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Nonlinearities in structural dynamic systems introduce behavior that cannot be 
described with linear vibration theory, such as frequency-energy dependence and internal 
resonances. The concept of nonlinear normal modes accommodates such phenomena, 
providing a rigorous framework to characterize and design nonlinear structures. A recently 
developed method has enabled the computation of nonlinear normal modes for structures 
with hundreds of degrees of freedom, but the formulation is not readily applicable to large 
scale geometrically nonlinear structures that are modeled within finite element software. 
This work presents a variation on that approach that can be used to extract the nonlinear 
normal modes of a structure using commercial finite element software.  A model of the 
structure is created in the finite element package and the algorithm then iterates on the 
nonlinear transient response in a non-intrusive way to estimate the nonlinear modes. A 
modal coordinate transformation is used to reduce the order of the Jacobians required by 
the algorithm. The method is demonstrated on a fixed-fixed beam that is geometrically 
nonlinear due to coupling between transverse and axial displacements. An alternative 
procedure is also presented in which static load cases are used to compute a reduced order 
model of the nonlinear system and then standard continuation is used to find the nonlinear 
modes of the reduced order model. That approach is explored using both enforced 
displacements and applied loads and the results obtained are compared with those from the 
full-order model.  

I. Introduction 
ONLINEARITIES are important in a wide range of structures. Some common sources of nonlinearities are 
large deformation effects, bolted joints, and nonlinear material constitutive laws. For example, the skin of high 

speed aircraft can buckle due to aerothermal heating leading to highly nonlinear behavior even when the material is 
within its elastic limit [1]. Similarly, friction and bolted/riveted joints in engineering structures can introduce 
nonlinear damping or stick-slip nonlinearity [2, 3]. Nonlinearities can dramatically alter the response of a system, 
causing it to exhibit behavior that cannot be described by linear vibration theory, such as bifurcations, internal 
resonances and frequency-energy dependence. These must be properly accounted for in order to accurately predict a 
structure’s response.  

This work is motivated by the need to improve the performance of the skin panels of future hypersonic vehicles. 
These skin panels are subjected to significant heating which can cause them to buckle and vibrate nonlinearly in 
response to pressure fluctuations in the flow field during flight [1, 4, 5], making their response and hence their life 
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difficult to predict. A buckled structure typically has multiple stable equilibrium positions and nonlinearities must be 
considered to predict the structure’s response as it jumps between the equilibrium states. A careful design is required 
to assure that the structure can withstand the in-flight loads while not exceeding weight requirements. 

Nonlinear Normal Modes provide a lot of insight into the behavior of a nonlinear structure. This work uses the 
undamped nonlinear normal mode concept originally defined by Rosenberg [6] and further developed by Vakakis, 
Kerschen and others [7, 8]. According to their definition, a nonlinear normal mode (NNM) is a not necessarily 
synchronous periodic response of the undamped nonlinear system. Once the NNMs of a system are known, one can 
predict much of the frequency content in the structure’s free response. The NNMs are also related to the backbone 
curves of the structure’s nonlinear frequency response, so they provide important insights into the structure’s forced 
response. Vakakis et al. recently used the NNM concept to design a special class of nonlinear vibration absorbers 
called “nonlinear energy sinks” [9]. The NNM concept has also been extended to damped normal modes [10] and 
studied in conjunction with forced response [11] and model reduction [12]. 

Nonlinear normal modes have traditionally been found using analytical techniques, such as the method of 
multiple scales [7, 8, 13, 14] or the harmonic balance technique [15]. These analytical methods are typically only 
applicable to relatively simple structures, i.e. situations in which the equations of motion can be written in closed 
form. Recently, Peeters et al. developed an alternative based on numerical integration, shooting and a pseudo-
arclength continuation technique [16], which has been shown to perform well for quite complicated structures. Their 
method was recently used to compute the first several NNMs of a reduced order model of an aircraft with 548 
degrees of freedom [17]. They accomplished this by creating a detailed finite element model of the aircraft and then 
reducing it to a 548 degree of freedom Craig-Bampton [18] model. Discrete nonlinear springs were then added 
between the wings and fuel tanks. 

This work extends the approach of Peeters et al. to systems with geometric nonlinearity that are modeled in 
commercial finite element codes. The Craig-Bampton approach employed in [17] cannot be used to obtain a 
nonlinear reduced order model for a system with global nonlinearities. The method presented in this work deals 
directly with the full order nonlinear finite element model in the native finite element code. The finite element code 
is used to numerically compute the response of the system to various initial conditions, and a shooting technique 
similar to that employed by Peeters et al. is used to find those initial conditions that produce a periodic response (or 
a nonlinear normal mode). Note that the equations of motion do not exist in closed form but within the finite element 
code; the finite element software integrates the equations of motion without constructing a mathematical model of 
the usual sort. Because of this, the algorithm employed by Peeters et al. to compute the Jacobian of the shooting 
function cannot be used, as it requires the derivative of the equations of motion.  In order to have a non-intrusive 
approach, this work employs finite differences instead. This could be problematic if the state vector of the system 
was comprised of the displacements of each of the individual nodes of the system, since perturbing each node of a 
large finite element model would be very expensive. Also, perturbing only one node of a finite element model might 
excite very high frequency modes requiring a very small time step to obtain a valid solution. To circumvent this 
difficulty, this work uses a set of modal coordinates based on the linear modes of the structure. Each nonlinear 
normal mode originates at a linear mode at very low energy, so the algorithm initially uses only one coordinate for 
each NNM. As energy increases the algorithm monitors the numerically integrated time responses and augments the 
coordinate set as other modes begin to contribute significantly. Ideally, by reducing the number of degrees of 
freedom (DOF) one can achieve a dramatic reduction in the computational burden for systems with a large number 
of physical DOF. This would enable computation of NNMs for far more complicated structures. This new approach 
will be called the full-modal continuation method (FMCM). 

One alternative to the algorithm proposed here is to compute a nonlinear reduced order model (ROM) for the 
structure from the solutions to a set of static load cases [19]. Then conventional methods could be used to find the 
nonlinear modes of the ROM. (While ROMs such as those described in [19] have been used in many studies to 
predict the response of a nonlinear structure, the authors are not aware of a work in which the ROMs have been used 
to compute nonlinear normal modes.) Two ROM methods were explored in this work and compared with the 
FMCM approach. The first method is by McEwan [20] and is referred to as the applied loads procedure in [19] or as 
Implicit Condensation (IC) in [1]. The second method is by Muravyov and Rizzi [21] and is referred to as the 
enforced displacements procedure in [19]. In both cases, nonlinear static solutions are used to solve for a set of 
nonlinear stiffness coefficients that capture the nonlinearity in the system. 

The paper is organized as follows. Section II discusses the development of the FMCM algorithm, and the 
interface between the algorithm and a nonlinear FEA package. Section III briefly reviews the two reduced order 
modeling methods that are used in this work. The FMCM method is then evaluated using a nonlinear 11DOF 
lumped mass system with cubic nonlinearities and a geometrically nonlinear beam modeled in ANSYS. The results 
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and observations are presented in Section IV. In Section V, the NNMs of the beam are computed from the reduced 
order models and compared with the results of the FMCM algorithm. Conclusions are then presented in Section VI. 

II. Numerical Computations of NNMs Using Modal Coordinates 
This work is based on the numerical continuation approach presented by Peeters et al. [16], which is applicable 

to a broad class of autonomous, conservative nonlinear systems. These systems are described by the state space 
differential equation  

 ),( 0ztfz =�  (1) 

where z is the time dependent state vector, z0 is the initial conditions vector, f() is a nonlinear function of the states 
and t is the time variable. An NNM is defined by the period T and initial conditions z0 which produce a periodic 
response, ),(),( 00 ztzzTtz pp =+ . For a structural dynamic system, the state vector TT Tz x x⎡ ⎤= ⎣ ⎦�  is comprised of 
physical displacements x and velocities x� , where ()T represents the transpose operation. A system with N-DOF will 
have 2N states, which will be described using a modal coordinate transformation. The linear mode shape matrix Ф 
(N×N matrix) is computed from the undamped, linearized equation of motion (i.e. for small displacements about an 
equilibrium position) from the linearized mass and stiffness matrices M and K. A coordinate transformation is then 
used to represent the physical displacements and velocities in terms of the linear modal coordinates. 

 qx Φ=  (2) 

 qx �� Φ=  (3) 

Hence the 2N×1 state vector is transformed to modal displacements q and modal velocities q� , and is generalized 

as TT Tz q q⎡ ⎤= Φ Φ⎣ ⎦� . It is often the case that far fewer modes contribute significantly to a response than there are 
physical degrees of freedom, so this coordinate change would be expected to reduce the order of the system 
dramatically. Since an NNM solution branch is initiated at a linear mode at low energy, the initial modal amplitudes 
for the nth NNM branch can be taken to be 
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where the initial modal amplitude of the nth linear mode, qn0, is small enough to assure that the system’s response is 
well approximated as linear. Using a modal basis, the initial conditions can be written in terms of modal states as  
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A periodic solution for a nonlinear system is implicitly dependent on the initial conditions, z0, and period of 
oscillation, T. In order to obtain a unique solution, the phase of the periodic solution is fixed by setting 0 0q =� . This 
also improves the computational efficiency of the algorithm by further reducing the number of free parameters in 
Eq. (5). A periodic solution to the autonomous, conservative nonlinear equations of motion is sought such that  

 ),(),( 00 qtzqTtz pp =+ . (6) 

The response of the system is integrated subject to the initial conditions in Eq. (5) and a variant on the algorithm in 
[16] is used to find the initial conditions, q0 and period, T, that produce a periodic response.  Then a psuedo-
arclength continuation technique is used to predict a new solution and the process is repeated. As these solutions are 
continued to higher energy, additional linear modes may become active in the nonlinear response. Hence, the modal 
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amplitudes of all of the modes are estimated from the computed time response and are monitored as the shooting 
algorithm drives the system towards convergence. Additional modes are added to the coordinate set when their 
response becomes significant relative to the convergence tolerance. Hence, the number of linear modes in the modal 
coordinate set, here denoted m, increases with increasing energy. An outline of the NNM computation algorithm is 
provided below.  The algorithm is essentially the same as that in [16] except for the fact that modal coordinates are 
used instead of physical coordinates, in order to reduce the size of the Jacobians required.  The scheme used to 
augment the size of the modal coordinate set is also not present in their work. 

 
1.) Provide an initial guess for the solution: ( )0,(0) (0),q T  

• Begin the solution at a linear normal mode by setting one modal coordinate to a small value and set 
all other coordinates equal to zero. Use the linear natural frequency to determine the initial period, 

)0(T . 
 

2.) Correct the initial guess if necessary: ( )0,(1) (1),q T  

• Use the scheme described in (3.b) to correct the initial guess. The first periodic solution that is 
found is denoted ( )0,(1) (1),q T . 

 
3.) Initiate the Predictor-Corrector Algorithm to compute the NNM solution branch: ( ),..3,2, )()(,0 =jTq jj  

• A predictor-corrector scheme computes the periodic solution branch to the nonlinear equations of 
motion, and must be initiated with a known solution ( )0,(1) (1),q T . 

 
 a.) Prediction Step: ( )0pr,( 1) pr,( 1),j jq T+ +  

• The current solution ( )0,( ) ( ),j jq T  is used to find the trajectory of the solution branch to predict the 
next solution. A step-size controller, defined in [16], is used to determine the magnitude of the 
prediction step.  

 
 b.) Correction Step: ( )( ) ( )

0,( 1) ( 1),k k
j jq T+ +  

• A Newton-Raphson iterative correction scheme is used to compute corrections )(
)1(,0

k
jq +Δ  and )(

)1(
k
jT +Δ  

to the modal coordinates )1(
)1(,0

+
+

k
jq  and period )1(

)1(
+
+
k
jT . Throughout the correction iterations, the time 

histories of the response are transformed to modal coordinates and the modal amplitudes are 
monitored. Additional modes are considered to be important when their response at the end of the 
integration period is large relative to the convergence criterion, as explained subsequently. When 
this occurs the modal state vector )(

)1(,0
k

jq +
 is augmented by adding the next most influential mode. 

 
Finite differences are used to compute the Jacobians needed for steps (2), (3.a) and (3.b) so that the approach can 

be coupled with existing finite element packages non-intrusively. (The algorithm of Peeters et al. achieves a cost 
savings by instead integrating the EOM and the analytically computed derivative of the EOM to obtain the Jacobian, 
but that derivative is not readily available in commercial software.) The details of the algorithm are presented in the 
following subsections. 

A. Shooting Technique 
The shooting technique is used to determine the periodic solutions of the nonlinear equation of motion described 

by Eq. (1). The approach solves the two-point boundary value problem [15], which is defined as 

 { }0),0(),(),( 0000 =−= qzqTzqTH T  (7) 
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The numerical algorithm is considered to have converged when the shooting function, 2
0( , ) NH T q ∈\ , satisfies 

the following tolerance. 

 ε<
),0(
),(

00

0

qz
qTH

 (8) 

As in [16], the corrections used in the shooting technique are based on a Taylor series expansion of the nonlinear 
shooting function in Eq. (7). The corrections to the initial modal amplitudes and period (∆q0, ∆T) of the system are 
then found by solving the following overdetermined set of equations. 
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where the Jacobian is a 2N×m+1 matrix (it is assumed that N>>m).  It is computed using forward finite differences 
and hence its computation requires m integrations of the EOM over one period, T. The Moore-Penrose psuedo-
inverse of the Jacobian can be used to compute (∆q0, ∆T) in a least squares sense. However, that approach proved 
unreliable in the examples that follow so instead H was also transformed into modal coordinates, reducing the size 
of the Jacobian from 2N×m+1 to 2m×m+1. This is accomplished using the transformation matrix, 
 

 ⎥
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 (10) 

where B is a 2m×2N matrix, and the mode shape matrix T
mΦ , contains the mode shapes of the active modes as its 

rows and M is the N×N mass matrix of the system. Premultiplying Eq. (9) by the transformation matrix B eliminates 
any portion of the shooting function that is orthogonal to the m modes in the active coordinate set, producing the 
following least squares problem, 
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where qH  represents the shooting function in terms of the m modal coordinates q0. Once the updates, (∆q0, ∆T), are 
found, the new initial states and periods are then given by the following. 

 kkk qqq 00
1

0 Δ+=+  (12) 

 kkk TTT Δ+=+1  (13) 

This Jacobian defined in Eq. (11) is also used in the prediction and correction steps that follow. 

B. Pseudo-Arclength Continuation: Prediction Step 
The prediction step uses the latest computed solution ( )0,( ) ( ),j jq T  to compute a vector that is tangent to the NNM 

solution branch. The parameters, ( )0,( ) ( ),j jq T , are then updated by incrementing them a small amount in the tangent 
direction to obtain the first estimate of the (j+1)th solution, as detailed below. The prediction vector 

{ }TT T
,( ) ,( )q j T jP P  is computed by solving the linear system of equations defined by 
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 (14) 

where the Jacobian is computed as described previously. This requires m additional integrations of the equations of 
motion over the period T. The prediction vector is normalized to a unit length and the same step size control 
algorithm described by Peeters et al. is employed to obtain a prediction of the next period and initial modal 
amplitudes. 

 )(,)()(,0
)1(

)1(,,0 jqjjjpr Psqq ⋅+=+  (15) 

 )(,)()(
)1(

)1(, jTjjjpr PsTT ⋅+=+  (16) 

The step size controller, )( js , typically keeps the step size small enough so that only 2 to 5 iterations are necessary 
for the correction step to converge. 

C. Pseudo-Arclength Continuation: Correction Step 
The prediction of the modal state vector )1(,,0 +jprq  and period )1(, +jprT  is evaluated for periodicity using the 

shooting function in Eq. (7). If the shooting function is not satisfied to the tolerance defined in Eq. (8), then a 
corrector step is initiated using the Newton-Raphson approach to compute an update to the modal amplitudes, 

)(
)1(,0

k
jq +Δ , and period )(

)1(
k
jT +Δ , where k denotes the kth correction iteration. The updates are computed using the 

Jacobian matrix as shown in Eq. (11), augmented with the predictor vector in order to force the correction to be 
perpendicular to the predictor.  
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The updated period and initial conditions are then computed as in Eqs. (15) and (16). 
The shooting function in Eq. (7) is evaluated at each correction iteration until convergence is met, at which point 

the converged modal state vector )1(,0 +jq  and period )1( +jT  are stored and used to predict the next solution. As the 
energy increases, additional linear modes begin to contribute to the response of the nonlinear system. Or, in the 
event that the initial modal amplitude was already in the nonlinear region, additional modes may be needed when 
using shooting to obtain the first periodic solution ( )0,(1) (1),q T . These modes, if not accounted for, may prevent the 
correction step from converging. To circumvent this, the following procedure is used to detect modes that are 
important in the response and to add them when appropriate. Notice that, since the size of the Jacobian required in 
Eq. (17) above is governed by the number of active modal coordinates, it is preferable to include the smallest 
number of modes possible.  

D. Add Linear Modal Coordinate 
At each correction iteration, the following procedure is used to determine when the shooting function H has 

significant contributions from modal coordinates that are not included in the reduced coordinate set q0. The shooting 
function is premultiplied by the transformation matrix defined by Eq. (10) to eliminate the contributions of modes 
that are not in the active coordinate set and then transformed back to physical coordinates, as follows. 

 [ ]{ }),(
0

0ˆ )(
)1(,0

)(
)1(

k
j

k
j qTHBH ++⎥

⎦

⎤
⎢
⎣

⎡
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=  (18) 
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This new shooting function, 2ˆ NH ∈\ , contains only the contributions of the active modal coordinates to the 
shooting function, H. Hence, the contribution of the other modal coordinates is ˆH H− . When ˆH H− is a large 
fraction of H, the neglected modes may prevent convergence. Hence, the following tolerance is used to determine 
when a new modal coordinate is needed. 

 addH

HH
ε<

− ˆ
 (19) 

If the tolerance εadd is not satisfied, then the modal amplitudes of all of the modal coordinates are computed 
using 

 [ ][ ]{ }),(0)( )(
)1(,0

k
jqtzBItq +=  (20) 

and the largest modal coordinate that is not already in the set q0 is added to the modal coordinate set.  The correction 
procedure is then resumed with m augmented by one. It should be noted that this procedure may add modes to the 
coordinate set that aren’t needed to satisfy convergence, for example a prediction far from the solution may excite 
other modes that disappear once convergence is reached. However, the prediction step is typically kept very small so 
that only two or three iterations are needed in the correction step, and one would hope that unnecessary modes 
would not be significantly excited so close to the solution branch.  

E. FEA-Interface with NNM Algorithm 
The NNM algorithm described above has been implemented in MATLAB®. This section describes the interface 

used to connect the continuation routine to a nonlinear FEA package. A schematic of this interface is shown in Fig. 
1. A structural model is constructed in an existing FEA package that accommodates large displacements. (Other 
nonlinearities, such as contact elements and material nonlinearity are also readily accommodated, although this was 
not explored here.) The initial conditions, z0, are supplied to the model by MATLAB and integrated over a desired 
period T using the available time integration schemes. Once the response has been computed, the time histories can 
be exported to MATLAB for post-processing of the response (e.g. determining whether q0 and T satisfy the shooting 
function). Since most commercial nonlinear FEA packages are capable of handling geometric nonlinearities, this 
approach could be applied to a variety of packages. The results presented in this work utilize the ANSYS® 
nonlinear transient solver. 
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As mentioned previously, this method will be referred to as the full-modal continuation method (FMCM), and 
will be taken as the truth model in this work as the solutions that it produces always produce a periodic response of 
the full FEA model. In the next section, a method for computing a reduced order model of a geometrically nonlinear 
structure is reviewed. The nonlinear normal modes of these reduced order models can be computed directly using 
the same methodology described above. However, since these models are already quite small the reduction 
procedure described above is not used but instead all of the available degrees of freedom are included in q0. Hence, 
the algorithm used to find the NNMs of these ROMs is the same as that presented by Peeters et al. [16]. 

III. Computation of NNMs using Reduced Order Models 
In the past decade, many methods for constructing Reduced Order Models (ROMs) for nonlinear systems have 

been developed. By truncating high frequency modes, ROM methods reduce a finite element model to a low-order 
system of nonlinear equations that govern the amplitudes of the linear modal coordinates of the structure [19]. In 
previous work ([20],[1],[22]), these nonlinear modal equations were integrated in time to predict the response of the 
structure. For our application, the closed form nonlinear modal equations will be used to find the NNMs of the 
system. 

A. ROM Theory 
Consider a linear, undamped multiple DOF system. The equations of motion are of the form 

 FKxxM =+��  (21) 

where M and K represent the linear mass and stiffness matrices, respectively, x corresponds to N physical DOFs of 
the system, and F is the external force applied to the system. The homogeneous form of Eq. (21) is used to find the 
linear mode shapes (eigenvectors) Φ. The mode shapes are mass normalized, so substituting Eq. (2) into Eq. (21) 
and pre-multiplying by ΦT yields the uncoupled equation of motion for the rth mode, 

 
Figure 1. Interface between NNM algorithm and nonlinear FEA package. 
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 2 T
r r r rq qω+ = Φ F��  (22) 

where ωr is the linear natural frequency of the system, and qr is the modal amplitude. A set of Nr uncoupled 
equations for some subset of the system’s modes defines a linear reduced order model for the system. In the 
following the coordinates of the retained modes will be denoted [q1, q2, … qNr] where Nr << N. If the system is 
nonlinear, then nonlinear forces will affect each mode’s response and couple it to the other modal coordinates. This 
is accounted for by adding a nonlinear stiffness term fNL to Eq. (22). 

 2 T
1 2( , , , )

r

r
r r r NL Nq q f q q qω+ + = Φ F�� …  (23) 

Notice that fNL for the rth equation is expressed as a function of Nr different modal amplitudes, which correspond to 
all of the modes in the truncated linear mode set. Therefore, the nonlinear modal equations are coupled by the 
nonlinear force terms. For the rth mode, the nonlinear force is approximated by polynomial model, 

 1 2
1 1 1 1 1 1

( , , , ) 1, 2, ,
r r r r r r

r

N N N N N N
r r r r

NL N i i ij i j ijk i j k r
i i j i j k

f q q q d q a q q b q q q r N
= = = = = =

= + + =∑ ∑∑ ∑∑∑… …  (24) 

where the nonlinear stiffness coefficients are represented by d (linear), a (quadratic), and b (cubic) terms. For 
example, if Nr=1 the second summation reduces to 1 2

11 1a q  and the third summation to 1 3
111 1b q .  For the beam model 

studied in Section V, these terms capture the nonlinear stiffening or softening effects that arise due to large 
deflections in the beam. 
 The nonlinear stiffness coefficients from Eq. (24) have been found in a variety of ways. Two methods for 
solving the nonlinear stiffness coefficients were explored in this work. The first method was first presented by 
McEwan [20] and is referred to as the applied loads procedure in [19] or as Implicit Condensation (IC) in [1]. The 
second method is described by Muravyov and Rizzi in [21] and is referred to as the enforced displacements 
procedure in [19]. In both cases, the same finite element package described previously is used to solve nonlinear 
static problems to calculate either the nonlinear reaction forces when displacements are enforced, or the nonlinear 
displacements when loads are applied to the FEA model.  

B. Applied Loads Procedure 
In order to obtain the nonlinear stiffness coefficients with the applied loads procedure, a series of nonlinear static 

solutions are found with prescribed loads. For each solution, the applied load vector is a scaled linear combination of 
the linear mode shapes as 

 ( )1 1 2 2 N NM sf sf sf= Φ + Φ + + ΦF …  (25) 

The scaling factors sf can be varied to exercise the desired amount of nonlinearity in the structure. Note that many of 
the previous works on the applied loads method did not necessarily use the mass matrix as shown above when 
computing the load vector, but it is needed to obtain a valid force profile for a linear system. Although not discussed 
in detail, Gordon and Hollkamp [1] used a similar approach in which the force, F, was the reaction force (computed 
by the linear FEA solver) required to obtain the displacement x = (sf1Φ1+ sf2Φ2 +...+ sf2Φ2). 

Once displacements are obtained from each of the static load cases, a least squares approach is used to find the 
nonlinear stiffness coefficients. For further information on this method see [20]. One major advantage of the applied 
loads procedure is that it implicitly captures membrane displacements and essentially softens the ROM [1]. 

C. Enforced Displacements Procedure 
The enforced displacements procedure also uses a series of nonlinear static solutions to find the ROM. However, 

in this method the displacement is prescribed and the nonlinear FEA solver computes the reaction force required to 
hold the structure in that deformed shape. For example, a multi-modal displacement can be written as  

 1 1 2 2 N Nq q q= Φ + Φ + + ΦX …  (26) 
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and the FEA software returns the reaction force which is a sum of modal contributions that satisfies  

 2 T
1 2( , , , )r

r r NL Nq f q q qω + = Φ F…  (27) 

where F is the reaction force required to hold the structure in equilibrium. 
One other advantage of this method is that it allows one to circumvent the least squares problem used to find the 

coefficients in Eq. (24). Instead, the nonlinear stiffness coefficients can be found using algebraic relations if a 
special pattern of applied modal displacements is used [22], although this procedure was not implemented in this 
work.  One disadvantage of this method is that membrane displacements can only be captured if membrane modes 
are explicitly included in the modal basis [19]. 

IV. Numerical Results 

A. 11DOF Spring-Mass System 
In order to validate the full-

modal continuation method 
(FMCM), the spring-mass system 
shown in Fig. 2 was used. Each 
mass is connected to its neighbors 
(or ground for the masses on the 
ends) by both a linear spring and a 
cubic spring with coefficient knl. 
The following values are used for 
the linear spring constants, which is equivalent to nondimensionalizing the problem by defining time such that the 
period of a single oscillator would be 2π: k=1, m=1, and knl=1. 

The first three NNMs of the system were found using the FMCM algorithm and are displayed on the frequency-
energy plot in Fig. 3. The tolerances for the periodicity condition and mode addition criterion were ε=10-6 and 
εadd=0.1, respectively. At low 
energies, each NNM is initiated at 
a linear normal mode (LNM) 
shape and frequency. The 
numbers near each line indicate 
the energy level at which 
additional modal degrees-of-
freedom were added to the 
coordinate set by the algorithm 
described previously. The results 
show that, as energy increases, the 
nonlinearity in the system 
becomes important and additional 
LNMs are needed in order to 
obtain a solution that satisfies the 
shooting function. For example, 
for the first NNM curve, the 3rd 
LNM is added at approximately E 
= 2·10-5 and the 5th, 7th, 9th and 
11th all enter when 0.003<E<0.07. 
With all of the odd LNMs added, 
the algorithm is then able to 
compute this NNM out beyond 
the point at which the natural 
frequency has increased by a 
factor of five. 

It is surprising that so many 
LNMs (essentially half) are required for the first NNM. Of course, in many applications the frequencies change by 

 
Figure 2. 11DOF lumped mass system with cubic nonlinearities. 
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Figure 3. Frequency vs. Energy for the first three NNMs of an 11DOF 

lumped mass system. 
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only a few tens of percent, but in this example half of the structure’s LNMs were needed to advance even to the 
point where the natural frequency of the system had changed by just one percent. 

In Table 1, the number of one-period integrations required to obtain NNMs in Fig. 3 is compared to the result 
when the authors’ implementation of the full algorithm in [16] is used. For each NNM, the modal method requires 
far fewer calls to the integration routine. By truncating the coordinates to dynamically important LNMs, the 
computational cost is decreased by 45 to 76%, or by a factor of between ½ and ¼. 

For the first NNM curve, 
the odd LNMs are added in 
the order of increasing energy 
and it was thought that this 
would be the case for all 
NNM curves. However, for 
the second NNM curve, the 
6th LNM is added at 
approximately E = 4·10-5 
followed by the 10th LNM 

added at E = 0.01. For the third NNM curve, the 9th LNM is added at approximately E = 2·10-5.If a system with a 
larger number of masses is considered a pattern evolves for the addition of LNMs as seen in Table 3. For each 
NNM, the LNMs are added in a sequence defined by the number of the linear mode at which the NNM originates 
multiplied by the set of odd numbers, {3, 5, 7, 9, ...}. This sequence is due to the similarities in shape of the LNMs 
to the associated NNM and would only apply to this particular system. 

The number of modes 
required to achieve convergence 
depends on both the 
continuation convergence 
tolerance, ε, and on the 
amplitude ratio, εadd, at which 
additional modes are added. 
Table 2 compares the effect of 
these settings on the algorithm 
and the resulting computational cost required to compute the first NNM until the frequency has increased by more 
than a factor of 2. 

Table 2 shows that the amplitude ratio, εadd, does not strongly influence the algorithm although it must be set less 
than 1 or the algorithm may fail to converge. In this example, the continuation algorithm always seems to add LNMs 
at about the same frequency shift no matter what the value of εadd. On the other hand, the convergence tolerance, ε, 
can drastically reduce the computational cost. Increasing the tolerance from 10-6 to 10-2  reduces the number of 
integrations by more than one half for this 11DOF system, and the frequency energy dependence still tends to be 
captured quite accurately (at least for this case where no internal resonances occur).  However, this also reduces the 

 Table 3.  Addition sequence of LNMs. 
NNM curve 1st LNM 2nd LNM 3rd LNM 4th LNM …  

1 3 5 7 9 …  
2 6 10 14 18 …  
3 9 15 21 27 …  
#  #  #  #  #  %  

Table 2. Effect of varying εadd and ε on the frequency at which each LNM is added when computing the 1st 
NNM curve.  The computational cost is also shown, described by the number of 1-period integrations 

required to reach 0.1 Hz. 
 

Percent Shift in 1st NNM Frequency when each LNM is Added 
εadd ε 

3rd LNM 5th LNM 7th LNM 9th LNM 11th LNM 

# Integrations 
to reach 0.1 Hz 

frequency 
10-8 10-6 0.00021 0.027 0.061 0.14 0.31 892 
10-4 10-6 0.00021 0.027 0.061 0.14 0.31 892 
0.01 10-6 0.00021 0.027 0.14 0.31 0.69 883 
0.1 10-6 0.00021 0.027 0.31 0.69 0.69 881 
0.1 10-4 0.010 0.31 0.69 1.53 2.29 671 
0.1 0.01 2.19 2.19 3.77 3.77 3.77 480 
0.1 0.1 24.86 N/A N/A N/A N/A 272 

Table 1.  Comparison of the number of one-period integrations required 
to obtain the NNM curves in Figure 3. 

NNM 
curve 

# Integrations using 
Full Order Solution 

# Integrations using 
Modal Continuation 

Method 

Percent 
Change (%) 

1 5810 3156 -45 
2 1478 427 -71 
3 1370 324 -76 
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accuracy of the solutions that are obtained and may also reduce the accuracy of the finite difference gradients 
causing the algorithm to diverge. 

Now consider the effect of asymmetry on the modal continuation routine. An asymmetric system was created by 
removing all of the nonlinear 
springs except the one between 
the first mass and ground. The 
first NNM was found using the 
modal continuation method and is 
displayed on the frequency-
energy plot in Fig. 4. The 
parameters used were ε = 1·10-4 
and εadd=0.1. The result shows 
that all of the LNMs of the 
system were needed to reach a 
frequency shift of a few percent. 
The nonlinear spring breaks the 
symmetry of the system causing 
the symmetric and anti-symmetric 
modes to all participate.  It is also 
interesting to note that an internal 
resonance appears once the 
frequency has shifted about ten 
percent. The second and third 
NNMs were also computed (not 
shown) revealing a similar trend. 
With all of the LNMs added, the 
algorithm can compute the NNMs 
but the cost required to compute 
the higher energy part of the 
curve is no less than that of the 
algorithm of Peters et al. 

B. Beam with Geometric Nonlinearity 
Next, the FMCM algorithm was applied to a finite element model (FEM) of a one-dimensional clamped-clamped 

beam with geometric nonlinearity. The FEM has ten 2-node beam3 elements, resulting in a total of 27 DOF. The 
model geometry is adopted from [1, 19, 23], where the beam was used as a benchmark to test a variety of nonlinear 
model reduction strategies. The beam is 9 inches long, 0.5 inch wide and 0.031 inch thick. It is constructed of steel 
with a Young's modulus of 29,700 ksi, a shear modulus of 11,600 ksi and a mass density of 7.36*10-4 lb-s2/in4. 
Large deformation analysis of the flat, thin beam exhibits stiffening nonlinearities in its elastic range as the 
amplitude of the displacement increases. The stiffness depends nonlinearly on the response due to the coupling 
between the axial and transverse displacements.  

The first 3 nonlinear normal modes of the beam model were computed using the FMCM approach with ε=10-4 
and εadd=0.1. The solution branches are shown in Fig. 5 where the frequency is plotted along the vertical axis and 
maximum physical displacement of an appropriate node (mid point for NNMs 1 and 3, and quarter point for NNM 
2) on the horizontal axis. Each solution branch is initiated at a single linear modal response at low amplitude. The 
full, mass normalized mode matrix is directly computed in ANSYS with a block Lanczos solver and is used to 
transform the coordinates from physical displacements (x0) to modal displacements (q0). At each step in the 
algorithm the free response to an applied initial condition (q0) was directly integrated using the implicit Newmark-
Beta scheme in the nonlinear full order transient analysis. The average acceleration method was used with 
integration parameters γ=0.5 and β=0.25 [24], such that algorithmic damping is not introduced into the time 
response. A suitable step size is required for a nonlinear dynamic simulation to accurately capture the higher order 
harmonics of the response. For the results shown, 1,000 equidistant time steps are used over one period of 
integration.  
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Figure 5. Frequency vs. Max Physical Displacement of nonlinear normal modes (1 through 3) of a 

geometrically nonlinear beam. 
 
The nonlinear normal mode solutions are computed out to a relatively large shift in frequency, between 50 to 

85%. This approximately corresponds to the range of nonlinearity observed in the application of interest [1, 19, 23]. 
Two specific solutions are marked on the branches in Fig. 5, namely low energy solutions (*) and high energy 
solutions (o). All of the required modes in the modal coordinate set were all added before reaching the points 
marked with stars (*) in Fig. 5. There has not yet been any appreciable shift in frequency at this point, so it is 
surprising that so many modes are needed to advance to this point. This is similar to the results seen with the 11DOF 
model. Each of the modal coordinates needed in the set q0 for each NNM branch are listed in Table 4, along with the 
linearized natural frequencies. The table also gives the maximum frequency shift of each mode, expressed as a 
percentage of the original linear natural frequency. Because this system is planar, the linear normal modes can be 
readily characterized as either axial modes ({16, 20, 21, 22, 23, 24, 25, 26, 27}), symmetric bending modes ({1, 3, 5, 
7, 9, 11, 13, 15, 18}) or asymmetric bending modes ({2, 4, 6, 8, 10, 12, 14, 17, 19}). Hence, it appears that the first 
nonlinear normal mode requires all of the symmetric bending modes to be included in the modal coordinate set, and 
all of the asymmetric axial modes ({20, 22, 24, 26}). The second NNM similarly requires all of the asymmetric 
bending modes and asymmetric axial modes. For all three cases, 13 of the 27 modal coordinates are needed to 
compute the NNM branches, corresponding to a factor of two reduction in the size of the Jacobians needed in the 
continuation algorithm.  

 

 

Table 4.  Results of FMCM NNM Solutions 
NNM 

Solution 
Linearized 
Frequency 

(Hz) 

% 
Frequency 

Shift 

Additional Mode 
Order 

Number of 
Prediction 

Steps 

1 78.9 55.0 {1, 20, 22, 3, 24, 26, 5, 
7, 9, 11, 18, 13, 15} 

21 

2 217.7 67.7 {2, 22, 20, 24, 26, 4, 6, 
8, 10, 17, 12, 14, 19} 

65 

3 426.9 82.3 {3, 20, 24, 26, 22, 5, 1, 
7, 9, 15, 11, 18, 13} 

20 

Low Energy 
Solutions 

High Energy 
Solutions 
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The shapes of the NNMs at the points marked (*) and (o) are shown in Fig. 5.  Plots 6a through 6c show the 

displacement of the beam that initiates the periodic orbits. Each initial displacement has been normalized so the 
deformation shape is more easily compared. The dashed blue line corresponds to the NNM at low energy (points 
marked with ‘*’ in Fig. 5) and the solid red line represents the NNM at high energy (points marked with ‘o’). At low 
energy, the initial displacements are very similar to the linearized mode shape of the beam, but as energy is 
increased, the initial displacement shapes begin to evolve.  The second NNM shape begins as the shape of the 2nd 
linearized mode and evolves into the shape of the 4th linearized mode.  This occurs as a 3:1 internal resonance is 
reached at this energy level, causing the 2nd and 4th modes to interact. In contrast, the first and third NNMs still have 
approximately the same shape at high energy, even though their natural frequencies have shifted 20% and 70%, 
respectively. 

 

 

Figure 6. Initial displacements of the beam for the low and high energy solutions shown in Fig. 5 for NNMs 1, 
2 and 3 respectively (a to c). Phase portraits of periodic orbits for a reference node for the same low and high 

energy solutions (d to f). Dashed lines correspond to the low energy solutions and solid lines to the high 
energy solutions. 

 
The phase portraits shown represent the transverse displacement and velocity of the node with the largest 

displacement. The shape of the orbit reflects the importance of higher harmonics and gives insight into the degree of 
nonlinearity present in the response. The phase portraits are normalized to unit maximum displacement, so widening 
of the phase portrait in the vertical direction (velocity) reflects a stiffening nonlinearity. The effect of nonlinearity is 
especially notable in the 3rd NNM, where the shape of the orbit is far from round at high energy; the points of 
maximum displacement almost has the character of an impact, with the initial velocity changing from positive to 
negative over a short interval. 

The number of prediction steps per NNM branch are presented in Table 4. These provide a measure of 
computational effort required for each curve. Each solution along the branch has one prediction step, and k 
correction steps and each one of those steps requires an evaluation of a Jacobian.  For the first mode there were 13 
modal DOF over most of the curve so this required 13 nonlinear transient solutions. The first and the third NNMs 
require 21 and 20 predictions, respectively, but the second curve required three times as many. This occurs because 
the algorithm must take smaller steps to trace out the internal resonance in the 2nd NNM. The step size controller sets 
the magnitude of the predictor step based on the number of corrections and an optimal value set by the user. The 
step size is either increased or decreased depending on how many steps are required to converge on the solution. 

This application has shown that the FMCM method can compute the NNMs of a structure modeled in finite 
element software without any a priori information about the modes that are needed; the algorithm automatically adds 
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those modes that are needed for convergence. Unfortunately, the cost of the approach is still quite high as only a 
factor of 2 reduction was realized. In the next section the reduced order modeling methods are used to compute the 
first NNM of the beam and the result is compared with the FMCM to evaluate the accuracy of the ROMs.  

V. Using Reduced Order Models to Compute Nonlinear Normal Modes 
The two ROM procedures, implicit condensation (IC) and enforced displacements, were used to find the 

frequency-displacement dependence of the 1st NNM using the same finite element model described in Section IV. 
For both ROMs, only the first symmetric bending mode was used in computing one nonlinear equation of motion. 
This equation contains nonlinear stiffness coefficients d (linear), a (quadratic), and b (cubic), with the linear stiffness 
coefficient equal to the linearized natural frequency squared, so d = ω1

2 . The quadratic and cubic stiffness 
coefficients were curve fit using a least squares approach. The tolerance for the periodicity condition was set to 
ε=10-6 and the resulting NNM curves are shown in Fig. 7. 

Preliminary studies revealed that the scaling and quantity of load/displacement cases was critical to the quality of 
the ROM. If the applied load/displacement was too small then the nonlinearity was not captured and the curve fit 
used to find the nonlinear coefficients would be ill conditioned. The guidelines from [1] were used in this work, 
specifically that the load/displacement used to obtain the ROM produced a displacement on the order of the beam 
thickness. Hence, one would expect the NNM curves in Fig. 7 to be accurate below 0.031 inches maximum 
displacement but beyond that point the force displacement relationship represents an extrapolation and may not be 
accurate. In any event, higher displacement levels may require higher order polynomial terms, but this is not 
typically done (see, e.g. [1]), since the number of terms to identify increases geometrically. 
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Figure 7. Frequency vs. maximum displacement of the center point of the beam for the 1st NNM computed 
from the full finite element model (FMCM method) and two reduced order models. 

 

 The results show that the applied loads model captures the true frequency-energy dependence of the system out 
to more than twice the thickness of the beam, even with only one mode used in its construction. In contrast, the 
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enforced displacement method produces a NNM that is quite a bit stiffer than the true NNM. For straight beams 
such as this the enforced displacement method is known to require that the axial modes be included in the ROM to 
provide accurate results [1], and the model used to generate Fig. 7 only included the first symmetric bending mode. 
In contrast, the applied loads method implicitly captures the softening effects of all of the modes; the load that is 
used to generate it satisfies static equilibrium of the full-order model. Either of these methods represents a huge 
reduction in computational effort relative to the FMCM algorithm, since one need only compute a few nonlinear 
static solutions and then find the NNMs of an SDOF equation of motion. It should also be noted that, while these 
methods predict the frequency-energy (or frequency-displacement) dependence of the NNM, since they are 
formulated based on a single mode they do not allow one to predict the change in the deformation shape of the NNM 
with increasing energy. 

In practice a full order solution, such as that provided by FMCM, might not be available. In that case one should 
test the convergence of the ROM by increasing its order and recomputing the NNMs. Otherwise the accuracy of the 
results is not established and 
important features, such as the 
internal resonance shown in 
Fig. 5, might be missed. This is 
demonstrated in Fig. 8, where 
the FMCM solution is 
compared with various multi-
mode IC models. ROMs that 
include various numbers of 
symmetric bending modes:{1}, {1 3}, and {1 3 5} are compared to the FMCM result. The number of load cases and 
number of polynomial coefficients for each modal set can be seen in Table 5. Also, for displacements up to the 
thickness of the beam, the maximum percent error in the estimated NNM frequency is shown (based on the 
difference between the ROM frequency and the FMCM solution) to gauge the accuracy of the ROMs. As expected, 
the frequency predicted by the ROM becomes more accurate as the number of modes is increased, although it is 
already quite accurate even for the one-mode model.  Figure 8 shows that the ROM also estimates the NNM curve 
more accurately for displacements greater than the beam thickness as the order is increased.  It should be noted, 
however, that for even larger displacements the convergence was somewhat erratic.  For example, the {1 3} ROM 
predicts an internal resonance a little beyond the region shown which is not present in the prediction from the {1 3 
5} ROM. 

Table 5.  Details Regarding Multi-Mode ROMs 
Mode Set Number of 

Load Cases 
Number of Polynomial 
Coefficients per Mode 

Max Percent Error 
in Frequency 

{1} 2 2 0.43 % 
{1 3} 8 7 0.12 % 

{1 3 5} 18 16 0.05 % 
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Figure 8. Frequency vs. maximum displacement of the center point of the beam for the 1st NNM for various 
multi-mode IC models. The NNM computed by FMCM is also shown for reference. 

 

VI. Conclusions 
This work presented a variation on the continuation technique developed by Peeters et al. [16] to enable the 

computation of nonlinear normal modes for geometrically nonlinear structures modeled in commercial finite 
element software.  The Jacobians required were computed with finite difference gradients, since the analytical 
derivative of the equations of motion was not available, and a reduction based on the linear modes was used to 
reduce the size of the required Jacobians. The proposed method was evaluated first using a simple 11-DOF spring 
mass system and then using a 10-element model of a fixed-fixed beam. The proposed approach was found to reduce 
the number of one-period integrations required to compute the NNMs by a factor of between two and four, although 
larger reductions were possible if one could tolerate larger errors in the predicted NNM. While this represents a 
significant reduction in computation, it is surprising that such a large number of modes are needed to allow the 
numerical continuation scheme to converge. Furthermore, most of the computational savings that were realized 
came about due to symmetries in the system, which could have been exploited when creating the finite element 
model to achieve even more significant computational savings. 

The FMCM method was also compared with two reduced order modeling approaches, and these comparisons 
seem to explain why the FMCM method required so many modes to estimate the NNMs. The model reduction 
employed by the FMCM is analogous to the enforced displacement ROM. In either case the motion of the actual 
structure is described as a superposition of the linear modes. In Fig. 7 this was found to result in an overly stiff 
model and convergence is quite slow as linear modes are added to the model. (This feature was not illustrated for the 
enforced displacement ROM, but analogous behavior is seen in Fig. 8 for the applied loads ROM.) Hence, since the 
FMCM method seeks to drive the solution of the FEA model to a periodic limit cycle with a relatively low tolerance 
(ε=10-4 in most of these examples), quite a large number of linear modes is needed.  In any event, the FMCM 
algorithm does provide insight into which linear modes of the structure are dynamically important to each NNM. 
This information is valuable for many reasons and could merit the computational expense. In future works, more 
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complicated geometries will be evaluated in order to further validate this approach and to see whether the reduction 
in cost is larger for a more complicated system. 

Two ROM methods were also explored and found to provide a very attractive alternative to the FMCM method, 
especially the applied loads ROM, which was found to accurately predict the frequency-energy dependence of the 
first NNM over the displacement range of interest even when only one mode was used. However, that method has 
some important limitations as well. The ROMs should be computed with various sets of linear modes to assure that 
convergence has been obtained and that any internal resonances have been captured, but the cost required to 
compute the ROMs goes up dramatically with increasing model order. For example, according to Gordon & 
Hollkamp [1] the number of nonlinear polynomial coefficients in a ROM increases from only two for a single 
degree of freedom ROM to between 935 and 2750 for a 10-DOF ROM depending on how it is calculated. Hence, a 
large number of static load cases may be needed to compute the ROM and there is an increased likelihood of ill-
conditioning in the curve fit making the model difficult or impossible to estimate. Furthermore, one does not know a 
priori which linear modes should be included in the ROM to estimate a given set of NNMs. Also, one commonly 
mentioned fault of reduced order models is that they tend to be specific to the loading case for which they were 
derived. Although not shown in this paper, the ROM for the beam was initially created using displacements that 
were about 16 times the beam thickness.  That led to quite unsatisfactory results as both ROMs were overly stiff at 
small displacements (recall that the order of the polynomials was fixed).  This also led to non-intuitive results as the 
model order was increased with the NNM estimated by the ROM stiffening rather than softening as additional linear 
modes were added to the ROM.  

Despite these challenges, it would be very attractive to have a ROM that was known to accurately capture 
several NNMs of a system. The NNMs capture the fundamental periodic solutions of the nonlinear system and form 
the backbones of its nonlinear frequency response. Hence a model that captures a set of relevant NNMs accurately 
might be more likely to reproduce the behavior of a system in a range of environments. Similarly, a comparison 
between the true system’s frequency-energy plot and the frequency-energy plot of the ROM might be far more 
informative and comprehensive than a comparison of their transient responses (which is what is seen most 
commonly in the literature). These ideas should be explored more fully in future works.  
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