
Copyright 2000 by William F. Pratt. Publsihed by Society for the 
Advancement of Material and Process Engineering with permission. 

 
 
 
 

TESTING AND CHARACTERIZATION 
OF  WAVY COMPOSITES 

 
Dr. William F. Pratt and Matthew S. Allen 

Patterned Fiber Composites, Inc. 
Lindon, UT  84042 

 
Dr. Scott D. Sommerfeldt 

Brigham Young University 
Provo, UT  84602 

 
ABSTRACT 

 
Wavy composite is a new form of constrained layer damping that uses opposing sinusoidal 
waveforms and viscoelastic materials to provide both high damping and stiffness. This article 
discusses one method of testing wavy composites that determines the stiffness and damping of 
the material over a broad band of frequencies and temperatures. These material properties can 
then be used to design practical structures using a design-of-experiments, or can be used to 
validate the material model in a finite element analysis (FEA) program. Test results are used to 
characterize the material properties of wavy composites and correlate the results to a FEA model 
developed by Patterned Fiber Composites, Inc. Test data collected over an extended temperature 
range is combined using the WLF equation, to create a “master” damping and modulus vs 
frequency curve for a single temperature over a broad frequency range. Generally known as 
“nomographs” these charts can provide the designer with a flexible design tool that relates 
temperature, frequency, and performance of the wavy composite lay-up. Damping measurements 
as high as 30% with the stiffness of aluminum and titanium using standard graphite fibers are 
reported. 
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1. INTRODUCTION 

Wavy composite is a new, and emerging form of constrained layer damping that uses standard 
fibers, resins, and viscoelastic materials in a new configuration to provide both high damping 
and stiffness. Originally conceived in 1990 by Dr. Benjamin Dolgin of NASA (Dolgin 1990), a 
practical way of implementing this concept did not exist until 1997 (Pratt 1999). During the 
period from 1997 to mid 2000 advances in FEA modeling and prediction, material selection, and 
testing led to a number of important discoveries. Dolgin’s concept is shown in Figure 1. 
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Figure 1: Basic damped wavy composite concept 

The viscoelastic layer dominates damping and stiffness performance of a wavy composite 
combination. As a result, all the concepts that apply for a linear viscoelastic material apply to the 
combination of wavy composite and viscoelastic material, namely (Pratt, et al. 2001): 

1. Wavy composites exhibit glass transitional properties, i.e. there are defined asymptotic 
values for stiffness, and a defined damping peak as a function of temperature and frequency. 

2. Frequency-temperature superposition, i.e. a change in temperature is equivalent to a change 
in frequency. 

3. Viscoelasticity, i.e. damping can be approximated by factoring the modulus or stiffness of a 
material. 

Unlike more conventional methods of material testing of fiber reinforced plastics, methods used 
to test wavy composite structures must account for the frequency and temperature dependence of 
the viscoelastic materials used in the structure. While the damping and stiffness properties of the 
composites used in the constraining layers are essentially independent of temperature and 
frequency (Gibson 1976), this is not true of viscoelastic materials. Thus, meaningful 
characterization of these material combinations can only be accomplished with a dynamic test.  

The method explained in this paper determines the complex material properties related to 
modulus and damping in a linearly viscoelastic structural material as a function of time and 
frequency. This method effectively decouples the dynamic resonance of the test specimen by 
using a mathematical model of the specimen and curve-fitting each data point to the model by 
iteration. The result provides a complex modulus for the material used in the fabrication of the 
specimen that can be used to evaluate the results of FEA models, predict performance in other 
structures, and create a “master nomograph” of the material for design purposes.  

2. TEST CONCEPT 

The test method is based on a concept proposed in the testing of viscoelastic samples (Nielsen, et 
al. 2000). Since wavy composites are considerably stiffer than viscoelastic materials, several 
modifications and improvements were accomplished which provided accurate results. 

Nielsen et al used an accelerometer and a load cell to measure axial displacement and force 
applied to the driven end of their sample. They assumed displacement at the stationary end 



 
   

would be exactly zero or small enough as to be insignificant (Nielsen, et al. 2000). Because the 
sample stiffness was insignificant relative to the base structure, their assumption was reasonable 
and simplified the analysis. Such is not the case with a stiffer material. 

Since wavy composites exhibit both high damping and stiffness, the dynamics of the test 
structure cannot be ignored but their effects were minimized and the results proved to be more 
accurate. Instead of using an accelerometer and load cell on the driven end of the sample and 
driving it against an immovable base as Nielsen used, the method presented here used two 
accelerometers, one at each end, driving the sample in a fixed-free mode. The test setup is shown 
below. 

 

Figure 2: Test setup 

The wavy composite test tube was mounted between two test fixtures, which also provided a 
mount for the accelerometers. The tube was driven axially by a piezoceramic actuator driven by 
an amplifier using white noise. Since the mass of the end fixtures, and the mass and the 
dimensions of the tube can be accurately measured, the only unknowns are the stiffness and 
damping, and as will be shown, these can be determined from the transfer function of the two 
accelerometers with good accuracy. 

3. ALGORITHM 

Axial excitation of the test specimen was chosen because the material properties can be 
determined directly. Since the structure of the tube is composed of two or more dissimilar 
materials (in this case wavy composite and viscoelastic), the material properties derived 
represent the average or “smear” properties. If it is assumed that the primary load resistance is 
provided by the composite constraining layers, the equivalent material properties of the 
composite can be determined by factoring the sample by the area of the composite. This provides 
a relative measure of the stiffness of an equivalent “composite only” sample. Because the test 
method is robust enough to measure a stiff structural material it is also capable of determining 
the properties of conventional composites without viscoelastic layers. This provided a very 
convenient method of testing and verifying the composite constants used in finite element 
analysis.  

The model of the tube-test setup used to determine the material properties of a given sample is 
derived from the solution to the partial differential equation (and boundary condition (BC)) for 
longitudinal vibrations shown in Equation one: 
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Where “c” is the speed of sound in the material, and c and  are defined as follows: 

 c 
E*


and   c  Eqn. 2 

The solution to Equation one is given by the following: 

 U x, t   X t T t  Eqn. 3 

 X x  c1 cosx  c2 sin x  Eqn. 4 

 T t  c3 cosct  c4 sinct  Eqn. 5 

Applying the simplified versions of Equations 4 & 5 to Equation 1 gives the following: 

 EA  X T  m2c2 XT or EA  X L   m2c2  X L  Eqn. 6 

The use of Equation 5 is no longer needed and combination of Equations 4 & 6 results in the 
determination of the ratio of the c1 and c2 constants: 

 
c2

c1


m 2 cosL  EAsinL

EAcos L  m 2 sinL
 Eqn. 7 

The “compliance” version of the transfer function for the two accelerometers is: 

 
U L,t 
U 0,t 


c1 cosL  c2 sinL

c1

 cosL 
c2

c1

sin L  Eqn. 8 

Substituting Equation 7 into Equation 8 and inverting the result gives: 

 
U 0, t 
U L, t 

 cos 
MassL

Masstube

 sin   Eqn. 9 

Where the mass at the free end (MassL) is m in Equation 7, and the mass of the tube is the 
product of the density, cross sectional area, and the length of the tube.  is a function of the 
length L, the frequency, the density of the test specimen, and the complex modulus E*: 

  
L2 2

E*  Eqn. 10 

By applying Equations 9 and 10 to the transfer data at each measurement frequency, iterative 
solutions will converge on a  (and therefor a complex modulus E*) that will satisfy the 
Equations. The method converges rapidly using Newton’s method where: 

 y 
U 0,t 
U L, t 

 cos  
MassL

Masstube

 sin  Eqn. 11 
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 i1  i 
y
y


 Eqn. 13 

The ratio shown in the second term of Equation 13 represents the “delta ” and is driven towards 
zero as the  converges on a solution, once an initial guess is made for the complex modulus E*. 
Equations 10 through 13 are placed in a while loop and solved in the order shown until the 
absolute value of “delta ” is below an acceptable value. The complex modulus is then solved 
using an appropriate form of Equation 10. This occurs for each frequency measurement of the 
transfer function. The result is a table or plot of the real component of the modulus and the 
damping constant given in the following: 

 E*  E  E  E  jE  E  1  j   Eqn. 14 

Internal studies have shown that the method is quite robust and is very forgiving of initial 
guesses that are off by as much as 50% or more on both damping and modulus. Convergence is 
rapid and the whole process takes less time to solve and plot than it takes to obtain the data. 

4. IMPROVING PERFORMANCE 

This method works best for structural materials over a frequency range centered on the first axial 
resonance. Considerable error can occur if the frequency range is extended too far from the first 
axial resonance and appears to be associated with a number of causes including spurious 
resonance associated with the structure (e.g. not associated with the test sample), sensor noise, 
and phase angle measurement error or noise. Error associated with the test structure was 
eliminated by attaching the actuator, end fixtures, and accelerometers to a solid cylindrical chunk 
of steel. The entire structure was then isolated from the building dynamics by laying it on a half-
inch sheet of vibration damping material. Other spurious structural modes derived from bending 
of the tubes. These errors were eliminated by co-axially mounting the accelerometers with the 
centerline of the tube.  

Sensor noise was the biggest contributor to error in the measurements of magnitude and phase 
once these other problems were solved. Some of the sensor noise was caused by electrical noise 
transmitted through the body of the specimen to the accelerometers. This was easily resolved by 
electrically isolating the accelerometers from any conductive surfaces of the tube or end mounts.  

The remaining sensor noise was associated with the sensitivity floors of the accelerometers, 
especially at frequencies removed from the primary resonance. This is due primarily to two 
causes. First, not enough energy is applied to the structure at low frequencies. With a 
conventional white noise generator, the energy imparted to the structure is spread across the 
frequency spectrum. The accelerometer measures acceleration and is therefore proportional to 
x2. At frequencies well below the first resonate mode, the force imparted to the structure is too 
low to measure accurately. 



 
   

Secondly, at anti-resonance and frequencies well away from resonance modes (especially for low 
damped composites) phase angles are very close to zero. This means that the natural noise floor 
for the sensor can be greater than the value of the phase angle being measured. This is less 
problematic for tubes with greater damping. Even so, undamped tubes of conventional 
unidirectional composite have been successfully tested and have shown to exhibit both modulus 
and damping accurately. In fact, testing of 90° unidirectional composite tubes (used to determine 
the E22, E33 modulus) produce more believable results than the standard ASTM methods, and 
the tube samples are easier to make. 

5. TYPICAL RESULTS 

The following shows the typical test results of tubes made with wavy composite. The analysis 
shown below was obtained from a tube made using wavy material with a 7.6 cm wave period and 
25 degree max angle. Results from 0 to 3200 hertz are shown but as can be seen in Figure 3, 
noise in the measurement below 400 hertz made the data meaningless.  

The method used to analyze this and other tubes decouples the mass from the system and allows 
accurate measurement of damping and stiffness over a frequency band of .2 fr to 2 fr. The main 
source of error in determining damping and stiffness stems from noise in the measurement of 
magnitude and phase angle at frequencies lower than about .3 fr or above 3 fr where the phase 
angle is close to 0° or 180°. 

 

 

Figure 3: Magnitude, phase, and coherence plots for a wavy composite tube at 50°C 



 
   

As shown in Figure 3, the magnitude drops off (probably due to insufficient activation) and noise 
in the phase angle becomes pronounced between 0 and 250 hertz. This is reflected in the 
measurement of coherence shown in Figure 3. As shown, coherence is at or close to 100% for 
frequencies between 400 and 3200 hertz. Below 400 hertz the coherence begins to drop off until 
at 250 hertz, the coherence measurement is so low that the data becomes meaningless.  
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Figure 4: Axial damping results plot for a wavy composite tube at 50°C 

Using the algorithm discussed above, the damping and stiffness for the tube over the range of 
400 to 3200 hertz can be determined. Figure 4 shows the decoupled damping results calculated 
from the magnitude and phase information shown in Figure 3. The results show that noise trends 
in the damping strongly mirror the noise in the measurement of phase angle as would be 
expected. Despite the noise, the low frequency trend in damping is still very much apparent, 
starting at 16% and moving generally upward toward a peak of 26% at about 2500 Hz.  

Stiffness prediction does not seem to be as sensitive to noise in the measurement of magnitude or 
phase angle. Figure 5 shows a relatively clean stiffness prediction between 400 and 3200 hertz. 
As expected for a material with viscoelastic properties, the stiffness increases steadily from about 
30 GPa to a peak of 39 GPa at 3200 hertz. The term stiffness is used here to represent a 
“smeared” property over the thickness of the tube and includes the viscoelastic layer.  

Figures 4 and 5 show the damping and stiffness results for a tube at a single temperature. If data 
for the same test specimen is collected over an extended temperature range, the results of each 
test can be combined using the WLF equation, to create a “master” damping and modulus versus 
frequency curve for a reference temperature over a broad frequency range. Generally known as 
“nomographs” these charts can provide the designer with a flexible design tool that relates 
temperature, frequency, and performance of the wavy composite lay-up. 
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Figure 5: Stiffness results plot for a wavy composite tube at 50°C 
 

6. WAVY COMPOSITE NOMOGRAPHS, TIME TEMPERATURE  

SUPERPOSITION AND WLF 

The noise in the stiffness and damping results limit the range of reliable test data to 
approximately 500-2500 Hz. Therefore, without using a different experimental setup it is 
impossible to collect low frequency data directly with this test equipment. However, it is not 
difficult to collect data over the 500-2500 Hz frequency range at a wide range of temperatures. 
Figure 6 shows the experimentally measured stiffness of a composite tube from 500-2000 Hz at a 
number of temperatures.  

Figure 6 shows the effects of temperature or frequency. Note that increasing the temperature of 
the composite tube lowers the stiffness curve over the testable freqency range. Also note that the 
stiffness generally increases with increasing frequency. This behavior agrees with the expected 
performance of a viscoelastic material. The time-temperature superposition principle states that a 
material will behave predictably to changes in temperature or frequency. Increasing temperature 
is identical to decreasing frequency and visa versa. The curves in Figure 6 represent the 
performance of the material over the same frequency range but different temperatures. If the 
results are normalized for the same temperature, the result will be to shift the frequency of each 
curve by an amount determined by the WLF equation. 

Equation 15 describes this behavior mathematically, where f2 is a shifted frequency, f1 is the 
original frequency and (T) is a shift factor. The shift factor is a function of temperature, and 
quantifies the relationship between frequency and temperature for the given material. 

 f2  f1( (T ))  Eqn. 15 

A good equation for (T) is the William Landel Ferry Equation 16. This equation has been 
shown to have universal application over a wide variety of polymer materials (Ferry 1980).  

 log[ (T )] 
c1 (T  T0 )

c2  T  T0

  (WLF equation) Eqn. 16 
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Figure 6: Measured elastic modulus of composite tube at various temperatures (500-2000 Hz). 

If Equation 16 is substituted into Equation 15, the result is Equation 17. In this equation the 
shifted frequency is replaced by “reduced frequency” FR, which takes temperature into account. 
Through the use of this equation, time temperature superposition can be used to construct a 
single master curve over a broad frequency range. The application of time-temperature 
superposition through the WLF equation will be discussed later. 

 log(FR)  log(F) 
c1(T  T0 )

c2  T  T0

 Eqn. 17 

Figure 7 shows the data from Figure 6 shifted to a reference temperature of 25° C where the x-
axis represents a reduced frequency. (The following values were used in the WLF equation: c1 = 
12, c2 = 160, T0 = 25° C.) 

 

If we let T= T0 = 25° C, equation 17 reduces to F = FR. Thus Figure 7 also represents the 
dynamic performance of the composite tube at 25° C from 10 to 3000 Hz. Application of the 
time-temperature superposition principle has created the “master” modulus curve for the sample. 
The data have been shifted to produce a continuous line covering a larger range of frequency. 
This allows characterization of the sample for much lower or higher frequencies than is 
physically possible with test equipment by simply changing the temperature of the test 
specimein. 



 
   

D2a Modulus vs. Reduced Frequency
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Figure 7: Modulus vs. Reduced Frequency referenced to 25° C 

By changing the reference temperature (T0) we can easily create a master curve of the data at any 
temperature. Given initial values for the WLF constants (T0, c1, c2), new values for c1 and c2 can 
be found corresponding to new T0 with the following equations (18, 19). 

 c1,new 
c1c2

c2  T0,new  T0

 Eqn. 18 

 c2,new  c2  T0,new  T0  Eqn. 19 

Where c1, new and c2, new are the new c1 and c2 constants respectively and T0, new is the new 
reference temperature (Sperling 1989).  

7. FREQUENCY TEMPERATURE NOMOGRAPHS 

A convenient way of displaying the data is the frequency-temperature nomogram. Figure 8 
shows the elastic modulus and damping of the same test data on a frequency temperature 
nomogram. This nomogram is also referenced to 25° C, thus at 25° C the actual frequency (in 
Hz) can be read directly on the “reduced frequency” scale.  



 
   

 

Figure 8: Modulus and Damping of D2a sample Frequency-Temperature Nomogram 

For other temperatures the modulus and damping can be read by using the temperature lines. For 
example, if we wish to know the loss factor and damping at 1000 Hz and 35° C: First locate 
1000 Hz on the far right “frequency (Hz)” axis. Follow this line to the left until reaching the 
diagonal temperature line labeled 35° C. (Note that the reduced freqency value at this point is 
approximately 200 Hz. Thus 1000 Hz at 35° C is equivalent to 200 Hz at 25° C). Now read up or 
down to the modulus or damping master curve. From this point the modulus or damping value 
can be read by traveling horizontally to the far left scale as illustrated by the thick lines. The 
values are approximately 57 Gpa for the elastic modulus and 18% damping. 

8. WLF CONSTANT DETERMINATION 

Rodger N. Capps and Linda L. Beumel describe a method for determining the WLF constants 
through a computer algorithym (Sperling 1989). The basic process will now be described in 
further detail, though automation will be left to the reader. 



 
   

Figure 6 shows test data collected at various temperatures. For convenience the highest observed 
temperature is taken as the reference temperature (55° C in this case). The shift factor t is 
defined as the ratio of shifted frequency to the reference frequency. For each set of data at 
distinct temperatures a shift factor is recorded. For example, note that the modulus has a value of 
60 GPa at 546 Hz at 26.5° C and also at 1179 Hz and 33.5° C. Thus in order to shift the data at 
26.5° C so that it lies on the curve at the next hightest temperature 33.5° C, it would have to be 
multiplied by the shift factor t = (1179/546). The log of the shift factors is taken, and the 
log(t) are added beginning at the reference temperature (55° C) resulting in a value of the log 
shift factor log(t) for each temperature tested. Table 1 shows sample data taken from Figure 6: 

Linear Curve Fit Used to Determine WLF Constants
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Figure 9: Linear curve fit used to determine WLF constants. (55° C Ref. Temperature) 

Thus a linear curve fit between (T-T0)/ log(t) and (T-T0) yields –c1 as the slope and –c2 as the 
intercept. Figure 9 illustrates this. Note that there was some scatter in data. This is probably due 
to human error in determining the amount of frequency shift required. It is also possible to fit a 
curve through each section of data and use an iterative technique to converge on the shift factor 
required to cause the sets of data to align. The constants can now be adjusted for any reference 
temperature through equations 18 and 19. Shifting the constants in Figure 9 to 25° C yields c1 = 
9.73 and c2 = 106. Figure 10 shows the data from Figure 6 shifted with these new constants. The 
resultant smoothness of the damping plot is an independent verification that the constants are 
correct. 



 
   

 

Table 1: WLF Constant Determination Data 

Temperature 26.5 33.5 39 44.5 50.5 55 
(T-T0) -28.5 -21.5 -16 -10.5 -4.5 0 
Shifted F 1179 1381 1070 1320 1300  
Ref. F 546 500 480 530 700  
delta At 2.15934 2.762 2.22917 2.49057 1.85714 1 
log(delta At) 0.33432 0.44122 0.34814 0.3963 0.26885 0 
log(At) 1.78883 1.45451 1.01329 0.66514 0.26885 0 
At 61.4937 28.478 10.3106 4.62534 1.85714 1 
(T-T0)/log(At) -15.9322 -14.7816 -15.7902 -15.7861 -16.7382  

WLF equation (1) can be rearranged into the form shown in equation 20. 

 (T  T0 )  c1

(T  T0 )

log[ (T )]



 


 c2  Eqn. 20 
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Figure 10: Shifted modulus & damping curves using c1 = 9.73 and c2 = 106, at 25° C 

9. CONCLUSIONS 

This paper has discussed and shown examples of how wavy composite tubes can be tested to 
determine damping and stiffness performance over a broad frequency band. By using the 
temperature-frequency superposition principle and the WLF equation, it is possible to create a 
“master curve” or nomograph of both damping and stiffness for a broader frequency band than 
can be physically tested. The method is robust, and cost effective to operate and provides a 
simple means by which highly damped structural materials such as wavy composites can be 
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