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Continuous Scan Laser Doppler Vibrometry (CSLDV) can greatly accelerate 
modal testing by continuously sweeping the measuring laser over the structure, 
effectively capturing the response of the structure at tens or even hundreds of points 
simultaneously.  The authors recently extended this technique to the case where the 
input forces are unmeasured and random using harmonic power spectrum.  This 
paper presents a variant on the proposed method that combines lifting, a 
resampling approach, with the output only algorithm.  Lifting causes all of the 
peaks in the harmonic power spectrum to collapse onto a single peak for each mode, 
greatly simplifying modal parameter estimation.  The proposed approach works by 
estimating and then lifting the harmonic correlation function, which is analogous to 
the impulse response of the system.  The proposed algorithm is evaluated on a 
simulated beam and compared with the previous output only methods, indicating 
that the new approach gives comparable results to those of the previous methods 
but the data reduction is far simpler.  The algorithm is then used to identify the 
first several modes of a parked wind turbine under wind excitation, capturing the 
deformation shape along one blade in detail.  A new long range Remote Sensing 
Vibrometer (RSV) from PolyTec® was employed for these measurements.  This 
new vibrometer allows the first several modes of the turbine to be captured, from a 
standoff distance of 77 meters without the retro-reflective tape applied to the 
turbine.  The speckle noise in the measurements is found to be remarkably small, 
allowing a 36 Hz scan frequency to be employed, which corresponds to a surface 
velocity of the laser spot of more than 500 m/s. 

Nomenclature 
CSLDV   = Continuous-Scan Laser Doppler Vibrometry 
EMP   = Exponentially Modulated Periodic 
HTF   = Harmonic Transfer Function 
HCF   = linear Harmonic Correlation Function 
pHCF  = positive linear Harmonic Correlation Function 
HPSD  = Harmonic Power Spectral Density 
pHPSD  =  positive Harmonic Power Spectral Density 
LTI    = Linear Time Invariant 
LTP   = Linear Time Periodic 
 

State Space LTI System 
Λ   = diagonal matrix of system poles 
B   = control or input matrix  
C   = output matrix  
P   = matrix of state space eigenvectors 
q    = state of the uncoupled system, or modal paticipation factor 
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u   = state space input 
y   = state space output 
x   = position of laser spot 
r   = integer referring to a particular mode  
ψr   = rth mode shape of the underlying LTI system 
ωr   = rth natural frequency of the underlying LTI system 

ζr   =  rth damping ratio of the underlying LTI system 

λr   = rth eigenvalue of the underlying LTI system 
 
LTP system 
l   = integer describing the offset of a harmonic peak for a particular mode 
n = integer giving the order of a harmonic in a Fourier series expansion or an EMP signal 
TA   = fundamental period of the LTP system 
ωA    = fundamental frequency of the LTP system or scan frequency for CSLDV, ωA = TA /2π 
Un(ω)  = nth harmonic of the EMP input in the frequency domain 
Yn(ω)  = nth harmonic of the EMP output in the frequency domain 

( )Y   = collection of EMP output signals 

( )U   = collection of EMP input signals 

( )G   = harmonic transfer function matrix 

,r lC    = EMP mode vector at the lth harmonic of the rth mode 

Cr,n   = nth Fourier coefficient for the rth time varing mode shape 

,Ar l   = Residue of the lth harmonic of the rth mode in HPSD 

SYY (ω)  = autospectrum of EMP output, or HPSD 
HYY (ω)  = pHPSD 
R[n]   = linear harmonic correlation function 
Rm[k]  = lifted linear harmonic correlation function at the mth point 

( )m    = FFT of pHCF for the mth point on the laser path 

,Resr m   = residue matrix of the rth mode identified from the lifted pHCF at mth point. 

,r l    = modal contribution constant of the lth harmonic for rth mode  

 

I. Introduction 
n continuous-scan laser Doppler vibrometry (CSLDV), the laser spot continuously sweeps over a 
structure while recording the response along the scan path, reducing the time required to measure the 

structure’s mode shapes.  Many researchers have investigated CSLDV since it was first introduced in 
1990s [1].  Among them, Ewin, Stanbridge et al. have modeled the operating deflection shape as a 
continuous polynomial function of the laser spot position.  The polynomial coefficients are obtained from 
the sideband peaks in the spectrum of measured response, and the operating shape can then be 
reconstructed with these coefficients.  This method has been successfully applied with sinusoidal [2], 
impact [3], and pseudo-random excitation [4].  On the other hand, Allen et al. proposed a lifting approach 
where the responses at the same location are grouped together to form a set of pseudo transducers along the 
laser path [5].  The measured spectra from the pseudo transducers are the same as would be obtained with 
an array of conventional sensors, except that there is a constant time delay between these pseudo sensors, 
and the sampling rate of each sensor becomes the laser scan frequency.  So the natural frequencies higher 
than the half of the scan frequency will be aliased according the Nyquist-Shannon sampling theorem.  The 
authors applied the lifting method to a free-free beam under impact excitation and the unaliased natural 
frequencies and mass normalized mode shapes were identified [6].  The advantage of the lifting approach 
is that it produces a set of spectra that are mathematically equivalent to a collection of frequency response 
functions at a set of points.  Hence, the structure’s modes are readily extracted from the measurements 
using standard software.  However, this method is more suitable for structures with low natural 
frequencies because speckle noise and the mirror inertia limit the maximum practical scan frequency.  
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All of these methods require that the force exciting the structure be either impulsive or some known, 
carefully controlled function (e.g. sinusoidal).  However, sometimes it is difficult or even impossible to 
directly measure the dynamic load on a structure, for example, wind turbines or aircraft wings excited by 
fluctuations in the flow field.  CSLDV is especially attractive for these applications because it can provide 
spatially detailed mode shapes with as few as one single measurement, before the excitation conditions or 
the structure changing appreciably.  In the authors’ previous work [7], the measured response using 
CSLDV was treated as a the output of a linear time periodic (LTP) system, and an output-only 
methodology was proposed based Wereley’s harmonic transfer function (HTF) concept [8].  The HTF, for 
an LTP system, is equivalent to the transfer function of linear time invariant (LTI) system and was used to 
define a new type of spectrum, dubbed the harmonic power spectrum (HPSD) which is formed from the 
CSLDV measurement.  The structure’s mode shapes, natural frequencies and damping ratios can then be 
obtained from the HPSD using peak-picking or conventional operational modal analysis curve fitting 
routines.  The method was used to identify several modes of a parked wind turbine blade under wind 
excitation [7].  

While the method presented in [7] has proved effective, the identification procedure is somewhat 
labor intensive since a multitude of peaks are present in the HPSD for each mode of the system.  The 
resulting mode shapes can also vary depending on which peaks in the HPSD are used to estimate them.  
On the other hand, the authors’ lifting method [5, 6] allowed one to extract a set of mode shapes from 
CSLDV measurements almost automatically.  This work seeks to extend the lifting method to output only 
measurements.  This is accomplished by using the positive harmonic correlation function (pHCF), which 
is analogous to an impulse response function and can be estimated from the HPSD.  The approach used is 
basically an extension of the positive power spectrum concept, developed by Cauberghe for LTI systems 
[9], to linear time periodic systems.  In Cauberghe’s works, the positive correlation function was 
transformed into a positive power spectrum, which is a FRF-like function that can be treated with 
conventional curve-fitting routines.  That method was extended to LTP systems in [10], revealing that one 
could obtain similar results with the HPSD or pHPSD, although the latter are more convenient to curve fit.  
However, both of those spectra contain several peaks for each mode so quite a bit of effort is required to 
perform system identification.  In this work, the pHCF is lifted using the approach in [5, 6] to compute 
spectra that are analogous to a set of Single-Input Multi-Output (SIMO) frequency response functions, 
similar to what would be obtained from an array of stationary sensors.  The resulting spectrum is much 
simpler to interpret than the HPSD, and can be curve-fit with virtually any modal parameter identification 
routine to identify the natural frequencies, damping ratios and mode shapes of the structure.  

The rest of this paper is organized as follows.  Section II briefly introduces the harmonic power 
spectrum concept, the harmonic correlation function and the proposed lifting approach.  In Section III, the 
proposed algorithm is demonstrated on a simulated beam and compared with the HPSD and pHPSD 
methods.  In Section IV the algorithm is tested on a real wind turbine under ambient excitation, using 
measurements from a new long range laser vibrometer, the Remote Sensing Vibrometer (RSV) from 
PolyTec®, with a customized mirror system.  Section V presents the conclusions. 

 

II. Theory 

A. Harmonic Transfer Function and Harmonic Power Spectrum 

When applying CSLDV with a closed, periodic scan pattern to a LTI structure, the output appears to 
be from a LTP system.  Following the derivation in [7], the equation of motion for the system can be 
written in uncoupled state space form as, 

 
1

( )

q q P Bu

y CP t q

  



 (1) 

where   is a diagonal matrix containing the eigenvalues, 2j 1r r r r r       
,
 of the system, 

with r  the modal damping ratio and r  the natural frequency, and P is a matrix of state space 

eigenvectors.  The only periodic term in the LTP system is the output matrix CP(t), which is a row vector 
containing the shape of each mode of the system at the current time instant.  Following the derivation in [7] 
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this is denoted 

 * *
1 1( ) ( ( )), , ( ( )), ( ( )), , ( ( ))N NCP t x t x t x t x t         (2) 

where x(t)= x(t+TA) denotes the position of the LDV measurement point at time t and  r x  denotes the 

state space mode shape at location x and in the direction sensed by the laser.  The fundamental period of 
the scan pattern has been denoted TA and it is understood that the laser path x(t) could involve motion in 
three dimensions. 

It is well known that a single frequency input to a LTI system leads to an output at the same frequency.  
In contrast, the response of a LTP system will be at the input frequency and also at an infinite number of 
harmonics, each separated by the fundamental frequency ωA of the LTP system, / 2 A AT  .  The 

LTP identification strategy makes use of the harmonic transfer function concept [11], which relates the 
input and output of LTP system by introducing the exponentially modulated periodic (EMP) signal.  The 
EMP signal is composed of the input or output at a collection of frequencies separated by ωA.  For 
example, if the response measured with continuously scanning laser vibrometer is denoted y(t), and the 
scan frequency (fundamental frequency) is ωA, then one could compute the EMP signal ( )Y  by taking 

the Fourier transform of y(t) and then shifting the spectrum by nA. These steps can actually be combined 
as follows.  

 ( j j )( ) ( ) An t
nY y t e dt 


 



    (3) 

The EMP signal is the collection of the frequency shifted copies of Y0(). 

  T1 0 1( ) ( ) ( ) ( )Y Y Y   Y     (4) 

Wereley performed a similar operation on the input forces u(t), and used the general solution of the 
state space equation and a harmonic balance approach to relate the input and output with a harmonic 
transfer function (HTF), ( )G ,  Details of this derivation can be found in [8], Chapter 3. 

   ( ) ( )  Y G U  (5) 

Notice that the HTF is a matrix even in the case where we only have a single input and a single output, 
because it relates the response of LTP system at  and its harmonics +A, –A, etc… to the input at the 
same frequencies.  In this work we are concerned with the case where the output is measured using a 
single beam CSLDV and therefore it is a scalar and the input is unknown white noise and potentially 
applied to many points along the structure. 

In [7] the authors showed that the harmonic output autospectrum (HPSD) of the LTP system can be 
written as follows. 

  
  

H
, , ,H

H
1

( )
( ) ( ) ( )

j ( j ) j ( j )

N
r l r l r l

r l r A r A

S E
l l


  

     



 

 
   

YY

C W C
Y Y  (6) 

The equation on the right is an approximation because it neglects cross terms between pairs of modes 
where one mode is resonant and the other is not.  For a structure under uncorrelated random white noise 

input, ,( )r lW  is a scalar related to the net excitation of the rth mode and does not depend on l, so it is 

written as ( )rW  from this point forward [7].  The elements in the vectors ,r lC  are not the usual 

mode shapes (i.e. the amplitudes of motion at various points on the structure) but are Fourier coefficients 
that describe the rth time varying mode shape and are defined below.  

 

j
,

T

, , 1 , ,1

( ) ( ( )) An t
r r r n

n

r l r l r l r l

C t x t C e

C C C

 




   

 

   



C  
 (7) 
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Of course, the structure’s rth mode shape is time invariant but it appears to be time varying in the CSLDV 
measurement because the laser spot is continuously moving. 

The HPSD has the same form as the output autospectrum of an LTI system; it is a sum of modal 
contributions.  However, the time varying mode shapes of the system give rise to peaks in the CSLDV 
response near each natural frequency r, and also at the frequencies r  lA for any integer l.  Hence one 

can obtain an estimate of each mode vector, ,r lC , from a number of different peaks, although the terms in 

each vector ,r lC  contain the Fourier coefficients but shifted at different locations as explained in [7].  

For example, the fundamental term in the Fourier series, ,0rC  is found in the center of ,0Cr , but that 

term appears l terms below the center in ,r lC . 

Eq. (6) can be decomposed into a convenient form by partial fraction expansion.  This results in 

terms that are resonant at both the stable poles ( j )r Al  , *( j )r Al  , which have negative real 

parts, and unstable poles ( j )r Al   , *( j )r Al   . The HPSD then can be written as follows,
 

 
   

* */2
, , , ,

* *
1

( )
j ( j ) j ( j )j ( j ) j ( j )

YY

A A A AN
r l r l r l r l

r l r A r Ar A r A

S
l ll l


          



 

   
              

 (8) 

where the residue matrix at the lth harmonic for the rth mode is defined as follows. 

 
, ,

,

( )C W C
A

H
r l r r l

r l
r r


 

   (9) 

Hence, one can extract the Fourier coefficients of the time varying mode shapes by curve fitting the 
measured HPSD to a standard modal model with both stable and unstable poles at each peak.  The time 
varying mode shapes can then be reconstructed with the identified Fourier coefficient vectors using Eq. (7), 
and since the laser scan path is known this can be used to determine the structure’s mode shapes along the 
scan path.  This approach was used in [7] and found to work quite well, although there are potentially 
many peaks to be fit in the power spectrum even if the structure has only a few modes. 

B. Positive Harmonic Linear Correlation and Positive Harmonic Power Spectrum 

The HPSD in Eq. (8) includes each of the system’s poles twice, one set having stable poles and the 
other having unstable poles, so one must use a curve fitting routine that is specialized to OMA 
measurements (most common curve fitting routines are derived for frequency response function 
measurements where the unstable poles are not needed).  The equivalent issue for the case of LTI 
measurements has been addressed in conventional operational modal analysis using the positive power 
spectrum [9].  Allen et al. extended this concept to LTP systems, defining the positive Harmonic Power 
Spectrum [10].   

First, each block of the exponentially modulated time signal is zero-padded to twice its length and the 
HPSD is computed.  The linear harmonic correlation function is the one side inverse DFT of the HPSD in 
Eq (8), as shown below, 

 

*

*

/ 2
( j ) ( j )*

, ,
1

( j )( ) ( j ) ( )*
, ,

[ ]      

                  ,     0

r A s r A s

r A s s r A s s

N
l nT l nT

r l r l
r l

l n N T l n N T
r l r l s

R n e e

e e n N

   

   


 

 

     

 

   

 A A

A A  

(10) 

where Ts is the laser sampling period, and Ns is number of samples in the HPSD. When n is small, the first 
two terms in Eq. (10) dominate the response, so the harmonic correlation function takes on the form of an 
impulse response function that has only stable poles.  However, as n increases, the first two terms damp 
out and the last two terms with positive real parts become dominant.  Often the terms for the last N/2 
samples are shifted to the left and used as an estimate of the impulse response function for negative time 
lags.  However, Cauberghe suggested instead that a rectangular window be used to delete the part of the 
HCF that corresponds to negative time lags.  This leaves only the pHCF, which is analogous to a 
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one-sided impulse response as might be found in a hammer modal test.  Then, the pHPSD, ( )H YY , is 

found by computing the FFT of the pHCF, and the result is a spectrum that contains only the positively 
damped poles.   

 
 

*/ 2
, ,

*
1

( )
j ( j ) j ( j )

N
r l r l

r l r A r A

H
l l


     



 

 
     

 YY

A A  (11) 

The pHPSD has the same mathematical form as a frequency response function and can be curve fit using 
standard methods.  This pHPSD approach was applied to data from an LTP system in [10]. 

C. Lifting the Positive Harmonic Correlation  

This work explores a different analysis procedure, which dramatically simplifies the post processing 
of the CSLDV measurements.  The pHCF is similar to the impulse response of the system.  If there are 
exactly NA samples per scan period then one can define NA points on the structure, at mth point samples 
have been acquired at time instants mTs+kTA.  The response of the mth point at its kth time instant can then 
be obtained from the first two terms in Eq. (10) as 

 

* *
/ 2

( ) ( )*
, ,

1

[ ] r A s r A sr A r A

N
jl mT jl mTkT kT

m r l r l
r l

R k e e e e    


 

 

  A A   (12)

 
Lifted responses exist for 0...( 1)Am N   and each lifted response contains one sample at each instant 

kTA over the span of the measurement.  This resampling causes the eigenvalues jr Al   to collapse to 

a single frequency and hence the lifted response contains only one exponential term per mode of the 
underlying LTI system.  The number of points, NA, obtained per scan cycle (and hence the number of 
lifted responses) is related to the sample increment of the laser, Ts, and the scan period TA by TA=NATs.  
The FFT of the lifted linear correlation function at the mth point then becomes  

 

*
, ,

*
1

( )
, ,

( )

r A s

N
r m r m

m
r r r

jl mT
r m r l

l

i i

e  


   






 
 







Res Res

Res A


 (13) 

This expression has the same mathematical form as a frequency response function with a single resonance 

at Imag( )r   from each mode.  Note that some modes may be aliased so they would appear to 

occur at 0<<ωA/2.  When this occurs the true (unaliased) r can be found by adding the correct integer 
multiple of ωA, as discussed in [5, 6].  Hence, the multitude of peaks for each integer l in eq. (11) have 
collapsed onto a single frequency ω between [0, A/2].  We can then use a least square approach to 
recover the mode vector from the identified residue at each resonance. 

Suppose n = -p…p is used to modulate the EMP signal, and that significant harmonics are present for 
the rth mode for l = -q…q in HPSD (one must select p>q to obtain meaningful results).  Then the rth 

identified residue at the mth measurement point ,Resr m  is a column vector of (2p+1) elements that sums 

the contributions of each sideband ( )
,A r A s

q
jl mT

r l
l q

e  


 . There are NA measurement point along the scan 

path, therefore the residue for the rth mode has dimensions (2p+1)NA, as follows. 
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( ) ( )( 1)
, , ,

(2 1)

(2 1)

( ) ( )

, , , ,
(2 1) (2 1) ( ) ( )

(2

1

1

r A s r A A s

A

A

r A s r A A s

r A s r A A s

q q q
jl T jl N T

r r l r l r l
p N l q l q l q

p N

jq T jq N T

r q r q r q r q
p q jq T jq N T

q

e e

e e

e e

   

   

   

 

  

    
 

 

 
    

 
  
 

 
     
  

  Res A A A

C C




    


1) AN

r r

 

 Χ E

 

(14)

 

Where ,r q  is a constant scalar that represents ,( ) /( )H
r r q r rC  W .  A least squares problem can 

then be formed to obtain the , , , ,Χ C Cr r q r q r q r q       matrix, as 

1)Χ = Res E (E EH H
r r r r r

 , and then singular value decomposition can be used to extract ,0rC  after 

shifting each column in Χr  according to the position of each sideband with respect to the unaliased 

natural frequency, as was elaborated in [7].  Then the mode shapes can be reconstructed from the Fourier 

coefficients in ,0rC  using eq. (7).  

D. Signal Processing Procedure 

 
Figure 1 outlines the signal processing procedure for the proposed CSLDV method with lifting and 

shows how the proposed approach is related to the authors’ previous output-only methods for CSLDV and 
linear time periodic systems.  The steps involved in the proposed algorithm are explained in more detail 
below 
1. Record the response, y(t), of an LTI system to a white noise random input using CSLDV with a 

periodic scan path. 
2. Resample the response y(t) according to the scan frequency ωA such that there are precisely NA samples 

per scanning period A method for doing this is discussed in [5].  
3. Build the EMP signals with n=-p…p in time domain by defining the nth modulated time signal as 

-j( ) ( ) An t
ny t y t e    

4. Break these EMP signals into sub blocks, apply a Hanning window with overlap, if desired, zero-pad 
each block to twice its length and compute the discrete Fourier transform.  Compute the primary 

column of the HPSD matrix using the usual technique (e.g.  H
,0 0( ) ( ) ( )YY YnS E Y  

 

where 

the expectation operator denotes the average over all available estimates of the ( )Y .  

y(t)
Resampling

Filtering

Exponential

modulating

Windowing

Averaging

ID
F

T

HCF
R[k]

W
in

do
w

in
g

pHCF
FFT

pHPSD

HPSD

Lifting
( )m 

AMI
Resr,0rC

Least
Square

S. Yang, et al. 
MSSP 2011

M. S. Allen, et al. IMAC XXIX, 2011Proposed Lifting Approach

( )Y  ,0( )YYS ny(t)
Resampling

Filtering

Exponential

modulating

Windowing

Averaging

ID
F

T

HCF
R[k]

W
in

do
w

in
g

pHCF
FFT

pHPSD

HPSD

Lifting
( )m 

AMI
Resr,0rC

Least
Square

S. Yang, et al. 
MSSP 2011

M. S. Allen, et al. IMAC XXIX, 2011Proposed Lifting Approach

( )Y  ,0( )YYS n

Figure 1. Output only algorithms for CSLDV 
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5. Take inverse FFT of the HPSD to obtain the linear HCF. Use a rectangular window to delete the 
negative part of the HCF.  

6. Lift the pHCF by grouping the responses at the same location along the laser path according to Eq. (12) 
and then take the FFT to obtain a spectrum that is described by the modal model in Eq. (13).  

7. Identify the eigenvalues of the structure and the corresponding mode shapes using a modal parameter 
identification routine such as AMI [12], or a simple approach such as peak picking could be used if the 
system is very lightly damped. 

8. The natural frequencies of the structure can be obtained from the identified eigenvalues using a variant 
on the unaliasing algorithm described in [5].  

9. The identified
 
residue is used to form the least square problem in Eq. (14).  After shifting to align the 

Fourier coefficients, the singular value decomposition method described in [7] is used to find the best 

estimate of the Fourier coefficient vector ,0rC . 

10. The rth mode shape can be reconstructed from the Fourier coefficient vector using Eq. (7).  The time 

varying shape ( ) rC t   is plotted versus the laser scan path to obtain the mode shapes of the 

underlying LTI system. 
 

Notice that all of these steps except for the identification in step 7 are readily automated, so the user 
only need be concerned with interpreting the lifted spectrum and extracting any modes that are present.  
These steps are far simpler using the lifted spectrum than they are using the full HPSD, as will be shown in 
the examples that follow. 

III. Simulation Results 
The proposed algorithm was first evaluated using simulated measurements from a free-free beam.  

This provided flexibility in varying the parameters used to test the beam and the accuracy of the method 
could be assessed since the exact solution is available.  Table 1 lists the physical parameters of the beam 
that simulates a real beam tested in [6].  The simulated response is also processed with the HPSD and 
pHPSD algorithm, and the results are evaluated and the advantages and disadvantages of each method are 
discussed.  

 
The first 5 bending modes with 0.5% modal damping are used to construct the mass, damping and 

stiffness matrices by means of the Ritz method [13].  The response of the beam under random excitation is 
obtained using the ‘lsim’ function in Matlab with the simulated model.  The mode shape is varied 
periodically to simulate a case where a laser scans a line pattern for 488s at the frequency of 128Hz with 
the sampling frequency of 10,240Hz; these parameters are more than feasible with the laser vibrometer 
used in [5].  These acquisition settings result in 80 pseudo measurement points along the scan path.    

The simulated time history is then used to built the EMP output signal according to step 3 with 
n=-10…10.  Each of the 21 exponentially modulated time histories are then divided into 6.4s sub-blocks 
with 50% overlap and a Hanning window is applied.  Each block is then zero-padded to twice its original 
length, and the auto and cross spectra between the modulated signals and the original time history 
(unmodulated history) are computed and averaged over 150 blocks to obtain the primary column of the 

HPSD, ,0( )nS YY .  The resulting HPSD is shown in Figure 2. 

Table 1: Parameters for the simulated CSLDV test 
Beam geometry 

Density 

Elastic modulus 

Laser scan frequency 

Laser sampling frequency 

Simulated duration 

L 971.6 mm × H 25.4 mm× W 3.2 mm 

2710 kg/m3 

66 GPa 

128 Hz 

10240 Hz 

488 s 
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There are several harmonics in the spectra up to 3000Hz, due to each of the beam’s 5 modes and all of 

their sidebands according Eq. (6).  The sidebands of each mode also spread over a wide range of 
frequency since the sidebands are separated by the 128Hz scan frequency.  In addition, folding happens 
when any of the sidebands reaches the negative plane, further complicating the modal identification.  In [7] 
the authors described a semi-automatic procedure that can be used to locate the sidebands of each mode.  
An estimate of the mode vector can then be obtained from each peak using peak-picking,  This procedure 
was used and the physical mode shape was reconstructed, although the procedure did require quite a bit of 
user input to discard peaks where the response was noisy and the mode shapes were found to vary 
depending on which peaks were included in the peak picking.  The identified natural frequencies and 
damping ratios are listed in Table 2 along with the modal assurance criterion (MAC) between the identified 
shapes and the true mode shapes.  The damping ratios were obtained by curve fitting a few of the 
dominant peaks in the HPSD. 

Next the pHPSD and new lifting method were used.  This was accomplished by applying a two sided 

inverse DFT to the spectrum ,0( )YY nS 
 

to obtain the corresponding linear harmonic correlation function.  

A rectangular window was then used to zero out the negative HCF.  The pHCF has the same length as the 
original 6.4s measurement blocks since the harmonic power spectrum was computed with linear correlation. 
Hence the pHCF has 80 pseudo measurement points in each scan cycle as well.  The responses at the same 
measurement point are then grouped to form a single-input multi-output system that has 80 pseudo sensors 
for each of the 21 pHCF, for a total of 1680 outputs.  Figure 3 shows the composite response of the lifted 
pHCF, which is the average over all 1680 measurements.  As mentioned previously, the lifting method 
aliases all of the sidebands of each mode to frequencies between 0 and ωA/2.  The lifted response contains 
only one peak for each mode and when the measurements from the various pseudo-points are averaged the 
resulting spectrum is very clean.  The AMI modal identification routine [12] was able to process this set of 
measurements semi-automatically to identify the natural frequencies and damping ratios.  The curve fit to 
the measurements is shown in Figure 3 with a dotted line.  The red line shows the error between the fitted 
response and original data, where we can observe that the fitting is actually very accurate.  It is important 
to note that AMI treats the entire 1680-output set of measurements; plots of the average spectra such as that 
shown here are used only for visualization purposes.  Hence, the residue vector returned by AMI had 1680 
elements.  These were processed according to step 8 and an optimal estimate of the Fourier coefficient 
vector was then extracted and used to reconstruct the physical mode shape by plotting the time varying 
shapes versus the laser scan path.  Figure 4 shows the mode shape extracted for the first mode at the 80 
pseudo measurement points (red circles) and compares it with the analytical first bending mode.  The 
MAC values between all of the identified mode vectors and the analytical shapes are given in Table 2. 
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Figure 2. Primary column of the HPSD ,0( )nS YY  for the 

simulated free-free beam.  The index, n, ranges from -10 to 
10 as shown in the legend. 
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In order to make the comparison complete, the pHPSD method described in [10], which uses the 

pHPSD in place of the HPSD, was also employed.  Recall that the pHPSD is the FFT of the un-lifted 
pHCF [10].  The pHPSD are similar in appearance to the HPSD in Figure 2 and the identification 
procedure used here was identical to that described earlier for the HPSD.  The primary difference between 
the pHPSD and HPSD is that the latter is a squared spectrum and hence does not capture the evolution of 
each mode’s phase near resonance.  Hence, the HPSD requires a specialized modal parameter modal 
identification routine while virtually any method can be applied to the pHPSD.  The modal parameters 
extracted from pHPSD are listed in Table 2. 

Table 2 compares the identified natural frequencies and damping ratios from the three algorithms with 
the exact solution.  The mode shapes obtained with each method are compared using the MAC between 
the identified shapes and the true analytical shapes.  We can see that the natural frequencies from the three 
methods are almost identical to the exact values, and the MAC values are greater than 0.99 for all of the 
modes.  The identified damping for the first mode shows significant error, most likely due to distortion 
caused by the Hanning window [14].  

The HPSD, pHPSD and the lifting approach all have very similar accuracy for this example.  
However, the lifting approach provides a much simpler user interface that greatly reduces the effort 
required in modal identification.  Moreover, the lifting algorithm might also be advantageous if the 
structure of interest contained modes with close natural frequencies, where MIMO measurements are 
needed to determine the number of modes present and to identify their parameters.  
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Figure 3: Lifted pHCF and AMI curve fitting 
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IV. Application to Wind Turbine Blade using Remote Sensing Vibrometer 
The proposed method was then used to identify the modes of a wind turbine blade mounted on the 

tower, as depicted in Figure 5.  The wind turbine is the same as in [7] except with a different set of blades 
installed.  During the tests, the turbine rotor was locked to prevent rotation, and the blade of interest was 
pitched so that the laser was nominally perpendicular to the chord of the blade (i.e. measuring in the 
flapwise direction).  A prototype of Polytec’s new Remote Sensing Vibrometer  was used in this work, 
which incorporates a larger wavelength laser (1550 nm) and higher laser power (10 mW) than previous 
LDVs.  This laser is designed for long standoff distances and hence was able to acquire reasonable 
measurements without any surface treatment.  The standoff distance from the vibrometer to the turbine 
blade was 77m.  (In the authors’ prior work [7], a Polytec PSV-400 (633nm laser) vibrometer  was used 
and it was noted that reasonable measurements could not be obtained at that distance unless retro-reflective 
tape was applied along the length of the scan area.)  A customized x-y mirror system was used to redirect 
the laser of the RSV to scan over as much of the 4.5m long blade as was possible.  The blade was excited 
purely by the wind, whose maximum speed was about 9m/s during the tests.  

 

 
Figure 5. Schematic of experimental setup.  The photograph on the left shows a 
generic photo of an RSV vibrometer by Polytec©.  The vibrometer used was a 

prototype with nominally identical specifications. 

Table 2. Comparison of identified mode from different method 

 Analytical HPSD pHCF-lifitng pHPSD 

Mode 
Frequency

(Hz) 
Damping 

(%) 
Frequency

(Hz) 
Damping

(%) 
MAC

Frequency
(Hz) 

Damping
(%) 

MAC
Frequency 

(Hz) 
Damping 

(%) 
MAC 

1 17.06 0.5 17.06 0.73 1.0000 17.07 0.66 1.0000 17.08 0.73 0.9998 

2 47.04 0.5 47.02 0.57 0.9996 47.08 0.57 1.0000 46.98 0.55 1.0000 

3 92.21 0.5 92.16 0.54 0.9997 92.12 0.55 1.0000 92.06 0.55 0.9999 

4 152.42 0.5 152.44 0.53 0.9996 152.36 0.49 0.9965 152.42 0.53 0.9927 

5 227.70 0.5 227.78 0. 48 0.9979 227.79 0.43 0.9952 227.41 0.48 0.9949 
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Figure 6. Photographs showing the position of the CSLDV measurement point at the extremes of its 

travel.  The CSLDV scan path was a line connecting these two points. 
 
The laser was scanned a line over the blade for 400 seconds with a scan frequency of 36Hz and a 

sampling frequency of 2560Hz.  The laser was not visible, and there was no guide laser in the prototype, 
so the scan path was defined by determining what voltages to apply to the mirror system to position the 
laser at the tip and root of the beam as shown in Figure 6.  These voltages were then used to define a scan 
path that corresponded to a line between these two points.  This procedure results in far less uncertainty in 
the position of the measurement points than that used in the authors’ previous work [7].  Figure 7 shows 
the time signal over a few scan cycles (the whole time signal would have the appearance of random noise 
due to the random nature of the input). The signal is dominated by a 36Hz frequency; however there are 
clearly several frequencies present in the response, presumably due to the vibration modes of the turbine. 

 
The whole measured time history was resampled at 2592Hz to generate 72 samples per scan cycle.  

The resampled signal was low pass filtered and the frequency component corresponding to the 36Hz scan 
frequency was deleted since it is dominated by speckle noise.  The resampled signal was then 
exponentially modulated with harmonics n= -3…3, resulting in 7 modulated time histories.  Each of these 
modulated signals was decomposed into 25.6s sub-blocks with 50% overlap and a Hanning window was 
applied to each of the 31 blocks.  A HPSD of dimensions [7×65537], where 65537 is the number of 
frequency lines, was then obtained as described previously.  The pHCF was then obtained using the 

inverse FFT and rectangular window.  Figure 8 presents positive HCF generated from 0,0( )YYS  . The 

pHCF has the appearance of a standard impulse response function with a dominant low frequency mode 
which persists for more than 20s, and several higher frequency components that disappear after about 10s. 
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Figure 7: RSV-CSLDV output signal under random excitation 

(36Hz scan frequency)  
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The pHCF was then lifted and a SIMO system was formed.  Figure 9 shows the average of the lifted 

responses (solid grey line), and the average of the AMI curve fit (dots).  Only two peaks are prominent in 
the plot, but a closer inspection reveals a few other peaks.  Specifically, the residual (red line) shows two 
peaks at 12.3 and 13.3 Hz.  These peaks, which are only barely visible in the average spectrum, are 
actually fairly prominent in the subtraction residual and a mode was identified near each of these peaks.  
Similarly, there appear to be other close modes near 3.3 Hz, and this is to be expected as three first blade 
bending modes typically appear at three close frequencies for turbines such as this.  A mode was fit to the 
strongest peak at 3.33 Hz and then natural frequencies and damping ratios of each identified mode are 
reported in Table 3.  Other modes could be fit near 3.3 Hz as well, but it was difficult to be sure that they 
were meaningful so they are not reported.  In any event, measurements would be needed on each blade to 
obtain meaningful estimates of the various first blade bending modes, as they tend to differ primarily in the 
relative amplitudes of the three blades.   

 
The mode shapes were reconstructed from the Fourier coefficients that were identified using eq. (14) 

and they are shown in Figure 10.  The real and imaginary parts of the mode shapes are shown, as AMI fits 
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      Figure 9: Average of the spectrum ( )m  of the lifted response, AMI 

fit and the difference between the two.
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      Figure 8: pHCF, [ ]R n , generated from 0,0( )YYS   
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a complex mode model to the measurements.  However, a lightly damped structure such as this is 
expected to have real modes so the imaginary parts most likely arise due to inaccuracy in the measurements.  
They are very small for the first two modes and reasonably small for modes 3 and 4 considering that the 
response of those modes was two orders of magnitude lower than the dominant mode.  The blade appears 
to move as a rigid body in the first mode, at 0.81Hz, suggesting that this mode primarily involves bending 
of the tower.  The mode at 3.33Hz appears to be the first flap-wise bending mode of the blade.  The 0.81 
and 3.33 Hz modes both have very small imaginary parts and the shape estimated as the laser spot moved 
from root to tip agrees very well with the shape estimated as laser spot returned from tip to root, suggesting 
that the shape is quite accurate.  The third and fourth identified frequencies are second bending modes of 
the blade.  These modes have relatively larger imaginary parts but the root-tip and tip-root shapes are 
quite consistent again suggesting that they have been accurately identified.    

 

 
 
For comparison purposes, a standard OMA test was also performed and used to estimate the blade’s 

mode shapes.  For this test, a patch of retro-reflective tape was applied to the tip of the blade and a 
PSV-400 LDV was directed towards this point and used as a reference.  The RSV laser was then 
positioned sequentially at five different points along the length of the blade.  The positions of the points 
were determined by measuring the angle of the RSV laser head and using the known length of the blade.  
The auto and cross spectra between the two lasers was then used to determine the natural frequencies and 
modes shapes of the turbine from these ten spectra (five autospectra for the reference and five cross spectra 
between the RSV and PSV-400).  The resulting mode shapes are shown in Figure 11.  Three different 
mode shapes were extracted near 3.3 Hz, but, as was discussed previously, there is little evidence that the 
additional modes are meaningful.  Similarly, a third second blade bending mode was identified at 13.0 Hz. 

It is informative to compare these results with the CSLDV results.  First, one should note that the 
standard OMA approach required a second laser adding tens of thousands of dollars to the cost of the 
equipment needed.  Second, the standard OMA test required acquisition of five time histories, which 

Table 3:  Modes identified from the lifted response 

Mode Natural frequency Damping 

Tower Bending 0.81Hz 1.61% 

Flap Wise Bending 1 3.33Hz 1.52% 

Flap Wise Bending 2 
12.42Hz 
13.41Hz 

0.44% 
0.70% 
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      Figure 10: Real (dots) and imaginary parts (dashed-line) of the 

mode shapes identified from the CSLDV measurements.  
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would nominally increase the measurement time by a factor of five.  However, since time was limited a 
smaller number of averages were used for the standard OMA test, and each one of these records was 
acquired in 5.3 minutes resulting in a total test time of 26.5min for standard OMA and 6.7 min for CSLDV.  
Third, the measurements obtained by standard OMA agree fairly well qualitatively with those obtained by 
CSLDV, but there are several points which appear to be questionable.  This could possibly be explained 
by the fact that the wind conditions may have changed from one point to the next, or the reflectivity of the 
blade surface may have been inferior at some points leading to increased noise.  In any event there is little 
that can be done to assess the reliability of each measurement point without repeating the test.  Fourth, the 
mode shapes obtained by classical OMA seem to be far less detailed than those obtained by CSLDV, On 
the other hand, because speckle noise was reduced in the standard OMA test, two additional peaks were 
visible in the spectrum at 4.06 and 5.03 Hz.  The second tower bending mode is thought to reside near 
these frequencies so these shapes are thought to reflect the motion of the blades in the second tower 
bending mode(s).  Since these frequencies are close to the first blade bending mode, it is not surprising 
that the blades have essentially the same deformation shape as they do in the first bending modes.  
Although this tower mode was weakly excited its presence could be detected in the standard OMA 
measurements, while it was buried by speckle noise and the aliased contributions of the dominant modes in 
the CSLDV measurement.  
 

 
Figure 11: Mode shapes at five points obtained using a standard OMA technique with a second laser 

serving as a reference. 

V. Conclusion 
This paper combined output only continuous-scan laser Doppler vibrometry with a lifting approach, 

simplifying the post processing required to extract the mode shapes from CSLDV measurements.  As with 
conventional OMA, the method assumes that the forces exciting the system are random, white and that they 
sufficiently excite all of the modes of interest.  The measured CSLDV signal is exponentially modulated 
to estimate the harmonic power spectrum, and the theoretical development reveals that each mode then 
appears at several peaks in the HPSD.  An inverse FFT is then performed on the HPSD to obtain the 
harmonic correlation function.  The positive HCFs are then lifted and arranged to form a single input 
multiple output system.  A conventional model identification routine such as AMI can then be used to 
extract modal parameters from the lifted responses.  The identified residues have a more complicated 
definition than they did in [5], but a least squares problem is readily formulated to extract the Fourier 
coefficients of the mode shapes from the identified residue vectors.  The mode shapes can then be 
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reconstructed by plotting the time varying shapes versus the laser path.   
The proposed method was first applied to simulated measurements from a free-free beam.  The 

modes extracted from the measurements using the HPSD (method in [7]), pHPSD (method in [10]) and the 
new lifting approach showed that similar results could be obtained with any of the approaches.  However, 
the lifting approach provides a much simpler user interface that greatly reduced the effort required to 
extract the modal parameters.  

The methodology presented here was further explored by applying it to measure the modes of a 
parked wind turbine with a new long range vibrometer called the remote sensing vibrometer (RSV).  In 
this application the RSV laser was capable of extracting accurate measurements at a large standoff distance 
(77 meters) without any surface treatment.  The authors’ previous work used a standard vibrometer and 
reasonable measurements were not possible unless retro-reflective tape was first applied to the surface of 
the blade.  Furthermore, the speckle noise in the measurements with the RSV was relatively small so, high 
scan frequencies were possible increasing the attractiveness of the lifting approach.  This is quite 
remarkable, since at a 36 Hz scan frequency the peak surface velocity of the laser spot was about 500 m/s.  
Hence, it appears that this methodology would be feasible for large wind turbines where the natural 
frequencies are lower and hence the time required to obtain operational modal analysis data can often be 
excessive. 

For the results presented in this work, a single 6.7-min. CSLDV time history was used to extract 
several modes of vibration including mode shapes with good repeatability.  During the post-processing it 
was noted that it would have been preferable to have a longer time history, since the number of averages 
(31) was somewhat marginal.  However, the measurements were still adequate to obtain qualitatively 
reasonable results for the first several modes of the turbine.  The CSLDV results were compared with 
those from a standard OMA test using a second laser as a reference, revealing the relative merits of the two 
approaches.  When two lasers are available, the authors recommend a blended approach where CSLDV is 
used to capture spatially detailed shapes over critical surfaces and point measurements are used to verify 
the CSLDV results, capture additional discrete points of interest and to identify weakly excited modes.   
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