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Abstract

Quasi-static modal analysis (QSMA) has begun to gain traction for structures with bolted joints, allowing one to extract
the effective modal frequency and damping ratio as a function of amplitude in a fast and accurate manner. This work explores
the viability of QSMA to estimate the nonlinear normal modes (NNMs) of geometrically nonlinear structures, where the non-
linearity is much more significant and modal coupling can be far more severe. A quasi-static loading in the shape of a single
mode is applied to the nonlinear finite element model in order to retrieve a quasi-static response, using a pseudo-arclength tech-
nique, which is capable of continuing through unstable regions for structures undergoing snap through. In the authors’ prior
works, a secant method was used to estimate the effective natural frequency (i.e. NNM frequency) from the load-displacement
curves of the finite element (FE) model. However, that approximation may not be adequate for the strongly nonlinear structures
considered in this work. Meanwhile, an alternative method that also utilizes the quasi static response curve is developed; the
response curve is fit to a polynomial and used to create a single degree-of-freedom reduced order model (ROM), similar to
an implicit condensation (ICE) ROM although the polynomial is allowed to have higher orders than are typically used with
ICE. The resulting SDOF ROMs are found to greatly accelerate evaluation of the NNMs while maintaining excellent accuracy.
This approach captures the static coupling between the underlying linear modes, but does not capture any additional dynamic
coupling. The capabilities of the QSMA approach for estimating NNMs are verified by numerical studies on FE models of
various dynamic structures, i.e. a flat clamped-clamped beam, a curved beam and an exhaust cover plate.
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1 Introduction

Nonlinearities in dynamic structures with bolted interfaces have been characterized by the effective natural frequency and
nonlinear damping as a function of external load amplitude [1, 2]. Because modeling the bolted joints in a realistic structure is
very expensive, yet does not guarantee that its dynamic simulations correlate well with the experiments [3, 4], many advanced
methods that simplify joint modeling and analysis were recently introduced [5–7]. Quasi-static modal analysis (QSMA) is one
of the approaches for reduced order modeling that assumes the joints behave quasi-statically when they are in a micro-slip
regime [8, 9]. In QSMA, one solves for the nonlinear quasi-static response of the structure due to an inertial load, and the
resulting modal response is used in conjunction with Masing’s rules in order to compute the effective natural frequency and
damping ratio of the mode in terms of the load amplitude. The resulting modal model explains how the nonlinear structure
would vibrate if each mode was excited separately. A recent work by Lacayo et al. [10] presented a few extensions to the
quasi-static method that further simplifies extracting the frequency and damping ratio. Instead of assuming the structure to be
nonlinear for lumped bolted joint and linear for the rest of the system, they take the whole system as nonlinear and solve the
QSMA problem in one step.
QSMA assumes that the joint structure be can modeled with a superposition of weakly nonlinear modes that are uncoupled
when the joints remain in the micro-slip regime. Based on this assumption, the effective natural frequency and damping can be
easily estimated from a quasi-static modal response curve of the FE model. Specifically, the secant to the curve can be used to
define the modal frequency and the area enclosed by a derived hysteresis curve, i.e. energy dissipated per cycle, can be used
to approximate the modal damping ratio. Meanwhile, these modal properties can be related to the nonlinear normal modes
(NNMs), which have been acknowledged to be a powerful metric to characterize the oscillation frequency and deformation



shapes of a variety of structures [11]. This work mainly deals with the NNMs of undamped systems although there exist some
cases that need to consider the damped NNMs of nonconservative systems [12, 13]. Because NNMs span a range of response
amplitudes, are independent of the loading applied to the system and also easily measured from experiments, they have begun
to be used to explain the nonlinearity of various dynamic structures [14–17]. Several numerical methods for computing the
NNMs of FE models have also been developed such as the pseudo-arclength continuation method in [18], the applied modal
force (AMF) method in [19] and the multi-harmonic balance method (MHB) in [20]. Based on the fact that QSMA provides
good estimates of the effective natural frequency (i.e. NNM frequency) as well as a significant reduction in the computational
cost, this paper explores the viability of the QSMA to estimate the NNMs of dynamic structures that exhibit more complex and
stronger nonlinearities compared to the systems with joints that have been studied so far. This paper also focuses on establishing
the limits of QSMA, i.e. when and how it breaks down for strongly nonlinear structures.
One way to demonstrate the capability of QSMA in terms of estimating the NNMs of strongly nonlinear structures is to apply
the approach to a structure with a geometric nonlinearity, which typically becomes important when the structure shows large
deformations. Snap-through buckling of wing panels [21,22] and unstable fluttering of curved plates [23] are good examples of
structures exhibiting nonlinearities due to large deformations. The NNMs of these models have recently been used for model
updating and to compare different nonlinear models [24–27]. For instance, the NNM backbone curves of flat beam models
were iteratively computed and compared with experimental data to optimize model parameters by using the nonlinear least
squares approach in [24], and the Bayesian approach in [26]. However, directly computing the NNMs of a FE model can be
prohibitively expensive, especially if many elements are needed to describe the geometry. Moreover, while the computation cost
may be feasible for small to moderately sized FE models, it can still be demanding, especially if the structure has many internal
resonances so that the NNMs become intricate to compute; such is often the case for complicated structures. To circumvent
the computational issue, many reduced order modeling frameworks have been devised that significantly reduce the degrees of
freedom but accurately capture the NNMs of a nonlinear FE model. Largely there are two approaches to generate a reduced
order model (ROM), i.e. direct methods and indirect methods [28, 29]. Direct methods are not considered in this paper as
they naively require the full order nonlinear stiffness matrices in order to perform the DOF reduction, and most commercial
FE packages do not give the user access to the required information. On the other hand, indirect methods such as the enforced
displacement (ED) method and the implicit condensation and expansion (ICE) method use a set of static displacement (or load)
cases in the shape of few dominant modes in order to project the nonlinear response onto the reduced set of modal basis. In
a recent work of Kuether et al. [30], the ED and ICE methods were demonstrated on FE models of geometrically nonlinear
structures, such as an exhaust cover plate, and showed that the resulting multi-mode ROMs were capable of reproducing the
backbone curves of the full FE model accurately. This also implies that the NNM will match the dynamic response in a variety
of loading conditions and over a range of loading amplitudes, and hence is a useful metric for evaluating ROMs.
Despite the advantages of indirect methods, their accuracy is sensitive to a load scaling factor that is used to set the amplitude
of the static displacements (or loads) that are applied. Furthermore, they typically include multiple modes and so one cannot
filter out the internal resonance branches. This is problematic if one wishes to use a ROM when updating a FE model to
correlate with measurements; the backbones are of primary interest in that application and yet they become difficult to compute
as the algorithm can get stuck trying to resolve the internal resonances. On the other hand, QSMA only requires a modal load-
displacement curve for computing the NNMs and it inherently filters out the internal resonance branches. Thus, it is meaningful
to investigate the possibility of using QSMA to estimate the NNMs of geometrically nonlinear structures. The numerical results
presented in this paper show that QSMA can be advantageous in some cases to provide a good initial guess of NNMs, even
when one’s primary goal is to study strongly nonlinear systems. Nevertheless, the limits of QSMA in terms of accuracy, in cases
where the nonlinearity is quite large, is investigated. Meanwhile, an alternative method for using the QSMA load-displacement
curves to compute the NNMs is presented, which significantly improves the accuracy of the backbone curves. The proposed
method generates a single degree of freedom (SDOF) ROM whose nonlinear stiffness terms can be identified by a least-squares
fitting to the modal response curve. Due to the similarity to the ICE method, the resulting model can be regarded as a SDOF
ICE ROM. The compactness and accuracy of the alternative method are investigated in detail to demonstrate that the resulting
ROM consists of nonlinear stiffness terms whose order is greater than cubic in order to implicitly account for the static modal
coupling between the underlying linear modes. A very recent work of Hill et al. [31] also showed that a SDOF ICE ROM
needs to consist of nonlinear terms greater than cubic to accurately capture the static effects of the underlying linear modes.
The comparison between the secant method and the SDOF ICE method reveals that the original QSMA can be extended to
create a mix between the QSMA and the ICE, which highlights the limits of the secant method and shows the importance of
higher-order polynomial terms in ICE.
This paper is organized as follows. Section 2 outlines definitions of a geometrically nonlinear FE model and its quasi-static
modal response followed by derivations of two methods (i.e. the secant method and the SDOF ICE method) for computing
NNMs. In Section 3, the proposed methods are demonstrated on three numerical examples, i.e. a flat clamped-clamped beam,
a curved beam and an exhaust cover plate, in order to explore their characteristics and accuracies in terms of estimating NNMs



of geometrically nonlinear structures. The conclusions and some aspects of future work are presented in Section 4.

2 Theory

2.1 Geometrically Nonlinear Finite Element Model

The n-DOF FE model that exhibits geometric nonlinearity can be expressed as

Mẍ + Cẋ + Kx + fnl(x) = f(t) (1)

where M,C and K are the n x n mass, damping and stiffness matrices and f(t) is the n x 1 external force. The n x 1 nonlinear
restoring force fnl captures the geometric nonlinearity of the model, which is a function of the displacement vector x. The full
equations of motion of the FE model can be transformed from a physical space to a modal subspace by solving an eigenvalue
problem:

(K − ω2
rM)Φr = 0 (2)

where ωr is the r-th linear natural frequency and Φr is its n x 1 mode shape. Then, the FE model can be approximated with a
superposition of a subset of the linear modes as

x = Φmq (3)

where q is the m x 1 modal displacement and Φm is the n x m mass normalized mode shape matrix. The reduced DOF of
modal coordinates can be significantly smaller than the DOF of original physical coordinates (m� n). Then, the r-th nonlinear
modal equation can be written as

q̈r + cr q̇r + ω2
rqr + θr(q1, q2, ..., qm) = ΦT

r f(t) (4)

where the nonlinear restoring force θr is a function of the modal displacements q. It was shown in recent works (e.g. [28, 30])
that the nonlinear restoring force that captures only the geometric nonlinearity of a linear elastic system are well approximated
with a 3rd order polynomial as

θr(q1, q2, ...qm) =

m∑
i=1

m∑
j=i

Ar(i, j)qiqj +

m∑
i=1

m∑
j=i

m∑
k=j

Br(i, j, k)qiqjqk (5)

where Ar and Br are the quadratic and cubic nonlinear stiffness terms, respectively. The ICE method in [30] applies a set of
static loads, which consists of a linear combination of multiple mode shapes, to the FE model in order to find nonlinear stiffness
terms. The ICE ROM also typically uses up to cubic order polynomial, and incorporates multi modes to accurately capture the
coupling between the reduced modal basis.

2.2 Quasi-static Modal Response

The QSMA method assumes that the FE model would deform by the quasi-static force in the same way that it would deform
dynamically if it were vibrating in only the mode in question. The external force defined by the r-th linear mode shape, which
is proportional to MΦr, will dominantly excite the r-th linear mode of the FE model because the orthogonality of linear modes
is still valid in the weakly nonlinear regime. The quasi-static problem with respect to the r-th modal force can be expressed as

Kx + fnl(x) = MΦrα (6)

where α is the modal force amplitude. Then, the r-th quasi-static modal response qr(α) can be mapped from the physical
quasi-static response x(α) of Eqn. 6

qr(α) = ΦT
r Mx(α) (7)

It can be interpreted that the internal force that is at equilibrium to the quasi-static loading is captured and projected onto the
r-th mode. By pre-multiplying Eqn. 6 by ΦT

r , the r-th modal force-response can be explained in terms of α and qr in the modal
subspace by the following equation

ω2
rqr + θr(qr) = α (8)

where θr(qr) is the modal nonlinear restoring force defined by the single modal coordinate qr. Note that the quasi-static modal
response implicitly captures the static effects of other linear modes, i.e. θr(qr) = ΦT

r fnl(x) = ΦT
r fnl(Φmq). The unknown

nonlinear function θr(qr) can be derived by using Riks method and least-squares fitting, as explained in the following section.



2.3 Quasi-static Response Curve Fitting

In this work, the quasi-static response in Eqn. 6 can be found using Riks method. Riks method is a powerful tool that captures
the geometric instabilities such as snap through behavior when computing load-displacement curves. The implementation of
Riks method that was used in this work is based on a pseudo-arclength continuation technique, which was presented in detail
in [32]. The resulting quasi-static response x(α) can be converted to the quasi-static modal response qr(α) by Eqn. 7. Then,
the load αj and response qr(αj) are known at ns samples (load amplitudes), and this data can be used to find the nonlinear
function θr(qr). The unknown function θr(qr) is approximated by a polynomial, i.e. θr(qr) =

∑l
i=2 kiq

i
r where ki is the i-th

nonlinear stiffness coefficient and l is the highest order of the nonlinear terms. Hence, one must simply estimate kis from the
load-displacement data, by minimizing the least-squares cost function J that is defined as follows.

min
{k2,k3,...,kl}

J =

ns∑
j

(
w2

rqr,j + θr(qr,j)− αj

)2
α2
j

=

ns∑
j

(
w2

rqr,j +
∑l

i=2 kiq
i
r,j − αj

)2
α2
j

(9)

By completing all the above processes, the undamped and unforced SDOF equation of motion in r-th mode, can be formulated
as

q̈r + ω2
rqr +

l∑
i=2

kiq
i
r = 0 (10)

Compared to the ICE method, the QSMA approach only uses a single mode, but higher order nonlinear terms greater than
cubic, in order to capture the static effects of modes that are not included in the modal basis. In fact, Hill et al. [31] recently
showed that a single DOF ICE ROM needs to consist of nonlinear terms greater than 3rd order (cubic) to accurately capture
the static effects of the modes that have been neglected when reducing the basis (i.e. statically reducing those modes out of the
modal basis). Also, note that the QSMA approach fully utilizes a continuous set of data from the quasi-static response curve in
order to find the nonlinear terms, whereas ICE typically uses a minimal set of load data, i.e. loading at −αr and +αr for each
mode and for each combination of modes. Thus, the equation obtained by the QSMA approach (Eqn. 10) can be regarded as a
SDOF ICE ROM that uses higher order nonlinear stiffness terms. In the following, these QSMA derived ROMs will be called
SICE ROMs.

2.4 NNM Evaluation based on QSMA Approach

QSMA has previously only been used to estimate the amplitude-dependent frequencies of the structures with nonlinear joints.
In all applications to date, the slope of a secant line of the quasi-static modal response qr(α) was used to define the natural
frequencies ωr of the system at each load amplitude α as follows.

ωr(αj) ,
√

αj

qr(αj)
(11)

In prior works, where the structures all exhibited weak nonlinearities due to the bolted joints, the secant approximation from
the QSMA has provided an accurate estimate of the natural frequencies [10]. However, the geometrically nonlinear structures
considered here contain much stronger nonlinearities, and so the secant approximation may be accurate only for small frequency
shifts.
In order to accurately capture the geometric nonlinearities over a larger frequency range, the SICE ROM in Eqn. 10 can be
utilized. In other words, the SICE ROM can be used to compute the NNMs of the nonlinear structure. In this paper, the NNM
computation is performed by a shooting and pseudo-arclength continuation method, which was presented in [18]. Meanwhile,
the NNMs of the original FE models were also computed by the applied modal force (AMF) method in [19] and the multi
harmonic balance (MHB) method in [20], which serve as reference curves against which the curves obtained here by QSMA
with the secant and SICE methods can be compared to evaluate their accuracy.

3 Numerical Studies

In this paper, three numerical studies are illustrated to show the effectiveness of the QSMA approach for computing NNMs
of the geometrically nonlinear structures. The first study evaluates the NMMs of a flat clamped-clamped beam that exhibits
relatively weak nonlinearity. The second example is an exhaust cover plate that is more realistic and exhibits some internal
modal coupling. We lastly examine a curved beam that experiences not only strong modal interaction but also dynamically



unstable snap-through. All of the required routines including the quasi-static response computation and the NNM computation
were implemented in MATLAB R©.

3.1 Flat Clamped-Clamped Beam

This geometrically simple beam exhibits hardening nonlinearities at large transverse displacements, and has been used in
several previous works to study these phenomena [30, 33, 34]. The beam FE model used here has the same geometry and
material properties as the beam studied in [30]. The dimensions of the beam are as follows: 228.6 mm in length, 12.7 mm
in width and 0.787 mm in thickness. The beam was meshed with 40 2-node beam elements that resulted in 117 free DOF.
The material properties of the model are based on steel with a Young’s modulus of 204.8 GPa, a Poisson’s ratio 0.29 and a
mass density 7870 kg/m3. The r-th linear normal mode Φr and its natural frequency ωr were then computed by Eqn. 2. The
geometry of the flat beam and its first four bending modes are shown in Figure 1.

Figure 1: The flat clamped-clamped beam model and its dominant modes.

3.1.1 Quasi-static Response Curve

The nonlinear quasi-static response of the beam model was then found when a force given by Eqn. 6 was applied to the structure.
The response of the full FE model was found, yet in Figure 2 we only plot the response of the center node, xc, versus load
amplitude. The hardening behavior of the beam, that is due to the coupling between the bending and membrane motions, can
be seen in the load displacement curve. The maximum displacement of the center node (xc,max = 2.7788 mm) was set to be
about 350% of the beam thickness such that the nonlinearity of the beam could be sufficiently captured for large deflection.

Figure 2: The quasi-static response of the flat clamped-clamped beam for Mode 1. The curve traces the center node displace-
ment of the beam model with respect to the load scaling factor α.



The peak modal displacements qr,c of the first five dominant bending modes, that were mapped from the physical displacement
by Eqn. 7, are shown in Figure 3. It can be inferred from the modal response curves that the bending mode 3 is the most strongly
coupled mode with respect to the first bending mode. The maximum amplitude of Mode 3 (q3,c,max = 0.1935 mm) was about
6% of that of the first mode (q1,c,max = 2.9335 mm) when the center node reached the maximum displacement.
The nonlinear stiffness coefficients of various SICE ROMs were identified by least-squares fitting to the target modal response
curve for the first mode. The data consisted of 84 data samples (ns = 84). The fitted curves of the SICE ROMs of different
orders are shown in Figure 3. The fitting errors in Eqn.9 are also presented in Table 1, which show only 0.033% error when
the 4th order polynomial is used (l = 4) for the flat clamped-clamped beam model. The resulting coefficients can be found in
Table 2.
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Figure 3: The quasi-static response of the first five dominant bending modes of the flat clamped-clamped beam model. The
dashed curves illustrate the least-squares fitted curves of a 3rd order, a 4th order and a 5th order SICE ROM to the first modal
response curve.

Fitting order (l) 3 4 5
Fitting error (J) 0.00674 0.00033 3.50e-06

Table 1: The least-squares fit error J in Eqn. 9 to the first modal response curve of the flat clamped-clamped beam model.

Order 1st 2nd 3rd 4th
Coefficient (ki) 2.4619e+5 1.1532e+9 3.8030e+13 -2.1887e+16

Table 2: The coefficients of the 4th order SICE ROM (SICE-4) of the flat clamped-clamped beam.

Note that the comparison so far only demonstrates how accurate the SICE ROM can capture the static response. In order to
evaluate how well the dynamic responses are captured by this ROM as well as when using the conventional secant method, the
NNMs are computed and compared in the next section.

3.1.2 NNM Evaluation

The first NNM of the flat beam was computed using the secant method in Eqn. 11 and the SICE ROMs with the shooting and
pseudo-arclength continuation method in [18]. In order to have an estimate of the “true” NNM against which to compare these,
the first NNM curve of the full FE model was also computed by the AMF algorithm in [19]. Figure 4 illustrates the resulting
curves of each method in the frequency-modal response plane. Note that the extent of quasi-static modal response (0 mm
≤ q1,c ≤ 2.9335 mm), which was used to generate the SICE ROMs, sufficiently covers that of dynamic responses considered
in the NNM computation (0 mm ≤ qnnm

1,c ≤ 1.9515 mm). Otherwise, the resulting SICE ROMs could not fully capture the
nonlinearties in the dynamic responses.



The secant method approximates the natural frequencies of the beam model well for small deformations (q1,c / 0.1 mm).
However, as the deformation further increases, its NNM curve deviates from the backbone curve of the full FE model. On the
other hand, the first NNM curve computed with a 4th order SICE ROM (SICE-4) accurately matches with the reference curve.
This indicates that the hardening nonlinearity of the flat beam structure can be well captured by a 4th order SDOF equation.
Hence, as the beam vibrates in this mode, the other modes are important only in their contribution to the effective stiffness
of this mode - they are statically condensed into q1. It is also noticeable that the third order SICE ROM (SICE-3) produces
relatively larger errors in the NNM even though it had small error in terms of the least-squares fitting to the quasi-static modal
response curve.
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Figure 4: The first NNM curves of the flat clamped-clamped beam in the frequency-modal response plane: the NNM curve
computed by the secant method and the NNM curves computed with a 3rd order SICE ROM (SICE-3) and a 4th order SICE-
ROM (SICE-4).

3.2 Exhaust Cover Plate

QSMA approach was also applied to estimate the NNMs of a FE model of an exhaust cover plate, whose geometric nonlin-
earities were investigated in a few recent works [19, 30, 35]. They discovered a significant coupling between the first and sixth
modes. The geometry and material properties of our FE model follow those of the plate model in [30]. The provided dimen-
sions and properties are as follows: 317.5 mm in diameter, 208 GPa for a Young’s modulus, 0.3 for a Poisson’s ratio, 7800
kg/m3 for a mass density such that the model approximates a thin circular steel plate. The plate was composed of 1440 4-node
shell elements of 1.5 mm thickness that resulted in 8406 free DOF. The nodes at the very bottom are fixed approximating the
boundary as infinitely stiff. The FE plate model and some of its linear bending modes are shown in Figure 5.

Figure 5: The finite element model of the exhaust cover plate and its dominant modes.



3.2.1 Quasi-static Response Curve

The nonlinear quasi-static response of the plate model subject to the first linear modal force (f = MΦ1α) is presented in Fig-
ure 6. Similar to the flat clamped-clamped beam model, hardening behavior can be observed at large transverse displacements.
The maximum vertical displacement of the center node xc,max was set to be about 300% of the thickness of the plate model.
Figure 7 demonstrates the quasi-static modal response curves qr,c of four dominant bending modes. The maximum peak modal
displacement of Mode 6 (q6,c,max = 0.8450 mm) was about 15% of that of the first mode (q1,c,max = 5.5695 mm), which
indicates 1) a strong modal coupling between the first and the sixth mode and 2) that the plate model has relatively stronger
modal coupling compared to the flat beam model.
The least-squares fitted curves of various SICE ROMs of the first mode are also shown in Figure 7. The fitting errors in Table 3
were computed when 119 samples (ns = 119) were used for the fitting. The mean fitting error, i.e. Javg = J

ns , of the SICE-3 of
the exhaust cover plate was almost twice as much as that of the SICE-3 of the flat clamped-clamped beam. On the other hand,
the SICE-4 showed a similar mean error to that of the SICE-4 of the beam model, whose coefficients are presented in Table 4.

Figure 6: The quasi-static response of the exhaust cover plate for Mode 1. The curve traces the displacement of the center node
of the plate model, with respect to the load scaling factor α.
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Figure 7: The quasi-static response of the first four dominant bending modes of the exhaust cover plate model. The dashed
curves illustrate the least-squares fitted curves of a 3rd order, a 4th order and a 5th order SICE ROM to the first modal response
curve.



Fitting order (l) 3 4 5
Fitting error (J) 0.01840 0.00059 4.00e-06

Table 3: The least-squares fit error J in Eqn. 9 to the first modal response curve of the exhaust cover plate model.

Order 1st 2nd 3rd 4th
Coefficient (ki) 9.7333e+5 -1.0918e+8 3.8782e+11 -6.6320e+13

Table 4: The coefficients of the 4th order SICE ROM (SICE-4) of the exhaust cover plate.

3.2.2 NNM Evaluation

The first NNM of the exhaust cover plate was computed using the secant method and the SICE method and both curves are
shown in Figure 8. The NNM curves are compared with a reference NNM curve of the full FE model, that was computed by
the AMF method. The secant method starts to induce errors when the deformation reaches about 2% of the plate thickness
(q1,c ≈ 0.1 mm) and shows a spurious softening nonlinearity that is not present in the AMF solution. On the other hand, the
backbone curve of the SICE-4 accurately matches with that of the full FE model, indicating that the plate’s hardening behavior
can be accurately simulated by a 4th order SDOF polynomial. This 4th order SICE model only contains the static modal
coupling shown in Figure 7, and so this reveals that the first NNM of this structure can be captured accurately if one captures
the static modal coupling; this mode doesn’t exhibit any additional dynamic modal coupling that is important.
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Figure 8: The first NNM curves of the exhaust cover plate in the frequency-modal response plane: the NNM curve computed by
the secant method and the NNM curves computed with a 3rd order SICE ROM (SICE-3) and a 4th order SICE-ROM (SICE-4).

3.3 Curved Beam

The curved beam exhibits a snap-through behavior as well as strong interactions between low and high frequency modes, that
were previously studied in [27, 36, 37]. This numerical study investigates the capability of the QSMA approach with respect
to such a highly unstable and nonlinear structure. The geometry and material properties of the FE model of the curved beam
are the same as those of the shallow curved beam model in [37]. The length, l is 304.8 mm, width is 12.7 mm and thickness
is 0.508 mm. The radius of curvature, R is defined to be 11430 mm so that the maximum rise is twice the thickness of the
beam (h = 1.016 mm). The Young’s modulus is 206.84 GPa, Poisson’s ratio is 0.29 and mass density is 7800 kg/m3, again
approximating steel. The beam model is meshed with a hundred 2-node beam elements to have 297 free DOF. The FE model
of the curved beam and its dominant bending modes are depicted in Figure 9.



Figure 9: The finite element model of the curved beam and its dominant modes.

3.3.1 Quasi-static Response Curve

The nonlinear quasi-static response of the curved beam FE model with respect to the first linear modal force is displayed in
Figure 10. A softening followed by hardening behavior appears when the vertical deflection is from one to four times the beam
thickness, as can be seen in the zoomed-in plot. The maximum value of the center node displacement was set to be about ten
times the beam thickness to fully capture the hardening nonlinearity at large deformations. Figure 11 illustrates the quasi-static
response curves of the dominant bending modes, and it can be seen that Mode 3 is strongly coupled with the first mode, i.e. the
maximum amplitude of the Mode 3 (q3,c,max = 0.8837 mm) was about 14% of that of the first mode (q1,c,max = 6.2150 mm)
when the center node displacement was at the maximum.
The least-squares fitted curves of the SICE ROMs are also illustrated in Figure 11. For the fitting, 149 sample points (ns = 149)
were used and the resulting errors are presented in Table 5. The nonlinear quasi-static modal response of the curved beam was
not well approximated by low order SICE ROMs such as SICE-3 or SICE-4. The fitting accuracy was enhanced for the SICE-5,
yet there was still some error in the snap-through response. When the order was increased to 7, the model provided an accurate
fit that is comparable to the fitting accuracy of SICE-3 of the flat beam. This implies that the curved beam structure is highly
nonlinear compared to the previous examples.

Figure 10: The quasi-static response of the curved beam for Mode 1. The curve traces the displacement of the center node of
the beam model, with respect to the load scaling factor α.



-1 0 1 2 3 4 5 6 7

Peak Modal Displacement (mm)

0

100

200

300

400

500

600

700

L
o
a
d
 A

m
p
lit

u
d
e
, 

q
1

q
3

q
5

q
7

q
9

3rd Order Fit

5th Order Fit

7th Order Fit

0 0.5 1 1.5
0

1

2

3

4

(a)

Figure 11: The quasi-static response of the first five dominant bending modes of the curved beam model. The dashed curves
illustrate the least-squares fitted curves of a 3rd order, a 5th order and a 7th order SICE ROM to the first modal response curve.

Fitting order (l) 3 4 5 6 7
Fitting error (J) 3.61925 1.66701 0.42670 0.53404 0.00781

Table 5: The least-squares fit error J in Eqn. 9 to the first modal response curve of the curved beam model.

3.3.2 NNM Evaluation

The first NNM of the curved beam as computed by the secant and SICE methods are shown in Figure 12. The NNM curves
were compared with a reference NNM curve that was computed with the full FE model using the MHB algorithm in [20]. Three
harmonics were used to compute the backbone curve, so that some of the modal interactions could be captured. Note that an
internal resonance branch appears during the softening (q1,c ≈ 0.2 mm), which will be further discussed in the Section 4. The
secant method could not accurately solve for the first NNM even for the small deflections and the error significantly increased
as the structure experienced the snap-through. On the other hand, the SICE-3 captured the first NNM accurately except for the
snap-through region (0.2 mm ≤ xq,c ≤ 2.0 mm). This is to be expected because the SICE-3 was not able to match with the
snap-through region of the quasi-static response curve.
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Figure 12: The first NNM curves of the curved beam in the frequency-modal response plane: the NNM curve computed by the
secant method and the NNM curves computed with a 3rd order SICE-ROM (SICE-3), a 5th order SICE-ROM (SICE-5) and a
7th order SICE-ROM (SICE-7).



When the order of the SICE ROM was increased to 5, the snap-through was explained accurately as well as the hardening
behavior. It is again remarkable that a SDOF model was able to accurately capture the main backbone of the first NNM of
this structure, one in which modal coupling was thought to be very important [27, 37]. While the results show that the higher
modes were statically coupled with the first mode, that static coupling was accurately included in the SDOF model as long as
the polynomial order was high enough, and the SDOF model was able to accurately predict the backbone of the NNM. It is also
important to note that the true NNM for this structure shows several important internal resonances, and those are of course not
captured by the SICE model.
The SICE-7 was able to capture the NNM at snap-through a little more accurately than the SICE-5. However, it produced small
errors at large deflections where the beam model experiences hardening (3.0 mm ≤ xq,c ≤ 4.0 mm). We suspect that this
occurs because the high order terms in the polynomial become very important at large displacements, i.e. any error in those can
be significantly amplified with the order of the terms at large deflection.

4 Conclusion

This paper presented a first effort at applying quasi-static modal analysis (QSMA) to estimate the nonlinear normal modes
(NNMs) of geometrically nonlinear structures. The conventional method, i.e. secant approximation, was applied to the modal
response curve to compute nonlinear natural frequencies of the geometrically nonlinear FE models. The numerical results show
that the NNMs of dynamic structures cannot be accurately captured by the secant method when they exhibit more complex and
strong nonlinearities. Hence, we can infer that the secant method should be replaced by a more rigorous approach if QSMA is
applied to bolted joints that exhibit much stronger nonlinearities. However, the results show that the basic premise of QSMA,
i.e. that the nonlinear response can be inferred from quasi-static analysis, still holds even for complicated nonlinear systems.
When the secant approximation was replaced with a more rigorous approach, i.e. the SICE method, the primary backbone of
all of the NNMs considered was computed very accurately. SICE was found to be a reliable tool that simplifies and accelerates
the NNM computation while maintaining the reasonable accuracy for the complex structures, even for the curved beam that
exhibited significant modal interaction.
An advantage of utilizing the quasi-static response curve for reduced order modeling is that it reflects the nonlinearities of the
structure. The quasi-static response computed by the Riks method can identify dynamically unstable regions of response as
well as strongly coupled modes. Therefore, the required complexity of the reduced order model, i.e. the order of polynomial
needed to explain the nonlinearities, can be guided by the quasi-static response curve. For instance, the quasi-static response
of the flat beam and exhaust cover plate suggested that a 4th order polynomial was needed in order to accurately capture their
monotonically hardening nonlinearities. On the other hand, the curved beam, which exhibits a combination of hardening and
unstable snap-through behaviors, required a 5th order polynomial to explain the highly nonlinear response. Compared to the
ICE method whose resulting ROMs are known to be sensitive to the load scaling [30], the SICE method has no need to calibrate
the scaling factors of applied loads, because a sufficient number of samples distributed over the nonlinear response curve is
being used for tuning the model coefficients. Furthermore, our approach provides a possibility to adaptively sample the loading
cases based on the nonlinearity of the response curve, e.g. for the curved beam example, most of the samples can be chosen
from the snap through response while small numbers are chosen from the stable response. It is expected that the adaptive fitting
can further improve the efficiency and the accuracy of the SICE method, which is not investigated in this work and left as a
future work.
The SICE ROMs that accurately fitted to the nonlinear quasi-static responses were able to accurately capture the NNMs of the
FE models in all of the numerical examples considered here. Due to its compactness, i.e. a single DOF low order polynomial,
it could not only dramatically reduce the computational cost but also avoid computing internal resonances of the nonlinear
structures. On the other hand, the internal resonance branches cannot be filtered out when the full FE model or a multi-mode
ROM is used to compute the NNMs. The curved beam example in Section 3.3.2 supports the fact that an internal resonance
branch exists when the NNM was computed with the full FE model of the beam. The internal resonance branches are expensive
to compute, nevertheless they are much less useful than a primary backbone curve in many NNM applications such as model
validation and correlation [38]. Thus, the SICE method can be favorable when the internal resonance branches are not needed.
The proposed QSMA approach can be a useful tool for quickly estimating the NNMs of various structures. Particularly, it
can be efficiently applied to model correlation and updating procedures of the nonlinear FE models that require iterative NNM
computation [24–26]. In case of a SICE ROM, the number of design variables to be updated is the same as the number of
nonlinear coefficients of the model, which is likely to be small, i.e. less than 4 or 5, for thin curved structures. This will
accelerate computing gradients of the NNM solutions while maintaining the acceptable accuracy. Furthermore, because QSMA
is based on the presumption that dynamic modal coupling is negligible (static modal coupling is preserved), it allows one to
quickly assess the effect of dynamic modal coupling. In cases where dynamic coupling is found to be negligible, the analyst



or designer would be able to compute the response more efficiently and understand the dynamics using simple concepts from
linear modal analysis.
Despite the effectiveness of the QSMA approach presented in this paper, there are some aspects of the approach that should
be further explored. The fitting accuracy of SCIE ROM to the quasi-static response is not directly correlated to a NNM
computation. The 3rd order SICE ROM of the flat beam is one example that demonstrates a small error in fitting the quasi-
static response but relatively large error for the NNM solution. The sensitivity of the quasi-static response fitting with respect
to the NNM solution should be further explored in a future work. Also, the proposed approach will be applied to more
complex dynamic structures including highly curved beams and musical instruments such as a gong, to compare its accuracy
and computational efficiency with other indirect methods.
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[11] Gaëtan Kerschen, Maxime Peeters, Jean-Claude Golinval, and Alexander F Vakakis. Nonlinear normal modes, part i: A
useful framework for the structural dynamicist. Mechanical Systems and Signal Processing, 23(1):170–194, 2009.

[12] Steven W Shaw and Christophe Pierre. Normal modes for non-linear vibratory systems. Journal of sound and vibration,
164(1):85–124, 1993.
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