
Transfer Functions to Measure Translational and Rotational Velocities with 

Continuous-Scan Laser Doppler Vibrometry 

Shifei Yang 
Graduate Research Assistant, Ph.D. Candidate 

syang66@wisc.edu  
 

& 
 

Matthew S. Allen 
Assistant Professor 

msallen@engr.wisc.edu  
Department of Engineering Physics 
University of Wisconsin-Madison 

535 Engineering Research Building 
1500 Engineering Drive 

Madison, WI 53706 
Abstract  

A laser Doppler vibrometer typically measures the translational velocity at a single point along the 

direction of incident light.  However, it has been shown that rotational velocities can also be recovered by 

scanning the laser continuously along a line or circular path around that point.  This work uses the 

harmonic transfer function concept, which is analogous to the transfer function in conventional modal 

analysis, to relate the measured rotational and translational velocities to the input force.  With this concept, 

the continuous-scan approach can be combined with the conventional point by point scan approach, 

acquiring normalized translational and rotational velocities under various types of excitation conditions in 

the same amount of time that is required for obtaining only the translational velocity.  The proposed 

approach is validated on measurements taken from a downhill ski under free-free boundary conditions.  

The influence of the circle size, the scanning rate and the surface quality on the noise level in the measured 

signal is discussed, and the measured deflection shapes using both the point and circular scan approaches 

are compared.  Local slopes at measurement locations are computed from the identified principal rotational 

velocities, laying the foundation for constructing a much more accurate estimate of the deformation shape, 

which may be valuable in damage detection and/or model updating.  
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1 Introduction 

Continuous-Scan Laser Doppler Vibrometry (CSLDV) is a novel method of employing a laser 

vibrometer in which the laser spot sweeps over a structure continuously while capturing responses from a 

moving measurement point.  The method can greatly accelerate the modal testing of structures with low 

frequency modes, which require long time records at every single measurement point when the 

conventional point by point scanning method is used.  One can also obtain measurements with greatly 



increased spatial detail along the scan path, which is valuable in model correlation and updating [1], 

structural health monitoring, and damage detection. 

A few algorithms have been devised to process measurements from CSLDV under various 

excitation conditions.  Ewins group at Imperial College treats the operational deflection shape of a structure 

as a polynomial function of the moving laser position [2-6].  The coefficients of that polynomial are then 

obtained by transforming the amplitudes of the harmonics that are separated by the scanning frequency in 

the measured spectrum.  Allen et al later presented a ‘discrete’ lifting approach [7, 8] that groups the 

measured responses at the same location along the laser scan path.  The lifted measurements appear to be 

from a set of pseudo sensors but with a constant time delay between each other.  The lifted spectra hence 

have only one peak for each mode, which allows conventional modal analysis curve fitting methods to be 

applied.  Recently, algorithms based on linear time periodic system identification theory were used to 

process CSLDV measurements [9, 10].  When the laser scans a closed periodic pattern, measurements from 

CSLDV appear to be periodic.  The harmonic transfer function of periodic systems allows natural 

frequencies, damping ratios and mode shapes to be extracted and compared under a variety of excitation 

conditions.  

All these algorithms emphasize detecting translational deflection over an area on the structure, but 

the laser vibrometer can also be used to measure the rotational velocities over a small region.  Ewins 

proposed a continuous scanning procedure to measure the translational as well as the angular vibration 

simultaneously [11].  He has proved that by scanning a line or a circle around the point of interest on a 

structure under sinusoidal input, the translational and rotational velocities are related to the central 

harmonic and its two sidebands in the measured spectrum.  He then validated this procedure under a 

sinusoidal and a narrow-band random input.  Recently, this procedure was adopted by Salman et al to 

reconstruct the operational vibration shape of a human hand using a line scan [12].   

To compute the mobility and sideband frequency response functions, the forcing signal along with 

the product of the forcing signal and mirror driving signal were used as a reference in [11].  This work aims 

to develop an alternative algorithm based on the harmonic transfer function that allows us to extract 

velocity information using virtually any type of input, e.g. an impulse, random or swept-sine input.  The 

harmonic transfer function is an extension of a frequency response function to linear time periodic systems 

[13-15].  With the harmonic transfer function, measurements from a circular scan can be processed as in 

conventional linear time invariant modal analysis, which allows windowing and averaging to reduce 

leakage and random noise.  Also, the acquired translational and rotational velocities at multiple points can 

be easily stitched together to create mode shapes of the underlying structure.  Hence, CSLDV can be 

combined with conventional point by point SLDV, measuring both translational and rotational velocities 

under various types of excitation conditions in the same amount of time that is required by SLDV to 

measure only 1-D translational velocity.    

The rotational velocity at each measurement location represents the local slope of the vibration 

shape.  Therefore, this rotational velocity information could be very useful in computing the local curvature 



that is valuable in damage detection applications [16, 17].  Conventionally, curvature is computed by a 

successive spatial differentiation of the deflection shape.  The limitation is mainly dictated by a limited 

spatial resolution and the high frequency noise incurred by the second order differentiation.  Using the 

additional local slope information at each measurement location, the deflection shape can be spline-fitted 

and hence a much more accurate curvature can be constructed.  This paper investigates the noise in circular 

scan and shows how to identify the normalized translational and rotational velocities as well as the local 

slopes from the measured spectra, laying the foundation for computing the curvature shapes, which will be 

explored in detail in the next stage of this work.   

The rest of this paper is organized as follows.  Section 2 reviews the harmonic transfer function 

concept with particular emphasis on how to interpret the response spectra of a continuous scan 

measurement.  In Section 3, the proposed technique is demonstrated on a downhill ski and the influence of 

circle size and scan frequency on laser noise level is discussed.  In Section 4, the circular scan approach is 

used to identify the deflection mode shapes of the ski.  The results are compared with those from a 

conventional point by point scan LDV.  In Section 5, rotational velocities as well as the local slopes are 

obtained.  Sections 6 summarizes this work.  

2 Theoretical basis  

This paper makes use of the harmonic transfer function concept that relates the output of a linear 

time periodic system to its input [18].  A detailed derivation of the harmonic transfer function for a general 

linear time periodic system can be found in the appendix.  This section shows the simplified expression of 

the harmonic transfer function for CSLDV, proving that rotational velocities can be obtained from the 

measured spectrum.   

2.1 Periodic model of CSLDV measurement 

An N degree of freedom linear time invariant structure can be modeled using the well-known state 

space form with constant coefficients [19], 
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Here x is internal state vector, u is the input and y is the output.  A is the system matrix of the state space 

model, and B is the input matrix.  When a laser Doppler vibrometer is employed to measure this invariant 

system, the output matrix C can be taken as a zero row vector with a one entry at the location the laser is 

measuring, e.g., if the laser is pointed at the kth degree of freedom, then   

 

1 2

0 0 0 0 1 0 0 0
k

N N N

C



 
 
  

     (2) 



Therefore, when the laser moves along a closed periodic pattern, the output matrix becomes periodic, 

( ) ( )AC t C t T  , where 2 /A AT  
 

is called the fundamental period.  In addition, since only velocity 

information is picked up by the laser, the direct input matrix D is zero in the state space model.   

One can diagonalize the state space equations by defining x Pq , where q is the vector of modal 

participation factors, and  

 P
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is the diagonalizer of the state matrix A.     is an N×N mode shape matrix that contains the modes of the 

system in its columns,  1 N    .  The notation ()* represents the complex conjugate.  Λ is a 

diagonal matrix of the eigenvalues, 2j 1r r r r r         in terms of the rth natural frequency 

r and damping ratio r . 

 Substituting x Pq  into Eq. (1) and pre-multiplying the first equation by 1P , one obtains the 

following uncoupled equations, 
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The measurement point is continuously moving, therefore ( )C t P  is a periodic 1×2N row vector of 

complex mode shapes, 

 * * * *
1 1 1 1( ) ( ) ( ) ( ) ( )N N N NC t P C t C t C t C t              (5) 

The rth observed mode shape ( ) rC t   appears to be time periodic only because the position of the 

measurement point is periodic.   

Eq. (4) in conjunction with Eq. (5) reveals that a linear time invariant structure measured by 

continuous scan laser Doppler vibrometry can be modeled as a linear time periodic system when a periodic 

scan pattern is used.  The state space equations have constant matrices A and B since the underlying 

structure is linear time invariant. The only periodic term is the output matrix C.  Hence, periodic system 

identification theory can be used to identify the natural frequencies, damping ratios, and mode shapes of the 

underlying time invariant structure measured by CSLDV. 

2.2 Harmonic transfer function of CSLDV 

This section shows the simplified derivation of harmonic transfer function specifically for 

CSLDV.  The derivation for a general linear time periodic system can be found in the appendix.  The 

derivation makes use of the general solution of a linear system with time varying coefficients [19], 
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Since the transfer function relates the steady-state response of a system to its input, the transient 

response term that includes the initial state x(t0) can be neglected.   As was discussed in previous section, in 

CSLDV measurement the input matrix B is constant, and the direct input matrix D is zero.  Eq. (6) then 

becomes,  
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Here 0( , )t t  is called the state transition matrix. It relates the system state x(t) at any time to the initial 

state x(t0) by, 

 0 0( ) ( , ) ( )x t t t x t   (8) 

For a linear time invariant system with constant coefficients, the state transient matrix can be obtained 

directly as 0( )
0( , ) A t tt t e   [19], which can be further simplified as,  
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where r is the rth mode vector of the underlying linear time invariant system, and Lr is the rth column of  

 1 2

T     . Substituting Eq. (9) into the general solution of the state space model in Eq. (7), 

the measured velocity y(t) by CSLDV becomes, 
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C(t) is a matrix of ones and zeros indicating which of the states are being measured by the laser.  Since the 

observed mode shape ( ) rC t   is periodic on a periodic scan path, it is convenient to expand it in a Fourier 

series. 
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where ,r nC  is the nth Fourier coefficient of the rth observed mode vector, ( ) rC t  .  Defining the constant 

T
r rL B B , Eq. (10) then becomes: 
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The above equation is the modal summation form of the measured velocity by CSLDV.  It 

contains the frequency component at λr and its infinite number of harmonics each separated by the 

fundamental frequency ωA.  Wereley extends the concept of a transfer function for time invariant systems 

to time periodic systems by defining the Exponentially Modulated Periodic (EMP) signal [13].  This 

modulated signal is the summation of signals separated by multitudes of the fundamental frequency ωA, 



hence a modulated input to a linear time periodic system causes a modulated output at the same collection 

of frequencies.  In CSLDV measurements, the input u(t) is time invariant but the output y(t) is periodic due 

to the moving measurement point, hence, 
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The harmonic transfer function can be derived by substituting the above expression into Eq. (12), 
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The summation can be further simplified after the integration, as follows,  
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A harmonic balance approach can be used to match the terms with the same order of  i i An te  
,  
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One can then define the exponentially modulated periodic signals in the frequency domain for CSLDV,  
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Hence, a transfer function is established in terms of the modal parameters of the state transition matrix, 

denoted by the harmonic transfer function. 
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Where,  
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 An H1 estimator is used to experimentally estimate the harmonic transfer function, since the noise 

is mostly from the speckle noise in the laser signal.   
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here E() indicates the expected value.  One should note that for a general linear time periodic system, the 

denominator would be a matrix of cross power spectrum of the modulated inputs.  Therefore, one must 

have at least several averages for the spectrum matrix to be invertible. 



2.3 Measuring rotational velocities  

Figure 1 shows the scheme of employing CSLDV with a circular scan pattern to measure 

translational and rotational velocities of a local area.  Assuming the standoff distance from the laser source 

to the point of interest is large compared to the scan radius R, the incident laser beam can be treated as 

perpendicular to the surface during the scan.  Also, the deformation inside the circle can be neglected when 

R is reasonably small.   
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Figure 1: Scheme of measuring translational and rotational velocity using CSLDV 
  

Ewins showed a similar derivation of the expression for the measured velocity in his work [11].  

The sinusoidal angular vibration at a point on a surface can be decomposed into two orthogonal principal 

rotations that have a 90-degree phase difference, 
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A and B  are the amplitudes of the principal rotational velocities along i and j axis.  β is the initial 

phase of the oscillation.  Note that the in plane rotation ωk is assumed to be zero. 

Suppose the initial position of the laser is at the red dot on x axis and the laser scans 

counterclockwise with a constant speed of ωA, the measured velocity v(t) from a laser Doppler vibrometer 

contains three components: the translational velocity vz(t), the velocity component along the z axis 

introduced by the rotation ωx(t), and the velocity component along the z axis introduced by the rotation 

ωy(t). 

 ( ) ( ) ( ) ( ) ( ) ( )z y xv t v t t x t t y t      (22) 

x(t) and y(t) are the position of the laser spot with respect to a reference frame that is fixed in the space.  

The orientation of the principal rotational velocities with respect to this reference frame is not known 

ahead, and this orientation may vary from point to point.  However, if we assumed this angle to be γ, the 

rotational velocities along the x and y axis can be obtained via a rotation matrix, as 
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The laser position at any time instant is  

 ( ) cos( ),          ( ) sin( )A Ax t R t y t R t    (24) 

Notice that when the structure is under sinusoidal excitation, the translational can be written as
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where Z is the amplitude of the translational velocity, and  is the initial phase of oscillation.  Substituting 

Eq. (21), (23), (24) and (25) into Eq. (22), and then simplifying Eq. (22) using trigonometric functions, 

yields 

( ) cos( ) sin(( ) ) sin(( ) )
2 2

B A B A
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          (26) 

The measured velocity signal using CSLDV will include all the translational and rotational 

velocities at the point of interest.  For example, Figure 2 shows the measured spectrum when the laser scans 

at 150Hz on a beam that was excited at its first mode at 13Hz.  The translational velocity and its phase can 

be obtained from the peak at 13Hz, and the rotational velocities can be recovered from the two peaks at 

137Hz and 163Hz according to Eq. (26). 
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Figure 2: Spectrum of measured CSLDV signal with a 150Hz scan frequency 
 

To compute the harmonic transfer function from a circular scan measurement, the measured 

velocity will be exponentially modulated according to Eq. (13).  One should note that the modulation is 

essentially a process of making frequency shifted copies of the measured spectrum by nωA in the frequency 

domain.  Therefore, the translational velocity at ω corresponds to the Y0 term, and the rotational velocities 

at the frequency lines of ωA-ω and ωA+ω can be related to the Y-1 and Y1 term in Eq. (17).  This allows us to 

use conventional curve fitting tools for time invariant systems to interpret measurements from the circular 

scan under any type of input.  Additionally, since the transfer function is computed, the acquired 



translational and rotational velocities at multiple points can be easily stitched together to create mode 

shapes of the underlying structure. 

2.4 Computing curvature 

 The curvature of a surface is proportional to the surface strain,  therefore is very sensitive to cracks 

and subsurface damages [16].  The change in curvature has been used widely as the indicator of potential 

damage in structures.  Conventionally, to compute the curvature, shapes at several measurement locations 

have to be patched together and then a second order finite difference is computed.  Figure 3 shows an 

example of computing the curvature from an experimentally measured deflection mode shape.  The circles 

represent sensor locations. To obtain the curvature ci at the ith point, a finite difference approximation can 

be used, as follows, 
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Here yi is the deflection at the ith point, and h is the step size between two neighboring sensors.  This 

method is usually limited by the availability of a dense measurement gird.  In addition, the measurement 

noise in deflection mode shapes is amplified by the second order derivative.   
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Figure 3: Scheme of constructing curvature using translational velocity 

On the other hand, the point by point scan laser Doppler vibrometry allows spatially detailed mode 

shapes to be extracted in a short time. The derivation in Section 2.3 shows that by combining the circular 

scan approach with the point by point scanning LDV, the translational velocity as well as the principal 

rotational velocities can be measured in the same amount of time that is required to measure only the 

translational velocities.  This is extremely beneficial for computing curvature since the amplitudes of 

rotational velocities at any measurement location correspond to the local slope of the vibration shape, as 

demonstrated by the short red line in Figure 3.  Therefore, the deflection shape together with the local 

slopes can be used to construct an accurate spline-fit to the deflection that could greatly reduce the error in 

the computed curvature shapes.  With the harmonic transfer function concept, curvature shapes in a 



measurement grid can be patched and used to characterize the damages in the underlying time invariant 

system.   

As discussed earlier, the major focus of this work is to obtain the defection mode shapes and local 

slopes from circular scan measurement.  In next stage, these deflection and slope information will be used 

to construct 1D and 2D curvature shape of the underlying structure.  

3 Experimental setup and speckle noise 

The experimental validation of the proposed circular scan algorithm was performed on a downhill 

ski, which is a complex structure formed by laminating several materials together and hence can be very 

challenging to model accurately.  As shown in Figure 4 (a), the ski was hung using two soft bungee cords 

to simulate free-free boundary conditions.  A shaker with a function generator was used to excite the ski.  A 

load cell was installed on the tip of the stinger to measure the input force applied to the ski shown in Figure 

4 (b).  A Polytec PSV-400 (633nm laser) vibrometer with an external x-y mirror system [10] was used to 

measure the surface velocity at a standoff distance of approximately 2.5m.  The scanner works in a closed 

loop, and each mirror is fitted with a position detector that measures the angle of the scanner, which allows 

very precise control of the laser position.   

 

Figure 4: Experimental set up. a) Testing scheme, b) Load cell, c) Retro-reflective tape 
 

In this section, the speckle noise associated with the circular scan approach is investigated.  Laser 

speckle is formed when coherent light scatters and interferes from an optically rough surface.  Speckle 

noise has been studied extensively prior to this work [20-25].  The effect of focus size, target surface 

roughness, scan speed and standoff distance etc. has been investigated, and even a simulated model has 

been created.  The purpose of this section is not to challenge the well-established model but to survey the 

influence of scan frequency, circle size and the surface quality of the ski on the noise level in the 

measurements, such that a set of optimal experimental parameters can be selected for the following tests.   

The scan frequencies tested were 20Hz up to 300Hz with a 20Hz step size.  The nonlinearity of the 

mechanical system is considered to be dominant when the mirror system scans at a higher frequency.  The 

scan circle diameters tested were from 1/16in to 8/16in with a step size of 1/16in.  When the circle size is 



larger than 8/16in, higher order harmonics of each mode tend to appear in the measurement spectrum, 

indicating that mode shapes along the circle path are being measured.  Also, one should note that the 

maximum circle size may vary for different structures and different modes because of the assumption that 

deformation inside of the circle shall be neglected.   In addition to the circular scan, conventional tests 

where the laser was pointed at a stationary point were conducted as a reference.  Tests were repeated on 

three different surfaces, namely, the black bottom of the ski (Figure 4 (a)), the yellow top of the ski (Figure 

4 (b)) and 3M retro-reflective tape (Figure 4 (c)).  

Figure 5 shows the measured spectrum on the black bottom surface when the laser scanned at the 

frequency of 40Hz and the circle size was 5/16in. The ski was excited at its first natural frequency of 19Hz.  

The test duration was 15 seconds with a sampling frequency of 10,240Hz.  To estimate the noise level, a 

linear mode was fit to the dominant peak in the spectrum using the algorithm of mode isolation [26].  This 

linear mode (green line) was then subtracted from the measured spectrum (grey line) and the residue (red 

line) was considered as the noise.  Then the noise signal in the frequency domain was transformed via an 

inverse fast Fourier transform to the time domain, where the mean value and the standard deviation of the 

noise were calculated.  
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Figure 5: Measured spectrum with 40Hz scan frequency and 5/16in circle size 

Figure 6 shows the mean and the standard deviation of the noise when the laser scans on the retro-

reflective tape.  The dashed red horizontal lines in both plots represent the value from the stationary point 

test.  It can be found that the noise is smallest when the laser is pointed at a stationary point on the tape.  

The tape is coated with micro-scale glass beads that reflect most of the light in a concentrated cone back to 

the detector [27].  Therefore the speckle noise is minimized.  When the laser is scanning around a circle, 

the noise level as well as the standard deviation increase with the scan frequency and the circle size. This 

phenomenon agrees with what was found in a previous work [25].  When the ski is excited at its first 

natural frequency, the motion of the ski is a combination of translational, rotational, as well as the in-plane 

rigid body motion due to the misalignment of the shaker, meaning the speckle pattern exhibits both 

‘translation’ and ‘evolution’ changes [22].  When the laser scans on a periodic path, the measured speckle 

noise contains mostly periodic components.  The magnitude of this periodic noise increases severely with 

surface velocity, which is the product of the scan frequency and the perimeter of the scan circle.   
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Figure 6 Noise level on retro-reflective tape  

Figure 7 shows the mean and the standard deviation of the noise when scanning on the dark 

bottom surface of the ski.  The noise pattern is similar to what was observed on the retro-reflective tape.  

However, the mean of the noise at a stationary point is higher than some of the circular scan results, and the 

standard deviation at a stationary point is much higher.  When the laser hits a stationary point on a rough 

surface, the light is scattered to all directions randomly and only a small portion can travel back to the 

detector.  The laser could be located at a point where the light is dominated by a dark speckle, as is often 

happened in conventional point by point scanning LDV.  This may cause a dramatic change in noise level 

that partially explains the jagged nature of the noise level when the circle size is 1/16in.  In contrast, when 

the circular scan approach is adopted with appropriate circle size, the signal level is likely to be large over 

some portion on the circle path, and the total noise level is reduced due to this ‘averaging’ effect.  

Therefore, in Figure 7 a decrease in the noise level and in the standard deviation is observed when the scan 

frequency is lower than 60Hz.  After 60Hz, the periodic noise becomes dominant and the trend that was 

observed in Figure 6 appears.   
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Figure 7: Noise on black bottom surface  

As shown in Figure 8, the decrease in noise level becomes more obvious when the laser scans on 

the yellow top surface that is smoother than the dark bottom surface of the ski.  Also notice that the noise 

and its deviation are much higher for the stationary laser on this surface.  Insight into this result can be 

gained from previous studies on speckle noise and surface roughness [22, 27].  Scattering from smooth 



surfaces reduces the range of phase excursions in the laser.  However, due to the mirror like behavior of the 

polished surface, the scattering angle is more likely to be unusable which leads to signal loss.  For circular 

scan measurements, it is observed that when the scan frequency is smaller than 120Hz, the noise level as 

well as the standard deviation decrease with the increasing circle size and scan frequency.  When the scan 

frequency is larger than 160Hz, the speckle noise and deviation increase with the scan frequency and the 

circle size, indicating a dominant periodic speckle pattern in this region.  One should also note that the 

overall noise level on the smooth yellow top surface is larger than those from the dark bottom surface or the 

retro-reflective tape, perhaps due to the mirror like behavior.  
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Figure 8 Noise on Yellow top surface 

As indicated earlier, the purpose of this section is to help in selecting appropriate testing 

parameters that lead to a lower noise level in measured signal, which would improve the uncertainty in the 

measured translational and rotational velocities, and eventually lead to a more accurate curvature shape in 

the next stage.  In the following section, a set of circular scan tests will be conducted to reconstruct the 

mode shapes of the ski using a swept-sine excitation. A scan frequency of 200Hz and a circle size of 

5/16inch are selected to perform the tests so that noise is optimized on the black bottom surface of the ski 

that is under swept sine excitation up to 100Hz.     

4 Deflection mode shapes 

Prior to the circular scan test, a conventional hammer test with an accelerometer was performed to 

identify the natural frequencies of the ski under free-free boundary condition.  A few frequencies at 1.5Hz 

4.5Hz, 19Hz, 42Hz and 75Hz were identified.  The modes at 1.5Hz and 4.5Hz were known to be the rigid 

body modes.  The point by point scanning tests were then performed at the rest of the frequencies on the 

black bottom surface of the ski using the Polytec’s software package.  The laser scanned 3 lines all over the 

ski with 40 points along each line, as shown in Figure 9.  At each point the test duration was 12 seconds.  

The ski was excited at its natural frequencies at 19Hz, 42Hz, 75Hz, as well as a coupling frequency 

between the ski and the shaker at 23.2Hz. The measured mode shapes are shown in Figure 9.  



 
Figure 9: Measured mode shapes using scanning LDV. a) 1st bending mode at 19Hz, b) Coupling mode at 23.2Hz 

c) 2nd bending mode at 42Hz, d) 3rd bending mode at 75Hz 
 

It is clear that the mode at 19Hz is the first bending mode of the ski (Figure 9 (a)), and the mode at 

42Hz is the second bending mode (Figure 9 (c)).  Note that the shaker is installed slight off the center of the 

ski to better excite the second bending mode.  The mode at 75Hz is found to be the third bending mode 

(Figure 9 (d)).  There is also a coupling mode between the shaker and the ski at 23.2Hz.  Its mode shape is 

show in Figure 7(b), which is a combination of bending and torsional motion.  However, one issue noticed 

in all measured mode shapes is that the amplitudes of the vibration shapes are close to zero at both ends of 

the ski.  This phenomenon is due to the large angle of the incidence laser with respect to the longitudinal 

direction of the ski such that the detector loses the signal, and the amplitudes of the shapes appear to be 

zero.  

The conventional scanning LDV test provides the basic mode shape information about the ski.  A 

linear swept-sine test was then performed on the dark bottom surface to validate the proposed algorithm 

based on the harmonic transfer function.  The driving frequency of the shaker is from 30Hz to 100Hz so as 

to avoid the coupling mode at 23.2Hz that may damage the shaker.  Therefore, only the second and third 

bending modes are well excited using this swept-sine input.  The sweep time is 15 seconds from 30Hz to 

100Hz and 15 seconds for the return.  Limited by the angle of the mirror, only half of the ski was tested, 

with 2 lines all over the ski and 28 measurement points along each line.  The total test duration at each 

point is 200 seconds. 

Figure 10 shows the measured mass-normalized mode shapes using the point by point scan 

approach and the circular scan approach, while all other testing parameters including the standoff distance 

and point locations were kept identical.  The identified second and third bending mode shapes agree well 

with the corresponding shapes from the scanning LDV test in Figure 9.  However, it is obvious that the 

mode shapes from circular scan test are much smoother than those from the point by point test.  The reason 

for this difference is that the circular scan approach can provide better signal to noise ratio on a rough 

surface when appropriate scanning frequency and circle size are selected, as discussed in detail in Section 3.  

When the laser was scanning a circle around the point at x=0.5m from the driving point on the ski, part of 

the circle path landed on the bungee cord.  This explains the error of the second bending mode shape that is 

observed near x=0.5m in Figure 10 (b).  Nevertheless, the mode shape at this location is still relatively 

b)a) 

c) d)



clean compared to the shape at the same location from the point by point test.  This characteristic of 

circular scan approach is extremely important in computing curvature shapes, which is vulnerable to the 

noise in the measured deflection shapes because of the second order differentiation [16].   

 
Figure 10: Measured mode shapes a) Mode at 42Hz by point measurement, b) Mode at 42Hz by circular scan, c) Mode 

at 75Hz by point measurement, d) Mode at 75Hz by circular scan 

5  Rotational velocity and local slope  

Besides the advantages in measuring translational velocity, the circular scan approach can also be 

used to simultaneously measure the principal rotational velocities, as was proved in Section 2.3.  This 

section makes use of the harmonic transfer function of linear time periodic systems to interpret 

measurements from the circular scan approach and to compute the translational and rotational velocities.  

The local slopes at each measurement location are then transformed from the principal rotational velocities.  

To estimate the harmonic transfer function that relates the measured velocities to the input force, 

n= -2:2 is used to form the exponentially modulated output signals in Eq. (17).  An accurate scanning 

frequency ωA is critical in the modulating process because of the (i i )An te    term.  The phase errors in the 

modulated signals accumulate with time for an inaccurate scan frequency, and eventually lead to unreliable 

output spectra.  Therefore, a multi-sine signal is fitted to the recorded mirror output signal to find the 

accurate scanning frequency.  It is found that when the mirror was driven at 200Hz, the actual scan 

frequency was at 200.0153Hz.  The mirror signals, velocity signal and the input force are then resampled 

such that there are an integer number of measurement points along each scan cycle.  For example, when the 
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laser scans at 200.0153Hz, the resampled measurement has 26 points on each circle, as shown in Figure 11, 

where the red dots represent measurement locations after resampling.   

 

Figure 11 Circular scan after resampling 
This resampling procedure is necessary in computing the harmonic transfer function since 

averaging is used to reduce the random noise.  The input signal and modulated output signals are broken 

into 30 seconds sub-blocks with a 75% overlap between neighboring blocks, resulting in 23 sub-blocks 

over the 200 seconds time history.  However, as seen in Figure 11, the measurement has to start at the same 

location on the scan cycle for each sub-block in order to maintain a constant angle γ between the starting 

point and the principal rotational velocities in Eq. (26).  In this case, the auto spectra of the modulated 

output signals would have the synchronized phase with the input force over each block and no phase error 

will be incurred during the averaging.  A Hanning window is then applied to each block to reduce the 

leakage.  Since most of the noise is from the laser speckle, the H1 estimator in Eq. (20) is used to estimate 

the harmonic transfer function.  Once the principal rotational velocities A  and B of a mode are 

identified, the slope of the deflection shape along the x axis can be obtained by projecting the principal 

rotational velocities to the y direction using the angle γ, and similarly for the slope along the y axis.  The 

angle γ can be obtained from the sidebands and may vary from point by point.  

Figure 12 shows the computed harmonic transfer functions at the same location of the ski on the 

dark bottom surface and on the retro-reflective tape, respectively.  The harmonic transfer function has the 

similar form as the transfer function of a single-input multiple-output linear time invariant system.  

However, the mode shapes at the natural frequency of 42Hz and 75Hz are no longer the physical 

deformation at each measurement location. Rather, they are related to the translational and rotational 

velocities at that point.  Specifically, the amplitudes of G-1,0 and G1,0 are related to the principal rotational 

velocities and have much smaller amplitudes compared to the translational velocity at G0,0.  Here, Gi,0  

represents the harmonic transfer function Yi/ U0, which corresponds to the ith
 line in Figure 12.  Therefore, 

rotational velocities are more vulnerable than translational velocities to the speckle noise.  Theoretically, 

according to Eq. (26), the amplitudes of G-2,0  and G2,0 should be either zero or very small compared to the 

value of G-1,0  and G1,0.  However, this is not the case when the laser is scanning on the black bottom 



surface, as shown in Figure 12.  The amplitudes of G-1,0  and G1,0 are close to those of G-2,0  and G2,0 . This is 

because the overall speckle noise level is larger on black bottom surface than that on the retro-reflective 

tape.   
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Figure 12 Harmonic transfer function of circular scan at the same point, a) on black bottom surface, b) on retro-
reflective tape 

To detect accurate rotational velocities and local slopes, the circular scan tests were performed on 

the retro-reflective tape, using a 4×10 measurement grid with a step size of 27mm in the longitudinal 

direction of the ski, and a step size of 23mm in the other direction.  For consistency, other parameters 

remained the same as those in previous tests.  Figure 13 shows the composite harmonic transfer function 

from a circular scan measurement at a single point on the tape.  The harmonic transfer function is fitted 

with the algorithm of mode isolation [28].  It appears that the fitted modes reduce the harmonic transfer 

function very well.  The identified amplitudes and phase for the second and third bending mode are listed in 

Table 1.  Notice that the amplitudes of G-1,0 and G1,0 terms are an order of magnitude smaller than that of 

the G0,0 term, which corresponds to the translational velocity at that measurement location.   

In any event, the rotational and translational velocities are computed according to Eq. (26), and the 

velocities are listed in Table 1 as well.  It was found that for the second bending mode at 42Hz, the 

principal rotational velocity A  is the dominant rotation at this measurement location.  It has a magnitude 

of 0.3816rad/s/N and is orientated approximately 80 degrees from the longitudinal direction of the ski.  The 

principal rotational velocity B  has the magnitude of 0.0641 rad/s/N and is oriented 90 degrees from A .  

This result agrees with our experimental observation that the rotational motion associated with bending 

modes should be in the direction that is perpendicular to the longitudinal direction of the ski.   The 

rotational velocities of the third bending mode at 75Hz are slightly nosier and have larger angle with 

respect to the longitudinal direction of the ski. 

 

a) b) 
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Figure 13 AMI fit of the harmonic transfer function 

 

Table 1 Measured translational and rotational velocities from circular scan 

Mode at 42Hz 

Mode 
shape 

Amplitude 
mm/s/N 

Phase 
angle (Degree) 

Velocities Amplitude 
γ 

Angle(degree) 

G-1,0 0.9 16.0369    A  0.3816 rad/s/N 79.9076 

G0,0 26  -166.4050 Z 26 mm/s/N / 

G1,0 0.6 -4.1478 B  0.0641 rad/s/N 169.9076 

Mode 75Hz 

Mode 
shape 

Amplitude 
mm/s/N s 

Phase 
angle (Degree) 

Velocities Amplitude 
γ 

Angle(degree) 

, 1rC   22 25.7603 A  0.8053 rad/s/N 34.0818 

,0rC  252.3 -0.5437 Z 252.3 mm/s/N / 

,1rC  10 -86.0761 B  0.2872 rad/s/N 124.0818 

 

The above results are from the measurement at a single point.  The translational and rotational 

velocities at all other points in the 4×10 measurement grid are computed in the same manner.  Note that the 

orientations of principal rotational velocities are different from one point to another.   However, the slopes 

of the second and the third bending mode can still be obtained since the angle γ for each mode can be 

recovered from the harmonic transfer function.  The shapes of the second and third bending mode along the 

top line are plotted in Figure 14.  The principal rotational velocities at each measurement location are 



projected to the y axis to compute the local slopes along the longitudinal direction of the ski, which are 

shown as red short lines in Figure 14.  It is found that the curve of the second bending mode matches very 

well with the computed slopes from the rotational velocities.  However, some errors are observed at the 

first few points in the third bending mode.  This is perhaps due to the large amplitudes of G-2,0  and G2,0  as 

seen Figure 12 (b).  The circle size could be too large for the second mode in this region of the ski such that 

the laser picked up some higher order harmonics along the circle, and the principal rotational velocities 

were not accurately estimated.  
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Figure 14 Measured deflection shape and local slope using the circular scan approach 

 

Table 2 compares the computed slopes using the projection of rotational velocities and the 

computational slopes obtained via a forward finite difference.  We can see that the slopes of the second 

bending mode from both methods agree very small, while the slopes at the first few points of the third 

bending mode have slightly larger error .  

Table 2 Computed slopes and the forward difference results 
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Slope -0.3864 -0.3640 -0.3744 -0.3751 -0.3550 -0.3616 -0.3290 -0.2819 -0.2583 -0.2241 
Mode 2 
at 42Hz Forward 

difference 
-0.3762 -0.3606 -0.3542 -0.3608 -0.3275 -0.3082 -0.3031 -0.2466 -0.2075 / 

Slope -0.6844 -1.0661 -1.1556 -0.9592 -1.2232 -1.3595 -1.7794 -2.1631 -1.8609 -1.8418 
Mode 3 
at 75Hz Forward 

difference 
-0.4376 -0.6410 -0.8893 -1.0155 -1.2874 -1.4569 -1.6708 -1.8003 -1.9127 / 

 

Figure 15 shows the orientations and amplitudes of principal rotational velocities at all the 

measurement points for the second bending mode at 42Hz, with the length of the arrow scales to the 

amplitude of a rotational velocity.  It can be seen that the orientations and amplitudes of principal rotational 

velocities are consistent at most points.  Figure 14 together with Figure 15 can be used to compute a 1-D or 

2-D spline-fit to the deformation shape, which can be used to compute a much more accurate curvature for 

damage detection.  This part will be explored in the next stage of this work.  
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Figure 15 Translational and rotational velocities for the first mode 

6 Conclusion 

Signals measured using continuous scan laser Doppler vibrometry can be represented as the output 

of a linear time periodic system when a closed, periodic scan pattern is used.  This work proposed a new 

algorithm based on the harmonic transfer function of linear time periodic system to process measurements 

from a circular scan approach, allowing the translational and rotational velocities to be extracted 

simultaneously.  Using this new approach, the circular scan approach can be combined with the 

conventional point by point scan approach, acquiring translational and rotational velocities at each point in 

a measurement grid in the same amount of time that is required for obtaining only the translational velocity. 

Also, because the method is based on a transfer function description, virtually any desired input can be 

applied.  

The proposed algorithm was validated on a downhill ski under free-free boundary conditions.  The 

ski is a complex structure that can be very challenging to model accurately.  This work studied the 

influence of the scanning rate, circle size, and surface quality on the noise level in measured signal.  The 

results showed that in some situations the circle scan approach can provide a lower noise level and standard 

deviation than the conventional point approach, if the scan frequency and circle size are chosen 



appropriately.  It seems that by scanning in a circle one can avoid the possibility of the detector area being 

dominated by a dark speckle, or by a region where speckle noise is especially severe, and thus reduces the 

speckle noise and the potential for signal dropouts.  On the other hand, the circle scan increases the noise if 

the radius of the scan and/or the scan frequency are too large. 

The circular scan approach was then applied over a grid of circles (points) to measure the mode 

shapes on the black bottom surface of the ski.  A 200Hz scan frequency and a 5/16in circle size were 

selected based on the previous study.  The circular scan approach was found to provide smoother and more 

reliable mode shapes than the conventional point by point approach in this scenario.  

The harmonic transfer function concept was also used to extract the principal rotational velocities 

of the ski.  The amplitudes of the rotational velocities were found to be much smaller than those of the 

translational velocities, and hence even though the circle scan provided a greater signal to noise ratio than 

the point scan, the noise was still too large to accurately measure surface rotation.  However, retro-

reflective tape was applied to the surface and found to reduce the noise so that the rotations could be 

accurately measured.  Then the acquired rotational velocities were used to compute the slope of the mode 

shape at the measurement locations, the results were found to agree well with the trend of the shapes found 

by measuring the translational velocity, suggesting that the method is accurate.  Future work will focus on 

computing a spline-fit to the surface shape using both the deflection and slope information, so that the 

curvature of the surface can be computed much more accurately.    
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Appendix  

The derivation of harmonic transfer function starts with the output expression of a linear system 

with time varying coefficients.  The output y(t) of a general linear state space model can be found in [19] as 

follows, 

 

 
0

0 0( ) ( ) ( , ) ( ) ( ) ( , ) ) ( ) ( )
t

t

y t C t t t x t C t t B u d D t u t        
   

(28) 

where u(t) is the excitation or the input to the system, and B(t) is the input matrix that describes how the 

input is applied.  C(t) is the output matrix that defines the output state, and D(t) is the direct input matrix to 

the output.  0( , )t t  is called the state transition matrix. It relates the system state x(t) at any time to the 

initial state x(t0) by, 

 0 0( ) ( , ) ( )x t t t x t   (29) 

Finding the state transition matrix is the key to derive the harmonic transfer function.  For a linear time 

invariant system with constant coefficients, the state transient matrix can be obtained directly as 

0( )
0( , ) A t tt t e   , where A is the system matrix of the state space model.  However, this expression is not 

valid for a general time varying A(t).  In this case, it is usually challenging or even impossible to find the 

closed form transient matrix.   

Fortunately, for a system with periodic matrices, e.g. ( ) ( )AA t A t T   where 2 /A AT  
 

is 

called the fundamental period, Floquet theorem [29-32] has defined a coordinate change of the state x(t) 

that transforms the periodic system to a time invariant system, such that linear time periodic systems can be 

studied using time invariant techniques.  Following the Floquet theorem, the state transition matrix of a 

linear time periodic system can be decomposed into the following modal summation form [33],  

 0( )
0 0

1

( , ) ( ) ( ) r

N
t tT

r r
r

t t t L t e 



   (30) 

where r(t) is the rth time-periodic mode vector of the transition matrix, and Lr(t) is the rth column of  

 1 2( ) ( ) ( )
T

t t t     .  r is the rth Floquet exponent, which is analogous to the eigenvalue of an 

time invariant system. The Floquet exponent can be written in terms of the damping ratio r and natural 

frequency r as 2i 1r r r r r         for an under-damped mode.  

To define the input-output relationship of a periodic system, we also have to introduce the 

exponentially modulated signal.  It is well known that a single frequency excitation to a linear time 

invariant system, e.g. a linear oscillator, will cause the output at the same frequency though with different 

amplitude and phase.  On the contrary, the response of a single frequency input to an asymmetric rotating 

rotor, a typical linear time periodic system, will be at the same frequency as well as its infinite number of 



harmonics, each separated by the fundamental frequency ωA.  Hence if we defined the input u(t) and the 

output y(t) of a linear time periodic system as the summation of frequency components separated by a 

multiple of the fundamental frequency ωA, 

    i i i i( ) , ( )A An t n t
n n

n n

u t U e y t Y e   
 

 

 

    (31) 

denoted by the exponentially modulated periodic input and output [13].  It is clear that a modulated input 

will cause a modulated output at the same collection of frequencies.  So an input-output relationship that is 

completely analogous to time invariant transfer function can be established.  

 Wereley extended the concept of a transfer function for LTI systems to LTP systems using the 

Floquet theorem and the exponentially modulated periodic signal space defined above.  First, the 

expression of the state transition matrix in Eq. (30) is substituted into the general solution of the state space 

model in Eq. (28), the general solution becomes, 
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(32) 

Since the eigenvectors r(t) of the state transition matrix are periodic, it is convenient to expand them into a 

Fourier series.  As is often the case for time invariant systems, the output matrix C(t) may simply be a 

matrix of ones and zeros indicating which of the states are being taken.  In any event, the expansion is, 

 i i
, ,( ) ( ) , ( ) ( )A An t n tT

r r n r r n
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    (33) 

where ,r nC  is the nth Fourier coefficient of the rth observed mode vector, ( ) ( )rC t t , and similarly for 

( ) ( )T
rL t B t .  

The harmonic transfer function can be derived by substituting the expression of exponentially 

modulated signals in Eq. (31), and the Fourier expansion in Eq. (33) into Eq. (32).  

When studying the transfer function, only the steady state response is considered. Hence if we neglect the 

transient response, after much algebra, the output expression becomes, 
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(34) 

Now we introduce the exponentially modulated input and output in the frequency domain as follows,  
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  (35) 

Using the harmonics balance approach, a transfer function can then be established in terms of the modal 

parameters of the state transition matrix, denoted by the harmonic transfer function. 

 
( ) ( ) ( )  Y G U   (36) 

Where,  
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 (37) 

Here the nth term in the vector ,r lC , is ,r n lC  ,  the (n-l)th Fourier coefficient of C(t)r(t).  Similarly, 

,r l mB   is the (l-m)th Fourier coefficient of Lr(t)
TB(t).  D is an infinite matrix with D(t) on the diagonal.   

This expression of harmonic transfer function has exactly the same mathematical form as the 

expression for the frequency response function of a linear time invariant system in terms of its modal 

parameters, so the same algorithms can be applied to identify the parameters of the linear time periodic 

system and the same intuition that one uses to interpret frequency response function can also be used to 

interpret harmonic transfer function.  However, there are a few differences that must be noted: 

 A linear time periodic system potentially has an infinite number of peaks for each mode in its 

harmonic transfer function.  Each peak will occur near the imaginary part of the Floquet exponent 

r plus some integer multiple of the fundamental frequency A.  If the mode shapes of the system 

are constant in time, then ,r lC  and ,r lB  contain only one nonzero term and Eq. (37) reduces to 

the familiar relationship for a linear time invariant system. 

 The mode vectors of a linear time invariant system describe the spatial pattern of deformation of a 

mode. Each element in the mode vector indicates the physical deflection at the corresponding 

measurement point.  For a linear time periodic system, the vectors ,r lC  consist of the Fourier 

coefficients that describe the time varying spatial deformation pattern.   

 


