-ROM of a clamped-
clamped curved beam subjected to a uniformly distributed swept
cosine forcing signal. The beam has a length of 304.8 mm, width
of 12.7 mm, thickness of 0.508 mm and a radius of curvature of
11.43 m. It is made of steel with a Young’s modulus of 207.4334×
1011 GPa, a density of 7850 kg/m3 and a Poisson’s ratio of 0.29.

The ICE-ROM consists of the first three symmetric modes,
i.e. modes 1, 3 and 5. Their linear natural frequencies
and damping ratios are: {65.181, 158.636, 385.882} Hz and
{0.035, 0.0262, 0.0174}, respectively. The nonlinear equation
of motion of the system, including every possible nonlinear term
is presented in (2). Since (i) the nonlinear part consists of the
quadratic and cubic parts, and (ii) there are 3 modes present
in the ROM – the number of nonlinear terms that can occur in
the EOM is at most 16. In each case study run, we assume the
most general form of the NLEOM, see Eq. (2), hence NIXO can
point out the terms dominant in the system’s response out of
the most general set of 16 terms. This brief publication focuses

on identification of the nonlinear mode 1, thus we presented the nonlinear equation of motion of this mode only;
the equations for the two remaining modes are analogous. Note that the subscripts of the nonlinear coefficients
correspond to the product of polynomial terms they multiply; e.g.: β111 multiplies term q3

1 , while β123 multiplies
term q1q2q3.

q̈1 + 2ζ1ω1q̇1 + ω2
1q1︸ ︷︷ ︸

linear part

+α1
11q

2
1 + α1

12q1q2 + . . .︸ ︷︷ ︸
quadratic stiffness part

+β1
111q

3
1 + β1

112q
2
1q2 + . . .︸ ︷︷ ︸

cubic stiffness part

= ΦT
1 f(t) (2)

Identification of Mode 1
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Fig. 2: Underlying linear system estimated
successfully by the NIXO algorithms.

The beam is excited with swept cosine signals of various magnitudes,
such that it oscillates at different response-levels in every test. These
input/output signals are later provided to the NIXO algorithms,
which uses them to estimate the underlying linear as well as the
nonlinear parts of the system.

Since the 1st mode occurs at approximately 65 Hz, the authors
decided to excite the system with 300-second-long (up and/or
down) sweeps, with frequencies ranging from 1 to 115 Hz. The
output signals obtained in these numerical tests are illustrated
in Fig. 1 and can be grouped into two sets: down- and up-
sweeps, which correspond to the force amplitudes of F0 ∈{

1× 10−7, . . . , 8× 10−4
}

and F0 ∈ {2.4, . . . , 4.75} × 10−3

newtons, respectively. Note that some of the responses shown are
not symmetrical with respect to the equilibrium position. This
result was expected, since the beam is curved and the snap-through effect causes this asymmetry. Moreover, this
observation explains the importance of including the quadratic stiffness terms in the nonlinear equation of motion.

Sample Black-Box ID Outcomes from High-Amplitude Vibration Tests

The results from a black-box system identification attempt are presented in this section. The input signals provided
to the NIXO algorithms are the sweep cosines with magnitudes of 2.4 × 10−3 (up-sweep) and 5.0 × 10−4 newtons
(down-sweep). The corresponding output signals were already shown in Fig. 1. Note that the signals used have very
different amplitudes; the proposed algorithm seemed to work best when this is the case.

The outcomes from the case study are presented in Fig. 2 and Tab. 1. Figure 2 compares the true linear Frequency
Response Function to those returned by NIXOs. The FRFs match perfectly, showing that the underlying linear
system was successfully identified. Table 1 presents the four nonlinear terms (out of sixteen assumed beforehand)
that were pointed out by NIXO algorithms as dominant in the system response (the coefficients which does not meet
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Tab. 1: Estimated values of the nonlinear coefficients obtained using NIXO methods. Parameters marked with
green satisfy the accuracy criteria. Parameters marked with blue are close to satisfying these requirements.
The parameters that does not meet the accuracy criteria specified in Eq. (1c) are not shown in this table.

D1–NIXO D2–NIXO
Re{·cmplx} Im{·cmplx} ·real ∆∗ [%] ∆∗∗ [%] Re{·cmplx} Im{·cmplx} ·real ∆∗ [%] ∆∗∗ [%]

α11 3.42E+09 -4.33E+06 3.42E+09 0.16 99.87 3.34E+09 -4.62E+07 3.44E+09 2.99 98.62
α12 3.67E+09 2.38E+08 3.94E+09 6.89 93.51 4.29E+09 2.36E+08 3.73E+09 14.96 94.50

β111 2.04E+13 1.68E+11 2.01E+13 1.51 99.18 1.94E+13 -4.71E+11 2.03E+13 4.71 97.57
β112 6.88E+13 5.48E+12 6.58E+13 4.65 92.04 6.47E+13 -2.59E+12 6.28E+13 3.00 95.99

the accuracy criteria (1c) are not presented in the table). These terms correspond to the following parameters: α11,
α12, β111 and β112. The nonlinear equation of motion including these four terms only does not loose much accuracy
when compared to the true NLEOM containing the full set of 16 terms (for more details see the section below, where
the results are validated). Since this is the smallest model that captures most of the structure’s dynamics - these
four nonlinear terms must be dominant in the mechanical system. Naturally, if more nonlinear coefficients has to be
identified, then the signals from tests where the structure oscillates at higher amplitudes should be provided to NIXO.
Then – besides estimating accurately the four parameters itemized above – the NIXO algorithms will additionally
point out the nonlinear terms that are next on the importance list.

Results Validation
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Fig. 3: A comparison of the true NNM curve
to the one computed using four nonlinear

terms pointed out by the NIXO algorithms.

To prove that the polynomial terms pointed out by NIXO are
dominant in the system, we compare the true NNM curve with
the one computed for the EOM with the reduced set of the
nonlinear terms pointed out by NIXO, see Eq. (3). The values
of coefficients α11, α12, β111 and β112 are presented in Tab. 1.

q̈1 + 2ζ1ω1q̇1 + ω2
1q1 + α1

11q
2
1 + α1

12q1q2+

β1
111q

3
1 + β1

112q
2
1q2 = ΦT

1 f(t) (3)

The NNMs were computed using the Multi-Harmonic
Balance algorithm using 5 harmonics and their comparison is
shown in Fig. 3. The curve obtained using only the dominant
terms matches well with the true NNM over a large range of
the motion amplitudes (up to two times the beam thickness).
In contrast, if the dominant terms are excluded – then the
normal mode is a straight vertical line. This indicates that
the structure behaves linearly when these dominant terms are
removed from the EOM.

Conclusion and Future Work

This work briefly discussed a capability of the NIXO algorithms, which could allow them to become an effective black-
box nonlinear identification tool. The results presented here prove that the methods can successfully determine the
smallest set of terms which should be kept in the nonlinear equation of motion. Since the dynamics of the structure
described with the reduces and full sets of terms are comparable - the terms pointed out by NIXO can be considered
as dominant in the mechanical system.

In future work, the method will be employed experimentally to identify the dominant nonlinear terms in an
equation of motion of flat and curved beams. Then the NNMs of the identified models will be computed and
validated against those collected using well-established phase resonance tests.
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