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Abstract

This report presents a detailed description of a new algorithm which allows on a significant speed-
ups in Force Appropriation testing. The algorithm is based on the Single Nonlinear Resonant
Mode (SNRM) method. It estimates the Nonlinear Normal Mode of the oscillating structure using
measurements collected near the nonlinear resonance. The method is first evaluated numerically
using a reduced models of flat/curved clamped-clamped beams which exhibit hardening and both
softening/hardening responses, respectively. Then the method is employed experimentally to estimate
the first NNM of 3D printed flat/curved beams. The results are compared to those obtained using
traditional tuning approach.

Keywords: Nonlinear Normal Modes, Force Appropriation Method, Single Nonlinear Resonant
Mode Method, Nonlinear Modal Analysis, Nonlinear Frequency Response Functions
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1 Introduction

Force appropriation method has long been used for estimating the modal parameters of oscillating
structures. The method provides accurate results, but it is unfortunately quite slow and so the
structure may be subjected to significant damage over the course of a test. Specifically, the
identification of nonlinear systems (conservative [1, 2] and non-conservative [3]) suffers from this
drawback, since the nonlinearity usually makes its presence felt when the system vibrates at high-
enough amplitudes.

A concept of the Nonlinear Normal Modes is briefly introduced at the beginning of this section.
Then the theory and application behind the Force Appropriation method is presented. The most
important problems which can be encountered during the Force Appropriation testing are enumerated
in section 1.3. On of the goals of this work is to propose an algorithm which helps to overcome
issues related to these drawbacks.

1.1 Nonlinear Normal Modes

Response of the vibrating linear mechanical systems can be expressed as a combination of their linear
modes. This is possible due to their mutual orthogonality, which can be used to diagonalize the mass
and stiffness matrices. Additionally, this property implies natural frequencies being independent
of vibration level. In other words, picks of frequency response functions corresponding to different
vibration levels will lay one above/below another, forming a straight vertical line on a vibration
level vs. frequency plot (see Fig. 1a).

(a) (b)

Fig. 1: An example of frequency response functions of (a) linear and (b) nonlinear systems
obtained for different vibration levels.

The principal of superposition does not strictly apply to nonlinear systems. Their natural
frequencies are vibration-level-dependent, as shown in e.g. Fig. 1b. Such nonlinear systems have
to be examined with methods different than modal decomposition. One of such methods is Force
Appropriation described briefly in section 1.2.
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1.2 Force Appropriation Method

Force Appropriation is one of the experimental/numerical methods which can be used in e.g.
examining if the structure vibrates (or not) at its resonance. It uses two parameters to control
the oscillating structure, namely amplitude and frequency of the applied force. Thus, if the forcing
amplitude is kept constant - then the forcing frequency can be adjusted in order to bring the
vibrating structure to its nonlinear resonance. In other words, if the forcing amplitude is fixed we
could tweak the frequency and march up the nonlinear frequency response curve – as shown in
Fig. 2: starting from point C, through B, ending up at point A.

Fig. 2: Force Appropriation Method allows testing the vibrating structure by controlling
frequency and amplitude of applied force. Chart shows three frequency response functions

obtained for three different forcing amplitudes.

Nonlinear normal modes are periodic motions of the underlying conservative system [1, 4, 5].
Thus the excitation force and velocity are synchronized at the nonlinear resonance and equation of
motion can be decoupled (only if the structure oscillates at its resonance) into two shown in (1).

Mẍ + Cẋ + Kx + fnl(x) = f(t) =⇒

{
Mẍ + Kx + fnl(x) = 0

Cẋ = f(t)
(1)

This property of mechanical systems is used in Force Appropriation Method to determine how
far the vibrating system is from its resonance. Namely, if structure is at resonance – a straight line
would be seen on the force vs. velocity signals chart. For the case when the system is not at its
resonance – the plot would be an ellipse. The larger the ellipse is the further the structure is from
the resonance, as presented in Fig. 3.
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(a) (b) (c)

Fig. 3: Force Aprropriation Method compares force and velocity signals to indicate whether the
system oscillates at its resonance. Subplots (a), (b) and (c) correspond to points A, B and C

shown in Fig. 3.

Force Appropriation software, which can be used in experimental [6,7] and numerical vibration
testing is provided by the members of Structural Dynamics Research Group. Figure 4 shows a print
screen of the experimental version of the software, while its numerical counterpart was presented
in Fig. 5.

Fig. 4: Screen shot of Harmonic Force Generator Software created using LabView [6,7]. It allows
to control forcing frequency and voltage amplitudes of harmonics the structure is excited with.

Numerical version of Force Appropriation computes and prints out value of Mode Indicator
Function - feature currently not provided by the experimental software. Moreover, numerical FA
allows to take steps back in time (and return to the state of mechanical system from the past).
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Fig. 5: Screen shot of numerical Force Appropriation software. Besides controlling amplitude and
frequency of the force, it allows to e.g. take steps back in time and return to the state of the

mechanical system from the past.

It is also worth mentioning that the shape of the curve on force vs. velocity plot does not have
to be elliptical. Response may e.g. consist of higher harmonics (Fig. 6a) or be random (response of
the system right after falling of the FRF curve, Fig. 6b).
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(a)

(b)

Fig. 6: Examples of steady state responses which: (a) contain higher harmonics; (b) is random
(response of the system right after falling of the FRF curve).
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1.3 Motivation

Force Appropriation is a very simple but powerful and effective method to test the nonlinear
oscillating structures. Despite its advantages it still has a few drawbacks. Most important disadvantages
of the Force Appropriation method are:

1. Time consuming measurements

2. Premature jump phenomenon

3. Feedback of the oscillating structure

Force appropriation measurements are time consuming because the method allows measurements
only for a single forcing amplitude and frequency at a time. If the information about the structure
has to be collected for the wider range of frequencies, multiple measurements have to be taken.
Additionally, every time the forcing amplitude or frequency is changed, structure needs time to
obtain its steady state. Mention about work of ???, who published on how to automatize FA
measurements.

When it comes to the second drawback of FA testing – collecting data of the resonating nonlinear
structure is sometimes not possible. Structure can switch from lag to lead branch of the FRF,
before reaching the actual turning point. This experimental testing issue is called the premature
jump phenomenon and can lead to incorrect estimation of the nonlinear FRFs picks.

Feedback of the vibrating structure usually leads to distortions of the excitation force and can
impact the quality of the measured test data. Naturally, the closer the structure is to its resonance
the larger the feedback is what lowers the quality of the measurements. The algorithm we proposed
in this work addresses all three drawbacks of Force Appropriation testing enumerated above and
allows to overcome the issues caused by them.

2 Algorithm Overview

2.1 Theoretical Background

The algorithm proposed in this report is an extension of the linear vibrations theory, where the
response of the system can be expressed as a combination of its modes, see Eq. (2).

V =

Nlin∑
k=1

ΦkΦ
T
kFΩ

ω2
0,k − Ω2 + 2iζkω0,kΩ

∣∣∣∣∣pt. of max.
deflection

(2)

Since the goal of this work is system identification of the nonlinear systems – model presented in
Eq. (2) had to be modified in order to be able to analyze such systems. The concept of Single
Nonlinear Resonant Mode (SNRM), which was first proposed in [8], brings Eq. (2) to a form that
allows for nonlinear SI, see Eq (3). The method requires vibration modes to be well-separated and
assumes no internal resonances between them.

The SNRM method extracts one of the modes from the sum in Eq. (2) and models it as nonlinear,
while keeping the rest of the modes linear and superimposing them, see Eq. (3). The strengths of
the method are: (i) its simple mathematical form and (ii) a straight–forward correlation to the
linear vibration theory. Visualization of quantities V nl

j and V lin is presented in Fig. 7.
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V meas ≈ V model =
Φ̃jΦ̃

T
j FΩ

ω̃2
0,j − Ω2 + 2iζ̃jω̃0,jΩ

∣∣∣∣∣pt. of max.
deflection︸ ︷︷ ︸

V nl
j

+

Nlin∑
k=1
k 6=j

ΦkΦ
T
kFΩ

ω2
0,k − Ω2 + 2iζkω0,kΩ

∣∣∣∣∣pt. of max.
deflection︸ ︷︷ ︸

V lin

(3)

In Eq. (3): Ω is the forcing frequency; Φi, ω0,i, ζi are the mode shape, natural frequency and
modal damping ratio of the i-th mode, respectively; F is the distribution of a sinusoidal force
excitation; j is index of the dominant mode, and Nlin denotes the number of relevant linear modes.
The quantities marked (∼) vary with the vibration level.

Fig. 7: Visualization of quantities V nl
j and V lin from Eq. (3)

As presented in the Eq. (3), the nonlinearity is modeled by representing three physical parameters,
namely ω0,i, ζi, Φi as functions of the vibration level. In this work, the vibration level is represented
usually with velocity amplitude (unless specified otherwise).

The proposed algorithm uses models for magnitude and phase of the velocity complex
amplitude, see Eqs. (4) and (5). ∥∥∥V meas

∥∥∥ =
∥∥∥V nl

j + V lin
∥∥∥ (4)

∠
(
V nl
j

)
= ∠

(
V meas − V lin

)
= tan−1

(−2ζ̃jω̃0,jΩ

ω̃2
0,j − Ω2

)
(5)

For clarity let us also define:

v =
∥∥∥V meas

∥∥∥ (?)

ϕ̃vel
j = ∠

(
V nl
j

)
(??)

Equation (5), which is a model for the phase of velocity complex amplitude, can be used in
expressing nonlinear natural frequency as a function of nonlinear damping. Namely, Eq. (5) can
be brought to a form of quadratic function (6). The real solution of Equation (6) always exists, as
indicated in Eq. (7). Thus, it can be used to express ω̃0,j as a function of ζ̃j, see Eq. (8) and/or Eq. (9).

ω̃2
0,j +

−2ζ̃jΩ

tan(ϕ̃vel
j )

ω̃0,j − Ω2 = 0 (6)
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∆ = 2Ω (ζ̃2j + tan2(ϕ̃vel
j )) > 0 (7)

ω̃0,j = f(ζ̃j) =
−ζ̃j ±

√
ζ̃2j + tan2(ϕ̃vel

j )

tan(ϕ̃vel
j )

Ω (8)

ω̃0,j = f(ζ̃j) =


−ζ̃j+

√
ζ̃2
j+tan2(ϕ̃vel

j )

tan(ϕ̃vel
j )

Ω if tan(ϕ̃vel
j ) > 0

(meas. point above the NNM; phase lag)

−ζ̃j---
√
ζ̃2
j+tan2(ϕ̃vel

j )

tan(ϕ̃vel
j )

Ω if tan(ϕ̃vel
j ) < 0

(meas. point below the NNM; phase lead)

(9)

2.2 Algorithm Stages

The objective of the algorithm is to estimate the NNM curve using, as an input, quantities
(v, Ω, ϕ̃vel

j ) measured in the vicinity of the nonlinear resonance. The algorithm proposed here
consists of three stages:

1. Collect data in the laboratory or simulated test and compute (v, Ω, ϕ̃vel
j ).

2. Use Eqs. (4) and (9) to assign ζ̃j and ω̃0,j values to every (v, Ω, ϕ̃vel
j ) point.

3. Express ω̃0,j and ζ̃j as (e.g. piecewise linear) functions of the velocity magnitude v.

The result of the above three-stages-long procedure is obtaining ω̃0,j = ω0,j(v) and ζ̃j = ζj(v).
Former quantity is searched NNM backbone, while the latter function shows how the nonlinear
damping ratio changes with vibration level if the structure is modeled using Eq. (3).

The results are validated against the data collected in the physical/numerical tests. Namely,
the estimated NNM points (v∗, ω∗, −90◦) obtained for a certain forcing level are compared with
the NNM points measured during the tests using the same excitation level. Additionally, Eq. (3)
allows for modeling the FRF curve, as presented e.g. in [9], with the (v∗, ω∗, −90◦) as a start point.
Hence, the accuracy of the method can also be evaluated via comparison between the FRF curves
modeled and measured experimentally or numerically.

According to a well-known saying: a picture is worth a thousand words. Thus, it would probably
be more convenient and clearer to present each of the algorithm’s steps on a few plots. The algorithm
stages as well as the validation steps are visualized in Tables from 1 to 7.

10



Tab. 1: Overview of the Algorithm: Algorithm’s objective.
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Algorithm’s objective: Estimate the NNM curve.

Tab. 2: Overview of the Algorithm: Step 1.
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Algorithm’s objective: Estimate the NNM curve.

Step 1: Collect near-resonant test points (v, Ω, ϕ̃vel
j ).
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Tab. 3: Overview of the Algorithm: Step 2.
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Algorithm’s objective: Estimate the NNM curve.

Step 1: Collect near-resonant test points

(v, Ω, ϕ̃vel
j ).

Step 2: Assign ζ̃j and ω̃0,j to each (v, Ω, ϕ̃vel
j )

point via solving Eq. (4) and Eq. (9).

Tab. 4: Overview of the Algorithm: Step 3.
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Algorithm’s objective: Estimate the NNM curve.

Step 1: Collect near-resonant test points

(v, Ω, ϕ̃vel
j ).

Step 2: Assign ζ̃j and ω̃0,j to each (v, Ω, ϕ̃vel
j )

point via solving Eq. (4) and Eq. (9).

Step 3: Express ζ̃j and ω̃0,j as functions of v.
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Tab. 5: Overview of the Algorithm: Method Validation – Step 1.
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Method Validation

Step 1: Compare measued NNM points with points
(v∗, ω∗) at which the FRF and NNM curves intersect
for a certain forcing level.

At the nonlinear resonance, forcing frequency and
nonlinear modal frequency are equal: Ω = ω̃0,j(v∗) = ω∗.

Hence, Eq. (4) at this point can be simplified:

v∗ =

∥∥∥∥(ΦjΦ
T
j F

2iζ̃jω∗
+ Vlin(ω∗)

)∣∣∣∣∣pt. of max.
deflection

∥∥∥∥

Tab. 6: Overview of the Algorithm: Method Validation – Step 2.
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Method Validation

Step 1: Compare measued NNM points with points

(v∗, ω∗) at which the FRF and NNM curves intersect for

a certain forcing level.

Step 2: Model the upper (lag) and lower (lead) branches

of the FRF using Eq. (4) with (v∗, ω∗) as a start point.
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Tab. 7: Overview of the Algorithm: Method Validation – Step 3.
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Step 1: Compare measued NNM points with points

(v∗, ω∗) at which the FRF and NNM curves intersect for

a certain forcing level.

Step 2: Model the upper (lag) and lower (lead) branches

of the FRF using Eq. (4) with (v∗, ω∗) as a start point.

Step 3: Validate modeled FRF against the one obtained

from the experimental or numerical measurements.
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3 Case Study

In this section the results from four case studies are presented. The algorithm is used to estimate
the Nonlinear Normal Mode backbone curve of flat and curved beams. The method is tested with
data generated numerically using a reduced models experiencing no or slight modal interaction.
Then the method is used to estimate the NNM backbones of 3D printed beams made of polylactide
(PLA). Results are presented and validated in a similar way to the one proposed in section 2.2.

3.1 Flat Clamped-Clamped Beam – Numerical Example

The numerical Force Appropriation test is performed on a flat beam with clamped-clamped boundary
conditions. The beam is identical to the one studied on [10] and it has dimensions and mechanical
properties presented in Tab. 8.

Tab. 8: Dimensions and mechanical properties of the numerical flat clamped-clamped beam.

Lenght [mm] Width [mm] Thickness [mm]

228.6 12.7 0.787

Young’s
Density [ kg

m3 ]
Shear

modulus [GPa] modulus [GPa]
204.8 7870 80.0

The beam is modeled with 40 beam elements resulting in a total of 246 DOFs and it is excited
with an uniformly distributed sinusoidal force (Fig. 8). The test is performed on the 4-mode ROM
including modes 1, 3, 5 and 7. Mode 1 is simulated as a nonlinear one and the response of the three
remaining modes is superimposed linearly.

Fig. 8: Uniformly distributed sinusoidal force is used to excite the numerical flat beam.

Table 9 shows the results obtained after running three-stages-long algorithm described in section
2.2. Plots corresponding to each of the validation steps are presented in Tables from 10 to 12. Results
are briefly commented at the end of this section.
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Tab. 9: Flat CC-Beam Numerical Example. Results.
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1) Near resonant data points have been collected;

MIF ∈ (0.5, 0.7).
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r 2) The NNM points are estimated using Eqs. (4) and (9).

3) Piecewise linear function is used to approximate the NNM

curve.

4) The NNM backbone computed with the presented algorithm is

compared to the solution obtained using the Multi-Harmonic

Balance Method (cite one or two papers).

Tab. 10: Flat CC-Beam Numerical Example. Validation – Step 1.
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Validation

Points (v∗, ω∗) at which the FRF and NNM curves
intersect for a certain forcing level are compared to
the NNM points measured numerically.

At the nonlinear resonance, forcing frequency and
nonlinear modal frequency are equal: Ω = ω̃0,j(v∗) = ω∗.

Hence, Eq. (4) at this point can be simplified:

v∗ =

∥∥∥∥(ΦjΦ
T
j F

2iζ̃jω∗
+ Vlin(ω∗)

)∣∣∣∣∣pt. of max.
deflection
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Tab. 11: Flat CC-Beam Numerical Example. Validation – Step 2.
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Tab. 12: Flat CC-Beam Numerical Example. Validation – Step 3.
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.

17



Comments

1. Proposed algorithm estimates the NNM backbone with a satisfactory precision using near-
resonant test data (MIF ∈ (0.5, 0.7)).

2. NNM points estimated using Eq. (4) for a given forcing magnitude are close enough to the
resonant points measured numerically using Force Appropriation method and the same force
amplitude.

3. Nonlinear frequency response functions measured numerically and computed using Eq. (4)
match each other to a satisfactory extent.

4. The algorithm allows on a significant reduction in the time spent on numerical measurements.
Finding NNM curve using FA software takes approximately 2 hours. With the proposed
algorithm, it takes approximately 20 minutes.

5. Besides estimating the NNM backbone curve, the algorithm expresses nonlinear damping ratio
as a function of velocity amplitude. In this particular example ζ̃j is found as a decreasing
function of the vibration level.

18



3.2 Curved Clamped-Clamped Beam – Numerical Example

The numerical Force Appropriation test is performed on a curved beam with clamped-clamped
boundary conditions. The beam has dimensions and mechanical properties presented in Tab. 13.

Tab. 13: Dimensions and mechanical properties of the numerical curved clamped-clamped beam.

Lenght [mm] Width [mm] Thickness [mm]
Radius

of curvature [m]
304.8 12.7 0.508 11.43

Young’s
Density [ kg

m3 ]
Poisson’s

modulus [GPa] Ratio
204 7860 0.29

The beam is modeled with 400 shell elements resulting in a total of 3030 DOFs and is excited
with an uniformly distributed sinusoidal force (Fig. 9). The test is performed on the 1-mode ROM
(1st mode) which is modeled as nonlinear.

Fig. 9: Uniformly distributed sinusoidal force is used in exciting the numerical curved beam.

Table 14 shows the results obtained after running three-stages-long algorithm described in section
2.2. Plots corresponding to the validation part are presented in Tables from 15 to 29. Results are
briefly commented at the end of this section.
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Tab. 14: Curved CC-Beam Numerical Example. Results.
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1) Near resonant data points have been collected;

MIF ∈ (0.7842, 1.0).
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r 2) The NNM points are estimated using Eqs. (4) and (9).

3) Piecewise linear function is used to approximate the NNM

curve.

4) The NNM backbone computed with the presented algorithm is

compared to the solution obtained using the Multi-Harmonic

Balance Method (cite one or two papers).

Tab. 15: Curved CC-Beam Numerical Example. Comparison of the NNM points modeled and
measured numerically using Force Appropriation.
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Validation

Points (v∗, ω∗) at which the FRF and NNM curves
intersect for a certain forcing level are compared to
the NNM points measured numerically.

At the nonlinear resonance, forcing frequency and
nonlinear modal frequency are equal: Ω = ω̃0,j(v∗) = ω∗.

Hence, Eq. (4) at this point can be simplified:

v∗ =

∥∥∥∥(ΦjΦ
T
j F

2iζ̃jω∗
+ Vlin(ω∗)

)∣∣∣∣∣pt. of max.
deflection

∥∥∥∥
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Tab. 16: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 5
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.

Tab. 17: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 6
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.
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Tab. 18: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 7
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.

Tab. 19: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 8
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.
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Tab. 20: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 9
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.

Tab. 21: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 10
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.
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Tab. 22: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 11
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.

Tab. 23: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 12
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.
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Tab. 24: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 13
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.

Tab. 25: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 14

0 0.5 1 1.5 2 2.5

Velocity Amplitude [m/s]

100

200

300

400

500

600

700

800

900

1000

F
o
rc

in
g
 F

re
q
u
e
n
c
y
 [
ra

d
/s

]

-180 -135 -90 -45 0

100

200

300

400

500

600

700

800

900

1000

F
o

rc
in

g
 F

re
q

u
e

n
c
y
 [

ra
d

/s
]

0 0.5 1 1.5 2 2.5

Velocity Amplitude [m/s]

0.02

0.04

0.06

0.08

0.1

N
o

n
lin

e
a

r 

Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.
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Tab. 26: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 15
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.

Tab. 27: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 16
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.
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Tab. 28: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 17
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.

Tab. 29: Curved CC-Beam Numerical Example. Comparison of the nonlinear FRF curves
modeled and measured numerically using Force Appropriation. FRF ID: 18
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using the numerical Force Appropriation method.
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Comments

1. Proposed algorithm estimates the NNM backbone with a satisfactory precision using near-
resonant test data (MIF ∈ (0.7842, 1.0)).

2. NNM points estimated using Eq. (4) for a given forcing magnitude are close enough to the
resonant points measured numerically using Force Appropriation method and the same force
amplitude .

3. Nonlinear frequency response functions measured numerically and computed using Eq. (4)
match each other to a satisfactory extent.

4. The algorithm allows on significant reduction in the time spent on numerical measurements.
Finding NNM curve using FA software takes approximately 2 hours 30 minutes. With the
proposed algorithm, it takes approximately 1 hour.

5. Besides estimating the NNM backbone curve, the algorithm expresses nonlinear damping ratio
as a function of velocity amplitude. In this particular example ζ̃j is found as an increasing
(decreasing) function when the system exhibits softening (stiffening).
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3.3 3D Printing Process and Experimental Setup

Beam specimens employed in the experimental case study are 3D printed using polylactide (PLA).
A brief description of the 3D printing process and the experimental setup is provided in this section.

3D Printing Process

Fig. 10: Longitudinal cross-section of
a 3D printed beam.

As presented in Figs. 10 and 11a, the specimens are
modeled using Solidworks [11]. They consist of thin
and thick parts, called in this report beam (or thin
beam) and backing (or thick beam), respectively.
Former is the actual beam tested and latter is used
to connect the structure to the shaker. Beam models
are then exported to the UlitimateCura software [12]
where the parameters concerning 3D printing process
(e.g. layer height, walls thickness, nozzle size and
speed, plate temperature, etc.) are specified, see
Fig. 11c. One of the 3D printed beams is shown
in Fig. 11b.

(a)
(b)

(c)

Fig. 11: 3D Printing Process: (a) SolidWorks model [11]; (b) Photograph of 3D Printed Beam;
(c) Screen shot of 3D Printing Software Setup [12].
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Experimental Setup

The experimental setup is shown in Fig. 12. It consists of three systems: (i) shaker, (ii) scanning
laser vibrometer and (iii) force appropriation control system, which are described briefly below.

(a) (b)

Fig. 12: Photographs of experimental setup: (a) back view; (b) front view.

(i) The 3D printed beams are connected to the shaker using a polycarbonate stinger (as presented
in Fig. 12). The input force applied to the backing of the specimens is measured with a load
cell mounted at the singer’s end. Unfortunately, the quality of the signal measured at the load
cell is low, which is most likely caused by the oscillating structure feedback. Thus, signal sent
from the controller was converted to the force units and used instead of the signal measured
by the load cell

(ii) Polytec PSV–400M scanning laser vibrometer was used to capture the motion of the oscillating
beam. The geometry of the beam was represented using a rectangular grid. Using the LabView
control system, the thin beam is brought to the near-resonant state and then its full-field
dynamic response is scanned over a several cycles using the Polytec software.

(iii) The force appropriation procedure was similar to the one described in [7]. The control system
(created using LabView) allows on modifying the amplitude and frequency of the force with
the voltage signal sent to the shaker. The phase between the voltage signal and the velocity
of the beam’s center (measured using the LDV) are is monitored (in real time) in order to
indicate how far the structure is from oscillating at its nonlinear resonance (as explained in
section 1.2).
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3.4 3D Printed Curved Beam

The laboratory Force Appropriation test is performed on a 3D printed curved beam (Beam ID:
0701a) made of polylactide (PLA). The beam has dimensions and mechanical parameters presented
in Tab 30 and in Fig. 13. External force applied at the center of the backing is converted to
uniformly distributed sinusoidal force f(t) of magnitude Fmag (Fig. 14); f(t) is then used in the
system identification algorithm.

Tab. 30: Dimensions and mechanical properties of the 3D printed curved beam 0701a.

Lenght [mm] Beam mass [g]
Backing Radius
mass [g] of curvature [mm]

190 3.7696 130 3175

Beam
Beam width [mm]

Backing
thickness [mm] thickness [mm]

2.0 8.0 30.0

Fig. 13: (Left) Side views of 3D printed beam 0701a. Beam is signed and has its characteristic
dimensions engraved on its sides. (Right) Isometric view of the beam.

Fig. 14: Forcing was modeled as uniformly distributed sinusoidal excitation. It was converted
from the external point-force applied at the center of beam 0701a backing.

Table 31 shows the results obtained after running the three-stages-long algorithm described in
section 2.2. Plots corresponding to the validation part are presented in Tables from 32 to ??.
Results are briefly commented at the end of this section.
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Tab. 31: 3D Printed Curved Beam Example. Results.
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1) Near resonant data points have been collected;

MIF ∈ (0.8410, 0.9988).
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2) The NNM points are estimated using Eqs. (4) and (9).

3) Piecewise linear function is used to approximate the NNM

curve.

Tab. 32: 3D Printed Curved Beam Example. Comparison of the NNM points modeled and
measured experimentally using Force Appropriation.
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Validation

Points (v∗, ω∗) at which the FRF and NNM curves
intersect for a certain forcing level are compared to
the NNM points measured experimentally.

At the nonlinear resonance, forcing frequency and
nonlinear modal frequency are equal: Ω = ω̃0,j(v∗) = ω∗.

Hence, Eq. (4) at this point can be simplified:

v∗ =

∥∥∥∥(ΦjΦ
T
j F

2iζ̃jω∗
+ Vlin(ω∗)

)∣∣∣∣∣pt. of max.
deflection

∥∥∥∥
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Tab. 33: 3D Printed Curved Beam Example. Comparison of the nonlinear FRF curves modeled
and measured experimentally using Force Appropriation. FRF ID: 1
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using experimental Force Appropriation software.

Tab. 34: 3D Printed Curved Beam Example. Comparison of the nonlinear FRF curves modeled
and measured experimentally using Force Appropriation. FRF ID: 2
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using experimental Force Appropriation software.
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Tab. 35: 3D Printed Curved Beam Example. Comparison of the nonlinear FRF curves modeled
and measured experimentally using Force Appropriation. FRF ID: 3
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using experimental Force Appropriation software.

Tab. 36: 3D Printed Curved Beam Example. Comparison of the nonlinear FRF curves modeled
and measured experimentally using Force Appropriation. FRF ID: 4
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Modeled FRF is validated against the one measured
using experimental Force Appropriation software.
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Comments

1. Proposed algorithm estimates the NNM backbone with a satisfactory precision using near-
resonant test data (MIF ∈ (0.8410, 0.9988)).

2. NNM points estimated using Eq. (4) for a given forcing magnitude are close enough to the
resonant points measured numerically using Force Appropriation method and the same force
amplitude .

3. Nonlinear frequency response functions measured numerically and computed using Eq. (4)
match each other to a satisfactory extent. The proposed algorithm is currently based on a
model which does not include Rigid Body Modes in its modal basis. This is (most likely) the
cause of the discrepancy between the FRF branches modeled and measured at low frequencies.
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Fig. 15: The proposed algorithm is currently based on a model which does not include Rigid
Body Modes in its modal basis. This is (most likely) the cause of the discrepancy between the
FRF branches modeled and measured at low frequencies. (a) Comparison of the measured and

modeled FRFs; (b) Fit to the measured FRF - obtained using AMI software [13–15].

4. The algorithm allows on significant reduction in the time spent on numerical measurements.
Finding NNM curve experimentally using FA software takes approximately 4 hours. With the
proposed algorithm, it takes approximately 1 hour.

5. Besides estimating the NNM backbone curve, the algorithm expresses nonlinear damping ratio
as a function of velocity amplitude. In this particular example ζ̃j is found as an increasing
(decreasing) function when the system exhibits softening (stiffening).
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3.5 3D Printed Flat Beam

The laboratory Force Appropriation test is performed on a 3D printed flat beam (Beam ID: 0701c)
made of polylactide (PLA). The beam has dimensions and mechanical parameters presented in
Tab 37 and in Fig. 16. External force applied at the center of the backing is converted to
uniformly distributed sinusoidal force f(t) of magnitude Fmag (Fig. 17); f(t) is then used in the
system identification algorithm.

Tab. 37: Dimensions and mechanical properties of the 3D printed flat beam.

Lenght [mm] Beam mass [g]
Backing Radius
mass [g] of curvature

190 3.7696 130 ∞
Beam

Beam width [mm]
Backing

thickness [mm] thickness [mm]
2.0 8.0 30.0

Fig. 16: (Left) Side views of 3D printed beam 0701c. Beam is signed and has its characteristic
dimensions engraved on its sides. (Right) Isometric view of the beam

Fig. 17: Forcing was modeled as uniformly distributed sinusoidal excitation. It was converted
from the external point-force applied at the center of beam 0701c backing.

Table 38 shows the results obtained after running three-stages-long algorithm described in
section 2.2. Plots corresponding to the validation part are presented in Tables from 39 to 41.
Results are briefly commented at the end of this section.
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Tab. 38: 3D Printed Flat Beam Example. Results.
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1) Near resonant data points have been collected;

MIF ∈ (0.845, 0.986).
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2) The NNM points are estimated using Eqs. (4) and (9).

3) Piecewise linear function is used to approximate the NNM

curve.

Tab. 39: 3D Printed Flat Beam Example. Comparison of the NNM points modeled and measured
experimentally using Force Appropriation.
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Validation

Points (v∗, ω∗) at which the FRF and NNM curves
intersect for a certain forcing level are compared to
the NNM points measured experimentally.

At the nonlinear resonance, forcing frequency and
nonlinear modal frequency are equal: Ω = ω̃0,j(v∗) = ω∗.

Hence, Eq. (4) at this point can be simplified:

v∗ =

∥∥∥∥(ΦjΦ
T
j F

2iζ̃jω∗
+ Vlin(ω∗)

)∣∣∣∣∣pt. of max.
deflection

∥∥∥∥
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Tab. 40: 3D Printed Flat Beam Example. The nonlinear FRF curve modeled using Eq. (4).
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Curve presented in the chart is the FRF computed for
the uniformly distributed forcing with Fmag ≈ 44 N.

Tab. 41: 3D Printed Flat Beam Example. Comparison of the nonlinear FRF curves modeled and
measured experimentally using Force Appropriation.
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Validation

The upper (lag) and lower (lead) branches of the FRF
are modeled using Eq. (4) with (v∗, ω∗) as a start point.

Curves presented in the chart are the FRFs computed for
the uniformly distributed forcing with Fmag ≈ 44 N.

Results are compared to the FRF measured
experimentally using Force Appropriation.
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Comments

1. Proposed algorithm estimates the NNM backbone with a satisfactory precision using near-
resonant test data (MIF ∈ (0.945, 0.986)).

2. NNM points estimated using Eq. (4) for a given forcing magnitude are close enough to the
resonant points measured numerically using Force Appropriation method and the same force
amplitude .

3. Nonlinear frequency response functions measured numerically and computed using Eq. (4)
match each other to a satisfactory extent. The proposed algorithm is currently based on a
model which does not include Rigid Body Modes in its modal basis. This is (most likely) the
cause of the discrepancy between the FRF branches modeled and measured at low frequencies.
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Fig. 18: The proposed algorithm is currently based on a model which does not include Rigid
Body Modes in its modal basis. This is (most likely) the cause of the discrepancy between the
FRF branches modeled and measured at low frequencies. (a) Comparison of the measured and

modeled FRFs; (b) Fit to the measured FRF - obtained using AMI software [13–15].

4. The algorithm allows on significant reduction in the time spent on numerical measurements.
Finding NNM curve using FA software takes approximately 2 hours 30 minutes. With the
proposed algorithm, it takes approximately 1 hour.

5. Besides estimating the NNM backbone curve, the algorithm expresses nonlinear damping ratio
as a function of velocity amplitude. In this particular example ζ̃j is found as a decreasing
function of the vibration level.
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4 Summary and Future Work

Summary

1. Proposed algorithm estimates the NNM backbone with a satisfactory precision using near-
resonant test data.

2. The algorithm allows on significant reduction in the time spent on experimental/numerical
measurements.

3. The software requires Minimal User Interaction. After collecting the data – the NNM estimation
process takes approx. 1 minute and needs only a couple of mouse/button clicks.

Future Steps

1. Adding the Rigid Body Mode to the Frequency Response model.

2. Modifying the algorithm such that it:

– allows multi-harmonic input

– can be used in analyzing systems experiencing modal coupling.

3. Using the algorithm to predict the nonlinear vibration of structure different than 3D printed
beam, e.g. steel beam, perforated plate, gong, crystal glass, etc.
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[8] Szemplińska-Stupnicka, W., 1979. “The modified single mode method in the investigations of
the resonant vibrations of non-linear systems”. Journal of Sound and Vibration, 63(4), pp. 475
– 489.

[9] Peter, S., Scheel, M., Krack, M., and Leine, R. I., 2018. “Synthesis of nonlinear frequency
responses with experimentally extracted nonlinear modes”. Mechanical Systems and Signal
Processing, 101, pp. 498 – 515.

[10] Hollkamp, J. J., Gordon, R. W., and Spottswood, S. M., 2005. “Nonlinear modal models for
sonic fatigue response prediction: a comparison of methods”. Journal of Sound and Vibration,
284(3), pp. 1145 – 1163.
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