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ABSTRACT: 

Continuous-scan laser Doppler vibrometry (CSLDV), a concept where a vibrometer measures the motion of a structure as the 
laser measurement point sweeps over the structure, has proven to be an effective method for rapidly obtaining mode shape 
measurements with very high spatial detail using a completely non-contact approach.  Existing CSLDV methods obtain only 
the operating shapes or arbitrarily scaled modes of a structure, but the mass-normalized modes are sought in many 
applications, for example when the experimental modal model is to be used for substructuring predictions or to predict the 
effect of structural modifications.  This paper extends an approach based on impact excitation and CSLDV, presenting a new 
least squares algorithm that can be used to estimate the mass-normalized modes of a structure from CSLDV measurements.  
Two formulations are derived; one based on real-modes that is appropriate when the structure is proportionally damped, and 
a second that accommodates a complex-mode description.  The latter approach also gives the algorithm further latitude to 
accommodate time-synchronization errors in the data acquisition system.  The method is demonstrated on a free-free beam, 
where both CSLDV and a conventional test using an accelerometer and a roving-hammer are used to find its first seven mass 
normalized modes.  The scale factors produced by both methods are found to agree with a tuned analytical model for the 
beam to within about ten percent.  The results are further verified by attaching a small mass to the beam and using the model 
to predict the change in the structure’s natural frequencies and mode shapes due to the added mass. 

1. INTRODUCTION 
Continuous-Scan Laser Doppler Vibrometry (CSLDV) is a novel method of operating a laser vibrometer in which the laser 
spot scans continuously over a surface while recording the vibration at the moving measurement point.  Since the mode 
shapes of the structure are functions of position, they appear to change as the laser spot moves, so the measurement appears 
to be that of a time varying system.  Several methods have been proposed for analyzing this type of measurement so that one 
can estimate the structure’s mode shapes with very high spatial detail, and often in a fraction of the time required to measure 
at each point individually.  Furthermore, since the mode shape is measured all along a path or over an area using a single time 
record, the accuracy can be much better than one would obtain with conventional methods, so CSLDV may be very attractive 
when the properties of the structure of interest might change over the course of a conventional test or if the input forces are 
difficult to replicate such as explosive or impact forces. 

The first published papers on CSLDV date to the early 90’s, [1-3], although the method was first made practical by 
Stanbridge, Martarelli and Ewins, who coined the term Continuous-Scan Laser Doppler Vibrometry (CSLDV).  They 
developed a number of novel methods of extracting one and two-dimensional operating deflection shapes from CSLDV 
measurements, focusing primarily on harmonically excited structures [4-7].  Vanlanduit et al. [8] presented a CSLDV method 
that works in conjunction with multi-sine excitation so long as the scan pattern is periodic, although their method required 
fairly long time records. 

This work focuses on a different technique that uses CSLDV to identify the modes of a structure from its free or impulsively 
excited response.  This is particularly attractive because hammer tests are easy to set up and because one can identify a 
number of modes, including mode shapes with high spatial resolution, all from a single free-response.  Stanbridge and his 
associates were the first to apply CSLDV to impact excitation [5, 9, 10], and have revisited the technique recently [11].  They 
scan the LDV spot sinusoidally while measuring the free-response of the structure, in which case the spectrum of the CSLDV 
measurement contains clusters of peaks near each of the natural frequencies of the structure.  The amplitudes of those peaks 
can be used to reconstruct a series expansion of each of the mode shapes.  Their recent work shows very promising results, 
especially when the structure of interest is lightly damped, its modes have widely spaced natural frequencies and when the 
natural frequencies are high relative to the mirror scan frequency.   



The authors recently presented an alternative approach [12] that is advantageous when the structure of interest has natural 
frequencies that are low relative to the mirror scan frequency (typically < 200 Hz, limited by mirror inertia and laser speckle 
noise [13-15]).  That approach is the focus of this work.  It requires that the laser scan pattern be limited to a periodic, closed 
path, in which case a technique called lifting [16] can be used to reorganize the measured response into a collection of 
responses that fixed sensors would have measured at various points along the laser scan path.  Each pseudo response may be 
aliased since the effective sample rate is equal to the laser scan frequency, and the phase delays between the measurements 
must be accounted for, but all of these issues are readily addressed [12].  One advantage of this approach is the fact that one 
can use virtually any modal parameter identification routine (for linear time invariant structures) in order to extract the mode 
shapes, natural frequencies and damping ratios from the measurements, and tools such as the complex mode indicator 
function [17] can be used to interrogate the measurements, just as one does in conventional modal analysis. 

The CSLDV method presented in [12], and all others based on impact testing utilize only the free response of the structure, 
so the mode shapes obtained have an unknown scaling.  However, one must obtain mass-normalized mode shapes in order to 
predict the effects of structural modifications [18], or for substructuring predictions where one wishes to couple the 
experimentally derived model to other substructures in order to predict the modes or response of the built-up system [19-23].   
Furthermore, if the modes identified by CSLDV were mass-normalized, one could more easily stitch together mode shapes 
measured in multiple tests, for example from different views of the structure, to characterize the three-dimensional motion in 
each mode.  This work presents an algorithm by which one can obtain mass normalized mode shapes with CSLDV and 
impact testing.  The same approach presented in [12] is used to find the arbitrarily scaled mode shapes, and then the 
measured force is used in a new linear least squares process to solve for the scale factor for each mode.  The method is 
demonstrated on a free-free aluminum beam whose modes are well characterized, and the scale factors derived using the 
proposed method are found to agree well with those obtained using conventional methods.  The mode scale factors are 
validated by adding small masses to the structure and comparing the measured shift in each natural frequency with those 
predicted based on the scaled mode vectors. 

The following section reviews some aspects of the CSLDV method presented in [12] and presents the proposed mode vector 
scaling routine.  Two different algorithms are presented, one that assumes that the modes of the structure are real 
corresponding to a proportionally damped structure, and the other which is valid for arbitrary damping.  Section 3 applies 
these methods to a free-free beam in a laboratory setup, and conclusions are presented in Section 4. 

2. THEORY 
The CSLDV method presented in [12] presumed that the structure of interest had been excited impulsively and then derived 
an expression for the free response of the structure when the measurement point was moving over a known path periodically 
in time.  Subsequent experience has revealed that one can sometimes reduce leakage by considering the entire response of the 
structure, including the portion during which the impulse happens, so long as the impulse spectrum is sufficiently flat.  The 
resulting measurements may have a significant phase delay relative to usual impulse response, but this can be corrected by 
multiplying the fast Fourier transforms (FFTs) of the responses by exp(iωTd), where ω is the frequency and Td is the time 
elapsed between the beginning of the time record and the instant when the impulse was applied. 

Before the lifting technique can be employed, the response measured by the scanning laser is resampled such that there are an 
integer number of samples, NA, per scan period, TA, using, for example, the FFT expansion algorithm described in [12] and 
[24].  A collection of lifted responses, yp, are then created from the signal measured by the vibrometer, yCSLDV(t), according to 

  ( )CSLDVp Ay y p t mT= Δ +   (1) 

where p = 1…NA, and m = 1... Nt is an integer that ranges over the time extent of the measurement.  Since TA is typically 
larger than the period of the highest frequency mode in the system, this aliases each of the modes of the system to the 
frequency band [0,ωA/2].  Using this procedure, one can create NA lifted measurements, each of which has the same (aliased) 
natural frequencies since the mode shape, denoted ( )ex

r tφ , is constant in each of the lifted responses.  The lifted responses are 
collected into a vector of length NA and the collection can be used to identify the aliased natural frequencies and damping 
ratios of the system. The authors have accomplished this by treating the lifted measurements as a single-input-multi-output 
(SIMO) set of measurements and processing them with a global modal parameter identification routine [25].  The residue 
vectors of the lifted system are found in this process and the algorithm in [12] is used to extract the arbitrarily-scaled mode 
shapes from them.  The mode shapes ( )ex

r tφ  at the NA sampling instants are collected into vectors{ }ex
rφ .  When the system is 

lightly damped so that its modes are predominantly real, then the procedure described in [12] can be used to determine the 
true, unaliased natural frequencies from the identified ones.  If the mode vectors are significantly complex then one can 
supplement the CSLDV measurements with a few point measurements to determine the unaliased frequencies. 



When traditional impact tests are performed using a fixed sensor and roving hammer, a few impacts are typically performed 
at each measurement point in order to reduce noise in the measurements.  Since the response sensor is fixed, linear time-
invariant system theory holds and one can use the H1 estimator to find the FRFs from the system from the auto and cross 
spectra of the force and response.  The same cannot be done with CSLDV since the moving sensor violates the time-invariant 
assumption of the theory.  However, relatively few hammer inputs are required with CSLDV, since one typically obtains 
measurements at hundreds of pseudo-response points for each input.  Whether the inputs are applied different points on the 
structure, or merely replicates of the same point, one can treat each record as an additional input and process the resulting 
multi-input-multi-output (MIMO) data set to determine the best estimate for the modal parameters of the system.  In effect, 
one relies on the modal parameter identification routine to perform the averaging to arrive at the best estimate for the modal 
parameters rather than averaging the measurements directly.  The authors have had good success with this procedure using 
typically fewer than 10 replicates at each of 3-5 input points (see, e.g. [26]), although for the system studied in this work only 
one measurement at each input point was needed. 

2.1 Mode Scaling with Real Modes 

This section shows how one can mass normalize the mode shapes using the measurement of the impulse that excited the 
structure.  The standard procedure when employing hammer excitation is to trigger based on the hammer signal and record 
the response of the system from just before the start of the hammer impulse until the response signal decays to a negligible 
level.  We shall presume that this has been done and that the continuous-scan vibrometer signal and the associated hammer 
signal have both been measured. 

The underlying structure is presumed to be linear and time-invariant, so if the measurement point were actually fixed then 
one could use the FRF for the structure to relate the response at all of the pseudo-output points, {YFS}, to a single input, U, at 
the impact location.  The subscript ‘FS’ is used to emphasize that {YFS} is the vector of responses that would be measured 
with a fixed sensor at each of the pseudo measurement points. 
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If the structure is lightly damped or proportionally damped, then its mode vectors are well approximated as real [18, 27] and 
the frequency response function takes the following form 
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where { }rφ is the rth mass normalized mode vector at the NA pseudo-output points, ,r dpφ is the mode shape at the drive point, 
and N is the number of modes needed to represent the response in the frequency band of interest.  The scale factor between 
the experimentally identified mode shapes and the mass normalized mode shapes is denoted Cr, so each mass normalized 
mode shape is related to the experimentally measured mode shape as follows. 

 { } { }ex
r r rCφ φ=  (4) 

The objective is to use the measurements to estimate Cr so that the mass normalized mode shape, { }rφ , can be computed 
using eq. (4). 

Before one can proceed, the mode shape at the drive point location must be estimated.  The mode shapes identified by 
CSLDV are defined at a series of points along a specific scan pattern, so the mode shape can be found at the drive point as 
long as the drive point location was traversed during the scan and its position is known.  Now one can obtain an expression 
relating the input and output in terms of the known mode shapes by substituting eq. (4) into (3) resulting in the following. 
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The only unknowns in the equation above are the squared scale factors Cr
2, which appear linearly.  The input and output are 

known at many frequencies, so a linear least squares problem can be formulated to find the unknown squared scale factors.  
However, the equation above is for traditional measurements where the response is measured at all of the output points 
simultaneously, but in CSLDV the laser spot is moving continuously visiting each response point in turn during each scan 
cycle.  Equation (5) must be modified slightly to account for this.  We begin by taking the inverse Fourier transform of the 
equation above to obtain the response at each time instant tk = kΔt.  The left hand side gives a vector of time responses 



{yFS(tk)}, while the right hand side can be written as follows in terms of the scale factors, the mode shapes and the modal 
amplitudes qr(tk) as follows. 
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The  response of the rth modal coordinate to the input at the kth time instant is denoted qr(tk), and is found by dividing the 
input spectrum by the familiar denominator, which is constructed from the unaliased modal natural frequency and damping 
ratio, and then performing an inverse Discrete Fourier Transform.  When CSLDV is used, the measurement begins at the first 
pseudo-point and progresses sequentially through each point over the first NA time instants.  At the time instant (NA+1)Δt, the 
response has returned to the first pseudo point and the pattern repeats.  So, the CSLDV signal can be written as follows, 
where p is k modulo NA (or p = k - NAfloor(k/NA) with floor() rounding down). 
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The computations can be simplified somewhat if the signals on both sides of this equation are lifted according to eq. (1), 
resulting in a set of lifted CSLDV responses yp(m) for p = 1 … NA and m = 1…Nt.  Each modal response is also lifted forming 
qr,p(m), for each mode r and each pseudo-output p.  The pth of the lifted CSLDV responses is then related to the 
corresponding modal responses as follows, resulting in a linear least squares problem for the unknown Cr

2 values.   
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It is more convenient to solve this least squares problem in the frequency domain so one has the option of excluding any 
frequency bands that are dominated by noise, especially narrow-band noise speckle noise [13-15].  Let ( )pY ω  denote the 

FFT of the pth lifted response at frequency ω.  All of the frequencies of interest are collected forming a vector of FFT values 

for each lifted response,  { } T

1( ) ( )
fp p p NY Y Yω ω⎡ ⎤= ⎣ ⎦ .  In this work, only the FFT frequency lines near each of the 

natural frequencies of the system are used to form { }pY , so Nf is relatively small.  The FFT of the modal responses is also 

found and arranged similarly forming { },r pQ , so each of the p lifted responses is stacked resulting in the complete 

frequency-domain least squares problem shown below. 
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The size of the first matrix in the right hand side of the least squares problem is (NANf) by N.  The scale factors for each mode 
are real numbers, so the problem can be separated into real and imaginary components in order to enforce this.  Hence, the 
final least squares problem includes 2(NANf) real equations.  If measurements from additional inputs are available, one can 
extend the least squares problem further to find the set of scale factors that best fits the entire MIMO data set.  The matrix on 
the right hand side is 2(NANf) by N for each SIMO test, so if Ni  different inputs are used, the matrix for the MIMO least 
squares problem is 2(NANfNi) by N.   



This method will be evaluated in Section 3 by comparing the experimentally estimated mass-normalized mode vectors with 
analytically generated vectors.  In doing so, it is convenient to use the Modal Scale Factor (MSF) [28].  Denoting the 
analytical mode vectors { }an

rφ , the MSF between the experimentally estimated vectors { }rφ , and the analytical ones is: 
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The MSF gives a value of one if the Modal Assurance Criterion (MAC) between the two vectors is unity and if the norm of 
the vectors is the same.  If the MAC between two vectors is close to one, then the MSF gives values above or below unity if 
the scale of the experimental vector is, respectively, larger or smaller than that of the analytical vector. 

2.2 Mode Scaling with State Space Modes 

When the structure is not proportionally damped, complex mode vectors must be used to uncouple the equations of motion.  
One interpretation of the resulting complex mode vectors is that they allow each point on a structure to reach its maximum at 
different instants within a vibration cycle.  Experience has shown, that even if a structure is proportionally damped, the 
complex mode description often fits a set of measurements more accurately than a real mode description because 
instrumentation may induce small phase delays that give the appearance of complex modal motion (see [29, 30], for example). 
The mode scaling procedure just presented can be readily extended to accommodate a description in terms of complex modes.  
In this case one would estimate a complex experimental mode vector { }ex

rψ  from the measurements.  (One might also use 

the same real mode vector used in the previous section but use the following procedure to find a complex mode scale factor 
since that would accommodate a phase delay between the hammer and vibrometer signals.)  The transfer function can be 
written as follows in terms of the complex mode vectors, 
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where rλ  is the complex eigenvalue, 21r r r r riλ ζ ω ω ζ= − + −  and the definition of the residue vectors comes from the 
‘S’ normalization in the text by Ginsberg [27].  If the structure is proportionally damped, then the complex mode vectors are 
related to the mass-normalized real mode vectors by 

 { } { }2 2
r r r rφ λ ω ψ= −  (12) 

The measured complex mode vectors, { }ex
rψ , are assumed to be related to { }rψ  by an unknown scale factor Cr, only now 

that scale factor is complex.  Following the same procedure that was used for real modes, the CSLDV response can be 
written as  
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Again it is convenient to lift each of the time signals and then to take the FFT of each, so the lifted CSLDV signal ( )pY ω  

again appears, as well as two new signals , ( )r pQ ω ,  and , ( )r pP ω , all of which can be stacked at the desired frequencies 

resulting in  { }pY  { },r pQ ,  and { },r pP .  In order to obtain a linear least squares problem, the complex, squared scale factor 

must be broken into real and imaginary parts, 
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And then one can form a least squares problem as in eq. (9) to find the unknown real constants ar and br from { }pY  { },r pQ ,  

and { },r pP .  The scale factors Cr can then be found via eq. (14) and used to estimate the scaled state space modes { }rψ  or 

the mass-normalized mode vectors{ }r
φ  using eq. (12). 

3. EXPERIMENTAL RESULTS 
Figures 1 describes the experimental setup for the free-free aluminum beam that was used to validate this procedure. The 
beam was suspended in a frame and secured by soft bungee cables to limit rigid body motion. The natural frequencies of the 
two rigid body modes were below 3Hz, while the first bending mode occurs at around 17 Hz, so the first elastic mode is not 
quite ten times higher as recommended in [31], but the supports are placed at the nodes of that mode to minimize the effect of 
the support stiffness on the beam’s modes. 

 
Figure 1: Schematic and dimensions of test setup  

The beam was excited using an impulse hammer (PCB 086C01) at five input locations as listed in Table 1. The CSLDV 
method was employed to measure the beam’s transient response for each input using a Polytec® PSV-400 scanning laser 
vibrometer with a customized mirror system as described in [26].  To improve the laser signal strength and reduce noise, the 
front surface of the beam was covered with retro-reflective tape (3M ScotchliteTM High Gain Reflective Sheeting 7610).  A 
sinusoidal signal of 116Hz was used to drive the mirror system, and the driving voltage magnitude was manually adjusted 
until the laser traversed all but 19mm from the ends of beam. The total laser scan length on the beam was 933.1mm. The 
vibrometer signal, force signal, mirror driving signal and mirror output signal were record using a National Instruments PXI 
data acquisition system, which also controls the mirrors.  An accelerometer (PCB J351B11) was also mounted on the beam 
during all of the tests so that conventional roving hammer tests could be performed without changing the setup.  Thirteen 
input points, evenly distributed over the beam, were used for the roving hammer test. Three impacts were performed at each 
point and the average frequency response function was computed using the H1 estimator. The locations of the drive points 
and the mass and locations of accelerometer are also listed in Table 1.  

Table 1: Experimental parameters for CSLDV and accelerometer test 

Beam geometry  

Scan Length for CSLDV 

Driving points used for CSLDV 

Driving points for conventional test 

L 971.6 mm × H 25.4 mm× W 3.2 mm 

Left = 19mm, Right = 19mm; Scan Length = 933.1mm 

x = 559, 629, 705, 781,  857 mm 

x = 6.3 + n×80 mm, n = 0,1,…,12 

For each input, 10 seconds of response data was recorded at 10,240 Hz sampling frequency. The sample rate appeared to be 
more than sufficient to capture all of the frequency content that stood out above the noise floor.  An exponential window with 
a factor of -0.6438 was applied to reduce the noise and to add damping to the rigid body modes.  The effect of the 
exponential window on the damping ratio was corrected in the post-processing.  The experiment here is similar to that 
reported in [12], only that test did not include an accelerometer for validation and retro-reflective tape was not used in that 
test. 



3.1 Experimental CSLDV Results Using MDTS Method 

Figure 2 shows the frequency domain spectrum of one of the CSLDV measurements up to 800 Hz, where peaks are evident 
in the response near each of the natural frequencies plus or minus integer multiples of the 116 Hz scan frequency.  This 
occurs because each time-varying mode shape modulates the response of each mode as was explained in [6, 12].  The 
CSLDV measurement is easier to interpret after it has been lifted, as discussed in [12].  To do this, one must first obtain a 
very accurate estimate of the mirror drive frequency.  This was done by fitting a Fourier series to the measured mirror 
position signal and using an optimization routine to find the best fundamental frequency for the series.  This was found to be 
116.0090 Hz using a tolerance of 1e-6.  The phase of the drive signal was used to align each of the responses.  Then the 
response and its corresponding force and mirror output signals were resampled so that they had an integer number of samples 
per scanning period. 
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Figure 2: Expanded view of CSLDV signal of beam with accelerometer attached 

Initially, the portion of the signals before and during the force input pulse were deleted to give a Ni = 5 input and NA = 89 
response points, 1157 frequency line pseudo-FRF matrix.  (That information was subsequently restored in order to use the 
scaling routine, as described later.) The complex mode indicator function (CMIF), shown in Figure 3, was formed for the 5-
input set of lifted responses, to see whether any repeated natural frequencies exist.  The second singular value trace in the 
CMIF (green) always has a considerably lower magnitude than the first, suggesting that none of the (aliased) frequencies in 
the pseudo-FRFs are repeated, which is why the 116 Hz scan frequency was chosen for this analysis. Comparing Figures 2 
and 3, one can see that the lifting procedure has resulted in a much simpler spectrum, as discussed in detail in [12].  The lifted 
spectrum was used to identify the modes of the beam, and the frequencies and damping ratios obtained are shown in Table 3.  
The frequencies and damping ratios obtained by the conventional hammer-accelerometer test are also shown. Both methods 
gave very similar results; the differences of natural frequency are less than 1%, and the differences between the damping 
ratios are less than 3%. 
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Figure 3: Complex Mode Indicator Function (CMIF) of CSLDV data after processing by MDTS method.  Labels are also shown 

giving the unaliased natural frequency of the mode that is manifest at each peak. 

3.2 Analytical Model for Beam 

An analytical model of the beam was created and validated in order to assess the accuracy of the CSLDV and hammer-
accelerometer tests.  A 12-term Ritz model of the beam was created using the methods described in [27] using the free mode 
functions of a beam as basis functions.  The precise elastic modulus and the density of the aluminum beam were not known, 
nor was the effective mass of the accelerometer and cable, so these parameters were assumed and then the model was tuned 
such that the analytical mode shapes and natural frequencies agreed with the experimental frequencies as closely as possible.  
After tuning the parameters obtained were E = 66 GPa, ρ = 2710 kg/m3 and mass of accelerometer and cable = 5.2 g. 

Figure 4 compares the mode shapes extracted from the CSLDV data with those from the hammer-accelerometer test and the 
analytical model. The CSLDV and hammer-accelerometer mode shapes were scaled to have the same norm as the analytical 
ones, so only the shapes of the vectors is of interest in this plot.  The mode shapes estimated by CSLDV and the hammer-
accelerometer tests both agree very well with the analytical shapes, except perhaps for the highest bending mode obtained 
(411.58 Hz), which was somewhat noisy in the CSLDV measurement.  The hammer-accelerometer test gives 13 output 
points, which involved 39 hammer impulses (after discarding any double-hits, which are very common for this experimental 
setup) and for each impulse the response was recorded for 2.73 seconds. By contrast, the CSLDV test required only five 
strikes with the hammer yet it returned the mode shapes at 89 points, almost seven times as many points.  
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Figure 4:  Mode shapes for free-free beam with an accelerometer attached at x=6.4 mm.  Solid black lines denote the analytical shapes estimated 

by Ritz method; dots show the CSLDV shapes at each pseudo-measurement point; triangles give the results of a hammer - accelerometer 
test. 

Careful inspection of the mode shapes in Fig. 4 reveals that each mode shape has slightly lower amplitude at the left edge of 
the beam than the right edge.  CSLDV was applied to a bare beam without an accelerometer in [12], and the mode shapes 
were found to agree very well with the analytical mode functions for a free-free beam.  Here the shapes are considerably 
different, apparently due to the small mass loading effect of the accelerometer. 

To verify the mass-scaling in the analytical model, an additional test was performed with a 58.5g mass added at x = 246mm 
(see Fig. 1).  The same procedure was used for this with an exponential window factor of -0.8158.  Fig. 5 gives the 
normalized analytical and experimental mode shapes of the beam with both the accelerometer and the 58.5g mass attached.  
The shapes have changed substantially due to the attached mass, especially near the point where it was attached (x = 246mm).  
Both the CSLDV and hammer-accelerometer measurements capture this change, and it agrees well with that predicted by the 
Ritz model.  
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Figure 5:  Mode shapes for the free-free beam with an accelerometer at 6.4mm and a mass added at 246mm.  Solid black lines denote the 

analytical shapes estimated by Ritz method; dots show the CSLDV shapes at each pseudo-measurement point; triangles give the results of 
the hammer-accelerometer test. 

Table 2 compares the natural frequencies of the analytical model with those measured by CSLDV.  The first two columns 
compare the baseline model consisting of the free-beam and the accelerometer with the corresponding measurements.  It can 
be seen that the Ritz model predicts the actual measured frequencies well for all of the modes, the largest error being less than 
1% (for the 7th mode).  The 3rd and 4th columns compare the analytical and experimental frequencies with the added mass. For 
convenience, the difference between each of the frequencies was also computed and is shown in the 5th and 6th columns.  
According to theory, the frequency shift is proportional to the scale of the mode vectors [18].  The measured frequency shifts 
agree very well with those predicted by the analytical model, although the errors become larger for some of the higher modes.  
The rotatory inertia of the block was not included in the Ritz model, but it does have a more significant effect as frequency 
increases so this might explain the discrepancy.  Also, the point where the block was attached is very near a node of the beam 
for the 4th and 5th modes, so this might explain why those frequency shifts were predicted less accurately than the others.  In 
any event, these results suggest that the Ritz model is quite accurate and accurately scaled, so it should serve as a good 
standard against which to compare the scaled mode shapes that were obtained experimentally. 

Table 2. Comparison of analytical and CSLDV natural frequencies in Hz with and without the added mass 

 Accelerometer Accelerometer and mass Frequency shift 

Mode Analytical Experimental Analytical Experimental Analytical Experimental 

1 16.38 16.38 16.21 16.20 0.17 0.18 

2 45.35 45.23 39.62 39.59 5.73 5.64 

3 89.23 88.84 82.05 81.69 7.18 7.15 

4 147.99 147.19 147.33 145.86 0.66 1.33 

5 221.71 220.70 211.02 208.38 10.69 12.32 



6 310.49 309.04 280.55 279.07 29.94 29.97 

7 414.37 411.58 395.57 390.28 18.8 21.3 

3.3 Experimental Mass Normalization 

The mode shapes shown in Figure 4 were used in the procedure described in Section 2 to find the unknown scale factors Cr 
relating the identified mode shapes to the mass-normalized mode vectors. In order to do this, the part of the measurement that 
occurred before and during the force pulse was restored so that the full set of input-output data could be used in the 
normalization procedure.  All of the 5 inputs were considered simultaneously, resulting in an overdetermined system of linear 
equations, which were solved to find the scale factors that best satisfied the entire data set, so the mode scale factors found 
are denoted “MIMO MSFs” in Table 3.  The scale factors were found using each of the two methods described in Section 2 
based on both real and complex modes.  The mode scale factors were then computed between the analytical modes and the 
scaled experimental modes, and are reported in the table.  For the state space modes, the scaled state space modes were 
computed and then the best real-mode approximation to each was found and used to compute the MSF. The MAC values 
between the experimentally derived mode shapes and the analytical ones are also reported, most of which are above 0.98 so 
any discrepancy in the MSFs should be attributable to the scale of the modes. 

It should be noted that the algorithm based on classical modes sometimes returned negative squared scale factors, which is 
not reasonable since the scale factors are real numbers.  The spectra near these natural frequencies were carefully inspected, 
revealing that the negative scale factor was needed to adequately reconstruct the measurements.  The reason for this is not 
known, but it could simply be a phase error in the data and so it was ignored and the absolute value of the squared scale 
factors was used in the results that are reported.  When the state space algorithm was used, this was not an issue since the 
state space description allows the mode vectors to be scaled by any complex constant. 

Table 3. Summary of results of CSLDV and hammer-accelerometer tests 

 Hammer - CSLDV Hammer - Accelerometer 

Mode Frequency 
(Hz) Damping MAC Classical 

MIMO  MSF 
State Space 
MIMO MSF 

Frequency 
(Hz) Damping MAC Classical 

SIMO MSF 
1 16.38 0.52% 1.00 0.96 0.96 16.38 0.52% 1.00 0.97 

2 45.23 0.31% 1.00 0.93 0.94 45.23 0.32% 1.00 1.03 

3 88.84 0.59% 1.00 0.96 0.96 88.85 0.60% 1.00 0.99 

4 147.19 0.43% 0.98 0.95 0.94 147.19 0.44% 0.99 1.03 

5 220.70 0.12% 0.99 0.93 0.94 220.69 0.12% 0.99 1.02 

6 309.04 0.08% 0.99 0.90 0.90 309.06 0.08% 0.99 1.05 

7 411.58 0.17% 0.95 0.92 0.90 

 

411.55 0.17% 0.99 1.16 

The MSFs show that the procedure proposed in this work scales the CSLDV mode vectors quite accurately; the discrepancy 
between them and the analytical model is always between -4 and -10%.  The higher modes showed larger deviations from the 
analytical model.  This might be caused by measurement noise since those modes are somewhat weak relative to the noise.  
The hammer-accelerometer test yielded a similar level of uncertainty, ranging from -3% to +16%.  There seems to be a 
systematic difference between the CSLDV and hammer-accelerometer MSFs; the former seem to always under predict the 
mode scaling while the latter more often over predict it.  The reason for this is not known, but one should note that there is 
potentially a good deal of uncertainty associated with the direction and location of the hammer blows, which may contribute 
to the variation in the MSFs.  Uncertainty in the damping ratio of the each mode may also contribute to the variability. 
Finally, we note that accurate mode scaling requires that all of the sensors and data acquisition hardware be correctly 
calibrated, but the uncertainty in the accelerometer calibration alone is a few percent, so these types of errors could explain 
much of the discrepancy. 

4. CONCLUSIONS 
This work presented a new procedure whereby mass-normalized mode shapes can be identified from continuous-scan laser 
vibrometer measurements, potentially at hundreds of points simultaneously on a structure.  The method builds on a CSLDV 
technique that was previously presented by two of the authors [12] where the response of the structure is recorded as a laser 
vibrometer scans rapidly over the structure.   The mode scaling procedure presented here uses the measured response and the 
input force to compute the scale factor between the CSLDV computed vectors and the underlying mass-normalized modes of 
the system. 

The proposed mode scaling method was evaluated by using it to compute the first seven mass normalized modes of a free-
free aluminum beam from a multi-input set of CSLDV measurements.  Although the true mass-normalized modes of a real 



structure such as this are not known, the CSLDV results were validated in two ways.  First, an accelerometer was mounted on 
one end of the beam and a traditional roving hammer test was performed to estimate the mass-normalized modes at 13 points.  
Second, an analytical model of the beam was created using the Ritz method, and tuned to accurately reproduce the natural 
frequencies of the beam.  In this effort, it was necessary to model the mass of a small accelerometer that was mounted on one 
end of the beam in order to obtain accurate results, and the model was verified by checking that the mode shapes obtained by 
CSLDV agreed well with those predicted by the model.  The model was also checked by verifying that it correctly predicted 
the amount that the first seven natural frequencies shifted when a small mass was attached to the beam.  The mass-loaded 
mode shapes predicted by the model were also compared with the experimentally measured mode shapes and found to agree 
very well. 

The mass-normalized mode shapes predicted by CSLDV were compared with those from the analytical model using the 
modal scale factor.  The MSFs between the CSLDV mode shapes and the analytical were above 0.90, indicating no more 
than 10% disagreement in scale and many of the modes agreed to within 5%.  The mode shapes found using the traditional 
accelerometer / roving hammer test showed a similar level of disagreement with the analytical model.  It was also informative 
to compare the time required to perform CSLDV relative to the traditional roving hammer test.  The traditional test required 
almost eight times as many impacts with the hammer, yet the spatial resolution obtained by that method was seven times 
lower than that obtained by CSLDV. 

The spatially detailed, mass-normalized modes identified using this method can be used to predict the effect of structural 
modifications (see, e.g. [32]), or the modes can be used in substructuring predictions, where the structure’s modal model is 
coupled to models for other subcomponents in order to predict the response of the built-up structure [19].  This possibility is 
especially intriguing since one can reliably estimate the rotation of the structure thanks to the high spatial detail afforded by 
CSLDV.  Rotations must be accurately captured at the interfaces between subcomponents in order to obtain accurate 
substructuring predictions, but this has proven challenging and many researchers have explored methods for doing this [20, 
33-37]. 
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