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Abstract

Nonlinear normal modes (NNMs) have been widely used for understanding and characterizing the motion of nonlinear
structures, yet current methods to measure them experimentally are time-consuming and not always reliable. Since
the structural nonlinearities usually occur when the sample oscillates at high amplitudes, specimens can be damaged
or at least develop fatigue cracks when the testing is lengthy. Moreover, the interaction between the shaker and the
structure can lead to distortions of the excitation force and can impact the quality of the measured test data. In our
previous work, we proposed an NNM estimation algorithm that can help to overcome the issues mentioned above. The
approach uses near-resonant data together with an algorithm based on the Single Nonlinear Resonant Mode (SNRM)
method to then estimate the NNM backbone. The SNRM algorithm, in its original form, requires vibration modes
to be well-separated and assumes no internal resonances between them. This work proposes a possible modification
to the algorithm that will allow the modal coupling to be detected as well. The final version of the algorithm
will be first tested with data generated numerically using a reduced model of a curved beam experiencing modal
interactions. Then the method will be used to estimate the NNMs of a curved steel beam that exhibits significant
modal interactions. The results will be validated against those obtained using well-established testing approaches.
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Overview of the Basic SNRM Algorithm

The authors’ prior work, presented in [1,2], used the Single Nonlinear Resonant Mode method to predict the Nonlinear
Normal Mode backbone of a mechanical system experiencing very limited modal coupling. That algorithm is based
on the SNRM equation (1), which was first proposed in [3].
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where:
- V is the complex amplitude of the velocity signal,
-  is the forcing frequency,
- ®;, wpi, ¢; are the mode shape, natural frequency and modal damping ratio of the i-th mode, respectively,
- F is a vector giving the spatial distribution of the sinusoidal excitation force,
- j is the index of the dominant mode,
- Ny, denotes the number of relevant linear modes, and
- the quantities marked (~) vary with the vibration level.

To identify a mechanical system experiencing modal coupling, Eq. (1) has to be modified. A discussion on how this
might be done is presented in the next sections. The concepts proposed herein are motivated by the measurements
collected in several numerical tests.

Nonlinear Resonant Steady State Response Analysis

The modifications proposed here are motivated by the results collected in a numerical simulation of a single input
Force Appropriation test. This test was performed on a simulation model of a curved beam with clamped-clamped
boundary conditions. The beam was created using 400 shell elements resulting in a total of 3030 DOFs and was
reduced to a 2-mode ICE-ROM including modes 1 and 2.

The backbone curve of the first Nonlinear Normal Mode of the beam is shown in Fig. 1. It consists of three
segments that were computed separately because the response of the beam is unstable in the vicinity of pairs of



points (1G, 2A) and (2E, 3A), which are marked in the figure. The authors suspect that the structure experiences
internal resonance near pair (1G, 2A). The reason for instability near the backbone’s point of minimum frequency is at
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Fig. 1: Segments of the NNM backbone curve
presented on frequency-energy plot.
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Fig. 2: Modal velocity signals, ¢x(t), k € {1,2}, of the
mechanical system oscillating at point 3D (marked

in Fig. 1) during three consecutive cycles (T
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Q

).

(The cycles almost overlay.)

this moment unknown and will be investigated.

The response of the nonlinear part of the mechanical
system at point 3D (also marked in Fig. 1), decomposed
into modal velocities q(t), is presented in Fig. 2 and Tab. 1.
Figure 2 shows time responses of modal velocities, while
in Tab. 1 the magnitudes of their Fourier -coefficients
are presented and compared with one another indicating
which modes/harmonics participate the most in the system’s
response. The quantities q(t) and V;-”(t) are defined in
Egs. (2) and (3), respectively.
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Table 1 shows that the modal coupling at point 3D
takes place between five modes/harmonics. Namely, between
mode one occurring as first, second and third harmonics
and mode two occurring as second and fourth harmonics.
These modes/harmonics are also dominant in the steady-
state response of the structure oscillating in the vicinity of
point 3D. Thus it might be possible to estimate the NNM
parameters based on the near-resonant measurements, even
if the structure experiences modal coupling. The next section
presents an overview of a concept that could be used to modify
the original SNRM formulation so that it can successfully
identify a nonlinear mechanical system using near-resonant
response data such as that shown here.

Tab. 1: Fourier coefficients magnitudes of the first five harmonics of modal velocities presented in
Fig. 2 and their ratio to the maximal coefficient value (expressed in %). Values marked with
blue correspond to the modes/harmonics which are considered to exhibit modal coupling.

| [ Q [ 20 [ 3Q [ 4Q | 50 |
¢1(t) [ 6.77e-02  (100.00) | 1.59e-02 (23.45) | 1.37e-02 (20.29) | 3.52¢-03  (5.19) | 2.58¢-03 (3.81)
da(t) 1.04e-03 (1.54) 2.84e-02  (41.89) | 1.87e-03 (2.76) | 6.48e-03 (9.57) | 9.61e-04 (1.42)

Discussion on the SNRM Algorithm Extension

A generalized form of the SNRM model function is presented in Eq. (3). Rather than expressing the response using
a single complex amplitude, as in Eq. (1), it considers the motion over a certain time. Hence, one could include the
sub- or higher-harmonics in the system’s response (as e.g. indicated in Tab. 1). This form also brings the model
closer to the original Nonlinear Normal Modes definition, which introduces them as (non-necessarily synchronous)
periodic motions of the conservative system [4].
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- v™eas(¢) is the full-field velocity response of the structure (measured experimentally or numerically),
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(t) is the full-field nonlinear velocity response of the structure oscillating near the j-th NNM and

- vé»i"(t) is a term responsible for modeling the response of the system far from the j-th NNM.



One of the possible concepts of how to express the quantity V;Ll is shown in Eq. (4). This formula allows for
modeling the response with several modes and/or harmonics. Additionally, it has certain similarities to the nonlinear

term from Eq. (1), which facilitates a physical interpretation of the new quantities introduced in (4).
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The new quantities introduced in Eq. (4) are defined as follows:
- N, indicates how many coupling terms should be considered in the system identification process,

- Q:j (n) is the damping ratio corresponding to mode ®;(n) which is expected to occur in the system response.

If ¢;(n) is a large number than the mode ®;(n) is negligible in the system’s response.

- h;(n) indicates if the mode ®;(n) vibrates with the forcing frequency Q (h;(n) = 1), or if it appears as a sub-
or higher harmonic (h;(n) # 1).

In the case study presented in the previous section, which focuses on the motion near the first NNM (5 = 1),
the quantities introduced above should be given the following values: N,; = 5, ®1(n) = [‘I'l P, | Py @g],
hi(n) = [12324] and G(n) = [Ci1Ci2G3Ciais].  The damping ratios of the coupled modes
(5171@, ke {l,...,5}) could be modeled as unknown functions of vibration level, with values known when the system
vibrates at low amplitudes. At low vibration levels, the response of the structure is dominated by the underlying
linear system. Thus, 51,1 = ?” and 517;6, k € {2,...,5} should be given large enough values, so that the contribution
of the their pseudo-modes to the system’s response can be treated as negligible.

The extension to the SNRM algorithm discussed briefly in this section is one of several possible concepts the
authors are currently investigating. The final version of the model function (4) and the discussion on its correctness
from the physical standpoint as well as the ability to capture modal interactions experienced by the oscillating
structure will be presented at the conference.

Conclusion and Future Work

This work briefly discussed one possible modification to the SNRM algorithm that would enable it to capture modal
coupling. The main goal of this extension is to estimate the Nonlinear Normal Mode backbone curve and additionally
detect the modal interaction. The authors are currently investigating variations on the model function in (4) in order
to determine which to implement in the final version of the system identification algorithm.

In future work, the method will be tested numerically using a ROM of a curved beam, which experiences significant
modal coupling. Then the algorithm will be used to identify the NNMs of a curved steel beam that exhibits modal
interactions. The results will be validated against those obtained using well-established testing approaches.
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