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ABSTRACT 
Fast numerical approaches have recently been proposed to 

compute the undamped nonlinear normal modes (NNMs) of 
discrete and structural systems, and these have enabled 
remarkable insights into the nonlinear behavior of more 
complicated systems than are tractable analytically.  Ardeh et 
al. recently proposed the multi-point, multi-harmonic 
collocation (MMC) method, which finds a truncated harmonic 
description of a structure’s NNMs.  The MMC algorithm 
resembles harmonic balance but doesn’t require any analytical 
pre-processing nor the computational expense of the alternating 
time-frequency method.  In a previous work this method 
showed significantly faster performance than the shooting 
method and it also allows the possibility of truncating the 
description of the NNM to avoid having to compute every 
internal resonance.  This work presents a pseudo-arc length 
continuation version of the MMC algorithm which can 
compute a branch of NNMs and compares its performance with 
the shooting/pseudo-arc length continuation algorithm 

presented by Peeters and Kerschen in 2009.  The algorithms are 
compared for two systems, a two degree-of-freedom (DOF) 
spring-mass system and a 10-DOF model of a simply-
supported beam. 

INTRODUCTION 
Nonlinear modes are a natural extension of linear modes to 

nonlinear dynamic systems, and can provide a wealth of insight 
into the dynamic responses that a system may exhibit.  This 
work focuses on undamped nonlinear normal modes (NNMs) 
using the definition proposed by Kerschen, Vakakis and others 
(see, e.g. [1]).  Undamped NNMs form the backbone of the 
forced, steady-state response of the damped nonlinear system, 
showing how much the resonance frequency will shift with 
increasing force/response amplitude [1] (also see [2] for an 
energy balance technique that connects the force amplitude to 
the response amplitude near the NNM).  They are also related 
to invariant manifolds in the state space, so a free response that 
is initiated near the manifold tends to decay along the manifold 
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unless a bifurcation is encountered [3-5].  For a system with 
heavy or nonlinear damping these concepts are guaranteed 
using the damped nonlinear mode framework developed by 
Shaw and Pierre [6]; this work focuses on undamped NNMs, 
which provide a good approximation for the damped manifolds 
if the damping is light and linear.  NNMs also provide insight 
into bifurcations [1], internal resonance [1], period lengthening 
[5], and other complicated phenomena.  They were also 
recently shown to provide insight into the frequency smearing 
that occurs in the power spectra of randomly excited nonlinear 
structures. 

It is important to note, that while NNMs provide 
tremendous insight into a system’s dynamic response, linear 
superposition does not hold so they cannot yet be used to 
reduce the cost required to compute the response of the system. 
This is an important point since some reasoning that holds with 
linear systems and linear modes proves erroneous for nonlinear 
systems.  On the other hand, NNMs can be used to provide an 
initial guess for the steady-state response [2] and some 
promising work has been performed to explore superposition of 
NNMs.  For example, Ardeh recently proved that over a local 
region a certain class of nonlinear systems accept a bi-linear 
superposition law [7].  He demonstrated that this law provides 
an excellent approximation to an arbitrary response of a 2DOF 
system over a wide range of energy and work is ongoing to use 
these concepts to more efficiently compute the response of 
nonlinear structures and to gain new insights into nonlinear 
response. 

While NNMs have been computed analytically for simple 
systems for several decades, beginning with Rosenberg’s 
seminal work in 1960 [8, 9], interest has increased in recent 
years thanks to computational algorithms that can quickly and 
relatively robustly compute NNMs from systems with several 
DOF.  Peeters and Kerschen recently presented a fast and 
robust computational algorithm [10] that uses shooting together 
with a pseudo-arclength continuation algorithm to iterate on the 
transient response of a system until it is periodic over one cycle 
of the NNM.  The algorithm employs a fast Newmark 
integration routine [11] that integrates the equations of motion 
and their Jacobian simultaneously and thus obtains the response 
and the Jacobian of the shooting function simultaneously at a 
significantly reduced computational cost.  This has made it 
possible to compute the NNMs of structures with hundreds of 
degrees-of-freedom [12].  Even then, nonlinear modal analysis 
can be expensive, especially for higher order systems where 
many intricate internal resonances may be exist, each requiring 
a fine step size and considerable computational effort to follow. 

Ardeh recently presented a new algorithm, dubbed Multi-
point Multi-harmonic Collocation (MMC) that uses the 
equation of motion and its Jacobian to compute a Fourier series 
approximation to the NNM.  The algorithm does not require 
any analytical pre-processing that is used in the harmonic 
balance method where the assumed harmonic solution is 
substituted into the equation of motion and the expressions 
obtained are integrated over one period to obtain algebraic 

expressions for the resulting amplitudes of the response 
harmonics.  In the multi-harmonic balance algorithm this 
integral is replaced by an FFT/IFFT [13] greatly increasing the 
cost of the algorithm.  In fact, the MMC algorithm does not 
integrate the response over any time interval, so it has the 
potential to dramatically reduce the cost required to compute 
the periodic responses of a system.  In their initial work, Ardeh 
and Allen showed cases where the MMC algorithm was orders 
of magnitude faster than shooting [14]. Also, because MMC 
uses a Fourier series description, one may be able to truncate 
the description to avoid computing higher order internal 
resonances. 

While the original work on MMC only presented the 
equivalent of a shooting technique, this work implements the 
MMC algorithm within a pseudo-arc length continuation 
framework in order to compute branches of nonlinear normal 
modes using MMC.  This allows one to compare the speed of 
the algorithm to other approaches in a more meaningful setting, 
and to test the algorithm in a wide range of settings both near 
and far from bifurcation points.  The results so far show that 
MMC could be a promising compliment to existing 
continuations techniques (such as the algorithm by Peeters and 
Kerschen [10]). 

The rest of the paper is organized as follows.  The 
following section briefly derives the MMC algorithm and 
explains how pseudo-arc length continuation was implemented. 
The next section compares the performance of the algorithm to 
that by Peeters and Kerschen [10] for two systems, a 2DOF 
system that has been studied extensively in other works [1, 9, 
10] and a 10 DOF reduced order model for a simply-supported
beam that exhibits geometric nonlinearity due to bending-
membrane coupling. 

REVIEW OF MMC AND IMPLEMENTATION OF 
PSEUDO-ARC LENGTH CONTINUATION 

Review of MMC 
The MMC algorithm is valid for undamped dynamic 

systems with smooth nonlinearities, and the equation of motion 
for this class of system can be written as follows. 

),(xfx      nx  (1) 

The response of interest is periodic, so it can be readily 
expanded in a Fourier series as follows, where the frequency  
or period T is not known a priori. 
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One can solve for the unknown period and the coefficients Ajk 
and Bjk that define the periodic response using a Newton-
Raphson approach.  Note that Ardeh & Allen also presented a 
steepest descent algorithm in [14] but that algorithm is not 
employed in this work. The Newton Raphson scheme is 
implemented by defining a set of M collocation points that are 
distributed between 0 and 2 in phase as follows, 

MiiMi ,...,1,2   , where ]2,0[  Mi and 

t  .  To facilitate the derivation that follows, we define a 

copy of the assumed solution, x , in which time is scaled so the 

interval becomes 2 and then ( ) ( )
2

k
kx x T




 .  Inserting 

the harmonic description into Eq. (1) and then defining the 
difference function, , at each point. 

( , ) ( ) ( ( )) 0, 1,..., 2k k kx x x f x k M       (3) 

One can then use the Newton Raphson procedure to find an 
update to the coefficients, that drives the difference function 
towards zero.  Specifically, denoting the vector of coefficients 
at the qth time step as Cq,  
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we seek updates, C  and  , that drive the difference 
function towards zero. 

)()()1( qqq CCC 

)()()1( qqq     (5) 

To compute these updates, the Jacobian for difference function 
was derived, as will be summarized below, and is used to form 
an overdetermined linear system that provides the update to the 
coefficients and period that drives the difference function 
towards zero. 
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The harmonic solution is readily differentiable, and this 
facilitates computation of the Jacobian.  First, the following are 
defined,  
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and one can then show that the Jacobian of  is given by the 
following. 
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For further details and discussion the reader is referred to 
[14]. 

Pseudo-arc length continuation MMC 
MMC was implemented within the pseudo-arc length 

continuation framework developed by Peeters et al. and 
detailed in [10].  The implementation follows that in [10] very 
closely, so only an overview will be presented here.   The 
algorithm begins at a linear normal mode (LNM) at a low 
energy (small displacement).  The null vector of the Jacobian 
above is then found and this defines the direction in which the 
coefficient vector , Cq, can be increased without increasing  
(or the error in the approximation of the solution to Eq. (1) by 
x(t) in Eq. (2).  A step is taken using the initial stepsize defined 
by the user and the Newton Raphson procedure is used to find 
a new solution.  As explained in  [10], a constraint is added to 
the Newton procedure to force the corrections to be 
perpendicular to the prediction vector.  The same stepsize 
control algorithm outlined in [10] is used, which defines the 
next step, s(j) as 
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where P* , the desired number of steps in the Newton routine, is 
a parameter chosen by the user and P(j-1) is the number of steps 
in the previous Newton iteration. 

In the implementation of MMC, this was augmented by 
limiting the change in stepsize over each iteration.  Specifically, 
after computing s(j)  as given above, the following conditions 
were applied. 
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where Rmin and Rmax limit the maximum percent change in the 
stepsize in each iteration.  In the studies that follow these 
parameters were set as shown in Table 1  to assure that the step-
size didn’t change more than 50% between prediction steps. 

Table 1: Step Size Control Parameter Values 
Parameter MMC  NNMcont 
smin 1e-8 1e-6 
smax 10 10
Rmin 1.5 n/a
Rmax .5 n/a 
N* 10 3

Comments on period lengthened solutions 
NNMs have unique properties not present in their LNM 

counterparts. If o  is the fundamental frequency of a NNM, 

then no   is also a solution for an integer n > 1. These 

additional solutions are referred to as period-lengthened 

solutions as their periods are onTT  .  Additionally, 

solution branches exist that connect branches stemming from 
the continuation of any of the linear normal modes (LNMs), or 
their period-lengthened solutions. These branches stem from 
the main branches at bifurcation points. 

An interesting aspect of the MMC algorithm is that it is 
capable of finding the period-lengthened solutions and the 
connecting branches that previous continuation-based 
algorithms would not typically detect. The number of 
harmonics retained in )(tx  has considerable effect on which 

solution the algorithm may determine.  

NUMERICAL EXPERIMENTAL SETUP 
In order to benchmark the effectiveness of the MMC 

algorithm, it was compared to the algorithm presented by 
Peeters et al. in [10], and which will here be referred to as 
NNMcont. The computed NNM solutions, error of the 
solutions, and required computation time will be compared 
between the two algorithms. Also, the parameters in the MMC 
algorithm, such as the number of harmonics retained in the 
MMC displacement solution (N) will be investigated for their 
effects on the results. 

The Continuous MMC and NNMcont algorithms were 
tested under similar conditions in order to compare speed and 
accuracy of the methods. The algorithms were run to obtain the 
NNMs of a 2-DOF system described by the nonlinear equations 
of motion. 
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The NNMs were determined for various energy levels and 
number of solutions. The computational time required for each 
algorithm to determine the sets of NNMs was measured using 
Matlab’s CPU time measurement tool. The error for each 
method was determined by integrating the 2-DOF system from 
the initial conditions of the NNMs up to the computed period. 
The integration was performed by Matlab’s ode45 function 
with a relative tolerance of 1x10-9 to minimize error introduced 
through integration and focus on error due to the computed 
initial conditions and period. The error was computed by 
measuring the differences between initial and final 
displacements, scaled by the initial displacements. 

)0(

)()0(

x

TxxH 
 (15)

Both algorithms could perform at faster speeds than 
reported in this paper. The NNMcont algorithm used a 
graphical user interface which plotted updated frequency vs. 
energy solutions at each step which was not easily disabled. 
Since this likely required non-negligible computational time, 
the MMC algorithm was programmed to also plot updated 
values at each step so that this added time cost was equivalent 
for both algorithms. The error computation using ode45 was 
not included in the reported computational times.  

FREQUENCY RESULTS 
The fundamental frequency of the NNM that extends from 

the first LNM of the system is shown in Fig. 1. 
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Fig. 1: Frequency vs. Energy Curve Extending from First 
Linear Normal Mode. 

 
The results shown in Fig. 1 were generated using 

NNMcont with 300 integration steps (Nint=300) and the 
shooting periods set to half of the full period since the solution 
is symmetric. MMC delivered nearly identical results for 
frequency along the backbone until the solution reached the 
internal resonances. Within the internal resonances, the number 
of harmonics kept within the MMC algorithm (N) greatly 
affected the NNM computed by MMC. The effects of the 
number of harmonics retained in the displacement function 
were studied for the 2-DOF system by varying N from 5 to 30. 
The resulting frequency vs. energy curves were determined and 
plotted against the results computed by NNMcont. NNMcont 
always stays on the branch continued directly from the LNM 
since a departure would require a large change in the period, 
and is therefore a benchmark to determine when MMC has left 
this main branch. 

The results show that significant differences begin to occur 
in the vicinity of the first three internal resonances.  It is 
important to note that the solutions exist at discrete points, so 
some of the differences that are seen, such as those when 
N=25, are simply due to the MMC algorithm jumping to a new 
point.  In other cases, such as when N=15, MMC finds a new 
branch that was missed by NNMcont, and then there are also 
cases, such as for N=5, where the solution from MMC does not 
seem to be on a valid branch of NNMs. 
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Fig. 2: Frequency vs. Energy Solutions Computed by the 
MMC and NNMcont algorithms. The number of harmonics 
retained in MMC was varied from N=5 to N=30.  
 

As more harmonics are kept in the MMC algorithm, MMC 
becomes more likely to stay on the main frequency branch. 
With 30 harmonics kept, MMC matches the NNMcont solution 
through all three internal resonances. When the number of 
harmonics is reduced to 25, MMC still computes the same 
values as NNMcont, but it follows a strange path wrapping 
around the first internal resonance twice. With N = 20, MMC 
computes the same solution as NNMcont within the first two 
resonances, but jumps either to a different branch or to an 
erroneous solution before the third. Next, when N = 15, MMC 
appears to find a valid branch of a period-lengthened solution. 
Period-lengthened solutions will be discussed in more detail in 
the following sections. 

When only 5 or 10 harmonics are included in the MMC 
algorithm, the results greatly differed from NNMcont. Two 
factors are thought to contribute to the differences that have 
been observed: the step-sizes used and the algorithm’s radius of 
convergence. 

As was shown previously in Table 1, both algorithms used 
similar values for the maximum and minimum step size, 
however MMC also placed constraints on the ratio R that 
NNMcont did not include. Although similar parameters were 
used for both algorithms, when MMC used N =5 and N = 10 
the two algorithms ended up having very different step sizes. 
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For MMC the desired number of iterations was set higher at 
N*=10 iterations, because otherwise it tended to take much 
smaller steps than NNMcont making the comparison difficult.  
With NNMcont N*=3 was used and this seemed to give a good 
balance between the number of steps and the computational 
effort.  

Step size control alone does not fully explain why large 
differences can be seen in the region of internal resonances for 
low values of N in MMC. For both algorithms, if too large of a 
step is taken such that the prediction location is far off from a 
NNM, they will not converge and the step size will be cut. 
However, MMC is converging at all the locations shown in Fig. 
2. This is due to the nature of the MMC algorithm and the way 
in which it measures error. In MMC, error is measured by: 
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k = Collocation point index 

 = Number of degrees of freedom 

 = Number of collocation points 
 

The error of the solution is then taken as the maximum of 
the error over all collocation points. In essence, MMC needs to 
only satisfy the equation of motion at each collocation point. In 
other words, it is x that the error is measuring for MMC, which 

is very different than the error measurement H for NNMCont 
in (15). It seems that this error measurement causes MMC to 
accept solutions that NNMcont would deem invalid. In fact, it 
is likely that at all the locations where MMC disagrees with 
NNMcont, MMC has found period-lengthened solutions. This 
occurs when MMC’s computed initial displacement and 
velocity conditions actually correspond to a period that is an 
integer multiple of the computed period. For instance, the error 

H measured by (15) at the computed period for each 
algorithm is shown in Fig. 3. 

10
-5

10
0

10
5

10
-6

10
-4

10
-2

10
0

Energy

E
rr

or

 

 

NNMcont

MMC

 
Fig. 3: Error of solutions for N=5 in MMC and Nint=75 in 
NNMcont. 

 
The maximum error in MMC is 1.36 (136%), an 

unacceptably high value. However, it is difficult to interpret 
these error measurements because it could be legitimate error in 
the MMC algorithm if N=5 harmonics are simply not enough to 
accurately capture the dynamics of the system or it could also 
be that MMC has found a period lengthened solution. This can 
be checked by measuring error at integer multiples of the 
computed period. For example, the initial conditions computed 
at the location indicated with a green circle in Fig. 3 were 
integrated to integer multiples of the computed period using 
ode45.  Then the error was computed and the result is shown in 
Fig. 4.  
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Fig. 4: Error of the MMC solution with N = 5 measured by 
integrating the EOM from the computed initial conditions 
at MMC’s location indicated with a green circle in Fig. 3 

 
When the NNM is integrated to 43 periods, a massive dip 

in error occurs, down to H =0.0227 occurs. This indicates 
that the computed initial conditions may in fact correspond to a 
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period of 43 times the computed period. The ability of MMC to 
compute these other solutions can be seen as a benefit or fault 
of the algorithm. These period-lengthened solutions are equally 
valid and are physically realistic, and are difficult to compute 
with NNMcont or other algorithms (because starting guesses 
are difficult to obtain and, for NNMcont, because the time span 
over which the system must be integrated is long). However, 
other than integrating the equations of motion with ode45, 
which would be very expensive for large systems, there is not 
currently a way to determine whether the solutions that MMC 
has found are period-lengthened or erroneous. 
 
TIMING AND ERROR COMPARISON 

Since MMC is capable of finding different solutions than 
NNMcont, and these different solutions may be interpreted as 
error when in fact they are simply period-lengthened solutions, 
timing and error analysis will be performed only within the 
regions where the two algorithms have computed the same 
solutions.  

As shown in Fig 5, the region in which the two algorithms 
compute the same results depends on the value of N in MMC. 
Therefore, three different timing and error analyses were 
completed for the MMC algorithm.  The computational time 
and error were computed for MMC for N = 5, N = 15, and N = 
30 up through the locations where the MMC solution begins to 
diverge from NNMcont. These end points are shown in Figs. 5-
6. 

As shown Figs. 5-6, the comparison between NNMcont 
and MMC with N=5 is only performed up the backbone before 
the first internal resonance is reached. NNMcont and MMC 
with N=15 are compared just past the first internal resonance, 
and for N=30 the algorithms are compared through all three 
internal resonances. The error through these three regions was 
compared against NNMcont’s solutions computed with three 
values of integration points (Nint): 75, 200, and 300. The 
resulting errors are shown in Fig. 7. 
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Fig. 5:  Location of end points to which error and speed 
comparisons were made between MMC and NNMcont. 
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Fig. 6:  Zoom view of region shown in Fig. 6. 
 

The columns in Fig. 7 correspond to the same value of N 
in MMC, while the rows correspond to the same value of Nint in 
NNMcont. When N=5, the error throughout the entire region is 
quite low, with MMC giving a little more accurate results than 
NNMcont for Nint<300.  The error increases for both algorithms 
starting near energy levels equal to 1, and the increase is more 
dramatic for MMC. 

When N=15, again the MMC and NNMcont error curves 
follow the nearly identical paths at very low energy levels. 
However, the error in MMC continues to decrease past an 
energy level of 1 and up until the first internal resonance, while 
the error in NNMcont increases significantly. 

Within the first internal resonance, error becomes chaotic 
and difficult to interpret. To compare the errors within the 
internal resonance region, the average error within the internal 
resonances was determined, and is shown in Table 2. Data for 
N=5 is not shown since these results were not analyzed through 
an internal resonance. The values in Table 2 for N=15 are the 
average error within the first internal resonance (excluding data 
before and after), and for N=30 the average error includes all 
three internal resonances. 

 
 

Table 2: Average error in the region dominated by internal 
resonances 

 N = 15  N = 30 

MMC  6.70 x10‐4  1.04 x10‐3

NNMcont, Nint = 75  5.27 x10‐4 1.73 x10‐3

NNMcont, Nint = 200  7.23 x10‐5 1.53 x10‐4

NNMcont, Nint = 300  4.22 x10‐5 5.93 x10‐5

 
 
MMC’s average error within the internal resonances for 

both N=15 and N=30 closely match the error for NNMcont 
with Nint=75. These error values are much higher than both 
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algorithms’ errors previous to the internal resonances, but 
would likely be acceptable for many engineering applications.  

The total computational time in seconds required to 
calculate the NNMs for both algorithms was determined using 
Matlab’s timing features. Similar to the error comparison, a 
timing comparison between MMC and NNMcont has only been 
performed in regions where they computed the same solution. 
Again, values of N=5, 15, and 30 were used in MMC while 
values of Nint=75, 200, and 300 were used in NNMcont. The 
total time required for each algorithm to compute the NNMs is 
shown in Table 3. 

 
Table 3: Total computational time [seconds] required for 
each algorithm to compute the solutions within regions 
indicated in Fig. 6. 
Maximum Energy: Pt. 1 Pt. 2 Pt. 3 

MMC, N = 5 1.02 n/a n/a 

MMC, N = 15 - 6.59 n/a 

MMC, N = 30 - - 69.05 

NNMcont, Nint = 75 5.60 58.43 1644.03 

NNMcont, Nint = 200 7.90 74.25 1764.32 

NNMcont, Nint = 300 9.67 81.93 2736.44 

 

MMC provides large savings in computational time when 
compared to NNMcont. Regardless of the number of 
integration points used in NNMcont, MMC greatly outpaced it 
in computational time by at least one order of magnitude. 
Based on the structure of the algorithms, it would be assumed 
that the computational time would increase linearly with the 
number of solutions (Ns), i.e. TCPU = rNs. 

The linear rate (r) states the average computational time in 
seconds required per solution. Comparing these linear rates for 
each algorithm is more revealing than the total computational 
time since the two algorithms required different numbers of 
solutions to reach the same point in the frequency vs. energy 
plot. The linear rates that correspond to the computational times 
in Table 3 are shown in Table 4. 
Table 4: Computational time per solution [seconds per 
solution] for each algorithm. 
Maximum Energy: Pt. 1 Pt. 2 Pt. 3 

MMC, N = 5 0.060 n/a n/a 

MMC, N = 15 - 0.101 n/a 

MMC, N = 30 - - 0.138 

NNMcont, Nint = 75 0.350 0.749 3.288 

NNMcont, Nint = 200 0.494 0.952 3.529 

NNMcont, Nint = 300 0.604 1.050 5.473 
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Fig. 7: Error Comparison between MMC and NNMcont in regions in which the same solutions were computed. 
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As expected, more computational effort is required for 
MMC as N increases since the size of the system of equations 
solved for by MMC increases with N. As expected NNMcont’s 
linear rate increases as more integration points are used, 
indicating the increase in time required to integrate the 
equations for each solution.  The values of r for NNMcont 
increase across rows, despite the same number of integration 
points being used. This indicates that the solutions become 
more expensive at higher energy, most likely due to the fact 
that the continuation step size must be cut and thus many more 
iterations are performed per step. 

As shown in Fig. 7 and Table 2, MMC and NNMcont have 
similar errors when only 75 integration points are used 
NNMcont, so the corresponding values of r may be the fairest 
way to compare the two algorithms. As shown in Table 4, the 
approximate linear rate of MMC is about one order of 
magnitude lower than NNMcont for N=5, 15, and 30.  

As noted earlier, the average error values shown in Table 2 
may be slightly misleading as the error for MMC and 
NNMcont are largely equal when Nint=200 and 300, except for 
a few locations of higher error in MMC. If these timing 
comparisons are also considered valid, than the computational 
savings of MMC are even greater, as the approximate linear 
rate for NNMcont with Nint=300 is approximately 1.5 times 
larger than for Nint=75. Although it is difficult to find an exact 
way to compare computational times between the two 
algorithms, it is clear that MMC does provide savings of about 
an order of magnitude when compared to NNMcont.  

 
APPLICATION TO 10-DOF SYSTEM 

A timing analysis was also performed on the 10 DOF non-
linear model of a geometrically nonlinear beam. The beam used 
is the simply-supported model of one subomponent that was 
described in [15, 16].  A 10 DOF model for the beam was 
created from a larger finite element model using the Implicit 
Condensation and Expansion (ICE) method [17, 18].  The 
MMC and NNMcont algorithms were used to compute the first 
three NNMs of the 10 DOF system. For each mode, MMC and 
NNMcont computed solutions to the same maximum energy. 
The time required to determine the NNMs is shown in Table 5. 

 
Table 5: Total computational time [seconds] required for 
each algorithm to compute the NNMs of a 10 DOF system 

   Mode 1  Mode 2  Mode 3 

MMC  101.0  216.2  215.0 

NNMcon
t 

79.7  242.8  49.3 

 
Surprisingly, MMC required more time to compute the first 
three NNMs for the 10 DOF system than NNMcont. The results 
were interrogated and the authors found that the MMC 
algorithm was taking much smaller step sizes than NNMcont. 
Because the MMC algorithm has a different radius of 
convergence than NNMcont, smaller step sizes had to be used 

to keep MMC from jumping onto other branches of solutions.  
More work is needed to optimize the step size control strategy 
for MMC so that it does not take such unnecessarily small 
steps. In any event, a perhaps the time per step is a more fair 
comparison, and this is shown in Table 6.   (On the other hand, 
it could be that the topology of the problem that MMC solves is 
less smooth so that smaller step sizes will always be required; 
further work is needed to investigate this.) 
 
Table 6: Computational Time [seconds] Per Number of 
Solutions for each Algorithm to Compute the NNMs of a 10 
DOF System 

   Mode 1  Mode 2  Mode 3 

MMC  0.3  1.8  1.4 

NNMcon
t  1.4  3.9  2.9 

 
Despite taking longer total time to compute solutions to the 
same energy level, MMC typically required less than half the 
computational time per step. Comparing the rates shown in 
Table 6 with those shown in Table 4, it can be seen that the 
computational time per solution for MMC increased by about 
an order of magnitude. This is larger than expected, since early 
results [7, 14] suggested that the increase was sub-linear with 
the number of degrees of freedom. 
 
CONCLUSIONS 

An analysis of the MMC algorithm’s performance has been 
completed by studying the computed NNMs, error in the 
NNMs, and the computational time for a 2 degree of freedom 
system. The results were compared to those computed by 
NNMcont [10]. Additionally, a brief timing comparison 
between the two algorithms for a 10 DOF system was 
performed. 

The results showed that the number of harmonics used in 
MMC had a dramatic effect on the solution that MMC 
generates. When low numbers of harmonics were used, MMC 
seemed to converge to valid solutions, however at higher 
energy levels they often seemed to be period-lengthened 
solutions. In applications where the period lengthened solutions 
are of interest this could be seen as a strength of the algorithm; 
in other applications this would be a nuisance.  

It proved more difficult to use MMC in a continuation 
framework than was expected, and this was thought to be 
caused by MMC’s larger radius of convergence. While 
NNMcont tends to fail to converge if the initial guess is poor 
(and hence the stepsize is cut and a solution is attempted at a 
closer point), MMC often converged to a new solution that may 
be far from the initial guess.  As a result, it was more 
challenging to keep MMC on the same solution branch. 
Additionally, there are differences in the way error is measured 
by MMC since it operates on accelerations and this introduces 
additional complications. 
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In spite of these challenges, the computational time and 
error of the two algorithms were compared over regions where 
they behaved similarly. In these comparisons, MMC and 
NNMcont tended to have similar errors on average (with the 
settings used here), although the maximum error for MMC was 
usually larger than that for NNMcont. For the 2 DOF system, 
MMC offered large computational time savings. In fact MMC 
usually took about an order of magnitude less time to compute 
the same solutions as NNMcont, even when errors were similar. 
For the 10 DOF system, MMC required more total 
computational time, but required only about half as much time 
per step. These results are not fully understood yet.  
Computation time for numerical integration is known to scale 
with NDOF

2 or more, and since MMC had been previously 
found to scale sub-linearly with NDOF [14] and so one would 
expect to see the performance gap between MMC and 
NNMcont increase rather than decreasing.  The Matlab 
implementation of MMC will be improved and these issues will 
be explored further in future works.   
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