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This work explores technologies for nonlinear modeling, testing and nonlinear model 
updating of geometrically nonlinear structures.  The methodology centers around a finite 
element model (FEM) of the structure, created and solved using commercial software.  A 
nonlinear reduced order model (ROM) is extracted from the FEM using the implicit 
condensation and expansion method and its nonlinear normal modes are computed using a 
pseudo-arclength continuation algorithm.  The nonlinear modes provide insight into the 
dynamics of the FEM/ROM and also provide a comparison that guides model updating and 
validation.  Measurements from the structure using swept or stepped sine excitation are 
compared with the nonlinear mode backbones to assess their accuracy.  Both structures 
show deformation shapes that change in specific ways with increasing response amplitude, so 
full-field measurements would be helpful in understanding how the underlying linear modes 
of the structure interact as the response amplitude increases.  These concepts are illustrated 
on two structures, a cantilevered flat plate which was used in other works to study crack 
growth in titanium, and a curved exterior panel from a Lynx helicopter.  These structures 
reveal the potential, as well as the limitations, of the current state of the art in modeling and 
testing these types of structures. 

I. Introduction 
EOMETRIC nonlinearities are often important in thin walled structures whenever the shell displacement 
becomes an appreciable fraction of the thickness.  While it has been possible to model these types of structures 

in nonlinear finite element codes for a few decades [1], these models are exceedingly expensive to integrate and so 
they have not been used widely for dynamic analysis or design.  Fortunately, considerable progress has been made 
in recent years to develop methods that extract a reduced order model (ROM) for a geometrically nonlinear structure 
from a series of static loads or displacements applied to the finite element model [2, 3].  Kuether and Allen recently 
suggested that the nonlinear normal modes (NNMs) of a structure can be compared between candidate ROMs to 
evaluate the convergence/accuracy of the ROM, as they provide an amplitude dependent view of the dynamics of 
the structure (or ROM) that is independent of the loading [4, 5].  They have also presented a method whereby the 
true NNMs of the finite element model can be computed [6].  Peeters, Kerschen and Golinval recently laid the 
foundation for measuring the nonlinear normal modes of a lightly damped structure [7], and hence it begins to be 
appealing to use NNMs as a metric to validate and update a nonlinear structural model. 
 This work seeks to combine these tools to model and then use tests to update/validate geometrically nonlinear 
finite element models.  The methods are evaluated on two structures.  The first is a cantilevered plate that is clamped 
at its base and exhibits a lightly damped two-stripe mode; this type of mode can be problematic in the compressor 
blades of some turbine engines. The plate of interest is constructed of titanium and was designed to be used to 
evaluate life prediction and crack propagation methods [8], and so it is important to have an accurate understanding 
of the stress field in the part as it undergoes geometrically nonlinear motions.  This simple structure was found to 
exhibit several subtleties which make model updating challenging and shed light on best practices for future studies. 
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 For the second case we seek to probe the limits of these technologies by tackling a more complicated structure 
with many uncertain parameters. The structure is a panel from a Lynx Helicopter, similar to the one shown in Fig. 1, 
which is currently housed in the laboratory at the University of Bristol.  The panel was removed from the underside 
of the vehicle and is constructed from fiberglass.  The material properties are unknown as is the weave of the glass 
fibers and the panel incorporates a stiffener with a light weight (probably honeycomb) core and a fiberglass skin.  
Hence, there are several parameters that will require updating even though the geometry is fairly simple.  The 
authors are not privy to any information regarding the loadings on this panel, so we do not know whether it behaved 
nonlinearly in flight; it was chosen simply because it was simple enough to model with reasonable effort, yet also 
more complicated than any structure that has previously been addressed with the proposed tools.  Hence, this effort 
is expected to provide insight into how these tools will perform in an industrial setting and to highlight areas where 
further research is needed. 

 

  
(Public domain photo, credit: http://en.wikipedia.org/wiki/File:Lynx_helo_2.jpg ) 

   
Figure 1. Photograph of the Lynx helicopter (top) and front (bottom-left) and back (bottom-

right) views of the panel that was studied, suspended by bungee cords for a free-free test. 

II. Model Updating Approach 
The basic approach employed in this work is summarized below and in Fig 2. 

1. Create and mesh an FEA model. 
2. Perform a low-level (linear) modal test to estimate the natural frequencies and mode shapes. 
3. Compare test and FEA model and update material properties and/or section thicknesses until linear 

modal parameters agree for all modes in the frequency range of interest. 
4. Perform swept sine tests to identify those modes that are most susceptible to nonlinearity. 
5. Perform stepped-sine or swept-sine tests near the peaks for the modes of interest: 

a. Extract the point at which the response is 90 degrees out of phase with the force [7, 9]. 
b. Repeat at various force levels to and combine to construct the NNM backbone. 

6. Create a ROM from the finite element model. 
a. Select the modes to include in the ROM. 
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b. Select the forcing levels to use to estimate the ROM coefficients. 
7. Compute the NNMs from the ROM and compare with measurements.  Iterate on step (6) and on steps (1) 

and (3) until the ROM NNMs agree with those measured experimentally. 

Test HardwareTest HardwareFinite Element Model
- material properties?
- modeling approximations?
- geometry?

Finite Element Model
- material properties?
- modeling approximations?
- geometry?

Linear Modal 
Analysis

Low-level Modal 
Test

Reduced Order Model
- modes included?
- load levels?

Nonlinear Modal
Analysis

Stepped-Sine 
testing at multiple 

force levels

Extract Nonlinear Mode
Backbone

Linear Modal 
Updating

Nonlinear 
Modal Updating

200 205 210
0

50

100

150

200

Frequency (Hz)

M
ag

n
it

u
d

e 
(g

)
 

0.1
0.8
1.5
2.2
2.9

 
Figure 2. Schematic of the proposed nonlinear model updating procedure. 

 At a minimum one can compare the nonlinear normal mode frequencies of the model to those measured 
experimentally.  When full-field measurements are available, this comparison can be further informed by 
considering how the deformation shapes of the structure change with forcing amplitude.  To explore this, for the 
Lynx helicopter panel a scanning laser Doppler vibrometer (LDV) was used to acquire measurements.  These 
measurements were found to provide important insights to guide step (7). 

 The reduced order modeling theory is explained in several other works [12, 13] and will only be summarized 
here.  The FE model is presumed to be governed by the following equation of motion, where no damping or mass 
nonlinearities are present. 

 ( ) ( )NL t  Mx Kx f x F   (1) 

The linear modes transform this equation into the following form, where each modal amplitude is denoted qr.   

 2
1 2( , ,..., ) ( )T

r r r r N rq q q q q t    φ F  (2)  

The nonlinearities couple the linear modal coordinates through the function , which is assumed to have the 
following form.   

  1 2
1 1

( , ,..., ) ( , ) ( , , )
N N N N N

r N r i j r i j k
i j i i j i k j

q q q B i j q q A i j k q q q
    

    (3)  

A series of nonlinear static analyses are performed in a commercial FEA package to estimate the coefficients Ar 
and Br.  This method often produces highly efficient ROMs; sometimes only a single modal coordinate is adequate 
to describe the structure over a wide range of energy.  However, in other cases many more modes must be included. 
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III.   Cantilevered Flat Plate 
The finite element model for the first structure of interest is shown in Fig. 3a.  The plate is held in a clamp with a 

curved (sinusoidal) edge in the x-y plane (this was found to minimize stresses near the clamp and the propensity for 
cracks to initiate there.  The clamp is simulated by adding discrete springs in the out of plane direction between each 
of the nodes in the region shown in Fig. 3c and ground.  The in-plane DOF were left free.  The nodes on the bottom 
edge of the plate were constrained in the y-direction and the node on the bottom-left was constrained in x- and y-.   

The mode that will be exercised in the fatigue tests of this structure is shown in Fig. 3b. The stresses are highest 
in the region near the center of the plate, both due to bending stress and membrane stresses that become important 
due to geometric nonlinearity.  Various design studies were performed prior to the work in [8], and the FE model 
was found to accurately represent an ensemble of specimens when the nominal material properties shown in Table 1 
were used in the FE model.  For this work a specific specimen was considered and some limited testing was 
performed to provide data for model validation.  The average density of the specimen was known to be quite 
accurate and because this and the thickness and modulus all have an almost indistinguishable effect on the natural 
frequencies,  and h were left at their nominal values as the other parameters, Young’s modulus, E, and Poisson’s 
ratio, , were updated.  The specimen is constructed from Titanium, specifically Ti-6AL-2Sn-4Zr-2Mo, duplex 
annealed and the nominal material properties from MIL-HDBK-5H are shown in Table 1. 

 
Table 1: Parameters of FE model for Cantilevered Plate before and after various updating steps. 

Parameter Initial Values 
Model t0 

Updated 
Model t1 

Updated 
Model t2 

E 16.5 Msi 17.92 Msi 16.77 Msi 
 0.325 0.291 0.330 
 0.164 lb/in3 unchanged unchanged 
h 0.0511 in 0.001 in unchanged unchanged 

k (springs in the 
clamped region) 

2000 lb/in 141 lb/in 625 lb/in 
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Figure 3. (a) Finite element model of the cantilevered plate (b) deformed shape of the 

structure in the “two-stripe” mode of interest (c) nodes where translational springs are 
added out of plane to simulate the clamped boundary condition. 

 The specimen was mounted in a clamp attached to a 12,000lb shaker with an accelerometer used to monitor the 
level of base excitation and a laser vibrometer measuring the response at the right wing tip.  First a low level modal 
test was performed using random excitation and the resulting spectrum was used to estimate the natural frequencies 
and damping ratios of as many modes as possible.  Most of the modes below 2kHz were extracted as well as a few 
of the modes between 2 and 3kHz and it was decided to focus model updating efforts on Modes 1-3 and 6-14.  The 
mode shapes of the first 12 modes of the initial FE model (denoted t0 in Table 1) are shown in Fig. 4.  As shown in 
Table 2, the natural frequencies were found to agree quite well with the FE model, with errors of less than 2-3% for 
most modes, although the first mode differs by almost 8%. 
 The model was updated using the following cost function to weight the error in each mode on a percentage basis. 
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 (4)  

The updating was achieved by using finite differences to compute the Jacobian of the natural frequencies with 
respect to each of the parameters p=[E,,k].  However, because the uncertainty on k was so large (it was not 
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physically derived but simply chosen to simulate the nearly fixed boundary condition), it was treated separately.  
Specifically, the spring stiffness was varied between 20 and 2e5 lb/in and the natural frequencies of the model were 
calculated and stored in a look-up table.  Then for each value of k the Jacobian with respect to the other parameters 
p=[E,] (at the nominal value of k) was used to compute the optimal values of [E,]. 

 
Figure 4. Mode shapes of the first twelve modes of the plate using the initial model 

parameters denoted t0 in Table 1. 
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Figure 5. Optimization of the Young’s modulus, E, and Poisson’s ratio, , for the 

cantilevered plate. The nominal values for the parameters were E=16.5 Msi, =0.325 and 
k=2000 lb/in. 

The results of the optimization, shown in Fig. 5, reveal that there are two potentially valid choices for the model 
parameters.  One could select the value of k=141 lb/in that minimizes the cost function Eq. (4) or one could select a 
value of k=625 lb/in in order to keep E and  as close as possible to their nominal values.  In the literature, tests have 
found  for this material to vary between only 0.32 and 0.33 and the modulus to vary between 16.5 and 18 Msi, so it 
may not be reasonable to change them by tens of percent.  As a result, two optimized models were created, denoted 
t1 and t2 respectively, one with k=141 lb/in to minimize the cost function and another with k=625 lb/in to minimize 
the change in E and .  The FE model was used to recompute the natural frequencies for each of these cases and the 
cost function, g(p), was found to be within 0.3 of the value predicted in Fig. 5 (based on the Jacobian). The natural 
frequencies and errors for each of these optimized models are shown in Table 2. While either is an improvement 
relative to the baseline model, each shows a different tradeoff in the errors of the various modes.  Of particular note 
is Mode 7, the two stripe mode of interest, and Mode 9, which was later found to influence Mode 7 significantly.  
Model t1 captures Mode 7 very well at the expense of increased error in Mode 9, while Model t2 does the opposite. 

 
Table 2: Experimental and FE natural frequencies for models denoted t0, t1 and t2. 

 Natural Frequencies (Hz) 

Mode Exper. FE t0 % Err t0 FE t1 % Err t1 FE t2 % Err t2

1 27.72 29.96 8.1% 28.42 2.5% 29.33 5.8% 

2 98.6 100.7 2.2% 99.5 1.0% 99.3 0.7% 

3 167.9 173.6 3.4% 169.7 1.1% 171.2 1.9% 

6 437.6 447.0 2.1% 437.0 -0.2% 440.8 0.7% 

7 566.0 554.3 -2.1% 567.7 0.3% 558.6 -1.3% 

8 756.9 755.8 -0.1% 754.0 -0.4% 749.2 -1.0% 

9 861.1 872.0 1.3% 848.1 -1.5% 860.1 -0.1% 

10 1041.3 1041.4 0.0% 1048.6 0.7% 1040.0 -0.1% 

11 1206.5 1213.2 0.6% 1188.8 -1.5% 1198.1 -0.7% 

12 1378.5 1353.3 -1.8% 1370.6 -0.6% 1365.5 -0.9% 

13 1408.4 1404.3 -0.3% 1396.4 -0.9% 1387.7 -1.5% 

14 1608.9 1619.4 0.7% 1607.5 -0.1% 1610.4 0.1% 
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Next, the nonlinear behavior of each of these models was compared by constructing an implicit condensation 
(IC) reduced order model (ROM) of each.  After some investigation, some of which is detailed in [14], a reduced 
order model that included modes 1, 3, 6, 7, 9, 10, 12 and 29 was found to most effectively describe the nonlinear 
response of the structure below about 1000 Hz.  The analysis also revealed that applying forces that would displace 
each linear mode 10, 3, 1, 2, 1, 1, 1 and 0.001 times the thickness seemed to provide a good balance between 
exciting the geometric nonlinearity sufficiently to determine the ROM coefficients while avoiding very large forces, 
which might introduce ill conditioning.  A few of the NNMs of the plate, estimated from these ROMs, are shown in 
Figs. 6 and 7. 
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Figure 6. Nonlinear normal modes 3 and 6 of the plate for each of the finite element models.  

The contour plots show the initial z-displacement in each NNM for the points indicated. 
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Figure 7. Nonlinear normal mode 7 (two stripe mode) of the plate for each of the finite 
element models.  The solid blue line shows the amplitude and frequency of a sine sweep 

performed on the actual specimen using a base excitation of approximately 80g. The 
pentagram indicates the location where the response was 90 degrees out of phase with the 

excitation. 

The NNMs reveal that bending modes 3 and 6 exhibit measurable nonlinearity as the displacement approaches 
between one and two times the plate thickness (0.0511 in).  The two stripe mode exhibits 2 to 4 times as much 
nonlinearity at the same displacement.  The results show that the different ROMs (and hence the different finite 
element models t0, t1 and t2) all show similar behavior for very small shifts in the resonant frequency, but the 
displacements can vary by tens of percent between the different ROMs if the frequency shifts more than about two 
percent.  Further investigation revealed that the different frequency-energy behavior of the ROMs primarily has to 
do with differences in the coupling between the various modes.  This is evident when comparing the deformed shape 
of NNMs in Figs. 6 and 7.  Not only does the scale of the displacement change, but the deformation shape (and 
hence the stress field) also changes, most notably in case of NNM 6 but there are subtle changes in all of the shapes. 

To explore this further, the time histories of NNM 7 at the points indicated in Fig. 7 for the t0 and t1 ROMs are 
shown in Fig. 8.  (Recall that the coordinates of the ROM are the amplitudes of the linear modes included in the 
ROM. For this plot the modes are rescaled to a maximum value of unity so the displacements shown are in inches.)  
Both time histories are dominated by linear Mode 7, as one might expect, but it interesting to note that Mode 9, 
which is the second most significant contributor, has an opposite effect in the two different ROMs.  In the t0 ROM it 
moves in concert with Mode 7 so the total deformation is the sum of the two shapes, while in the t1 ROM the two 
shapes cancel.  Mode 9 is a 3rd bending mode, so this has the effect of changing the deformation of the tip of the 
plate relative to that of the wing tips.  Mode 12 is also much more active in the t1 ROM.  Finally, to further quantify 
the importance of modal couplings in this NNM, the frequency-displacement behavior of a fourth ROM (denoted t1 
4M ROM) is also shown.  This ROM includes only modes 1,3,6 and 7 for the t1 finite element model.  This ROM is 
far stiffer at high displacement amplitudes for the same wingtip displacement and gives an idea of how much error 
might be incurred if the coupling between Mode 7 and the higher modes was completely neglected. 
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Several high amplitude sine sweeps were performed in an effort to validate the measurements for NNM 7 and 
one of them is shown in Fig. 7.  The change in the response frequency relative to the measured linear natural 
frequency is plotted as if it were the “% Change in Frequency”.  As the frequency of the excitation changes, the 
phase of the response changes relative to the force.  According to theory [7, 9], the resonant response is well 
approximated by the NNM at the point where the response is 90 degrees out of phase with the force.  This point is 
shown with a pentagram in Fig. 7.  Hence, the true NNM for this structure should be above the solid blue line and 
should intersect it at the point marked with a star.  Model (and NLROM) t1 comes closest to the swept sine 
measurements, so while linear updated might have equally favored models t1 and t2, we would select model t1 
based on the first nonlinear updating step.  It also appears that the model should be tuned further to accurately 
capture the nonlinear behavior of the plate in the vicinity of this NNM.  Unfortunately, without further information it 
is difficult to guess how the model should be changed to obtain the desired frequency-displacement behavior, so 
nonlinear updating will cease for this model.  If more accuracy were desired then it seems that the nonlinear 
coupling between modes 7, 9 and perhaps 12 should be further enhanced, but with a measurement at only one point 
it is not possible to determine how much of each of these modes is present in the motion. 
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Figure 8. Displacements as a function of time for each of the modal coordinates for NNM 7 

at the two points indicated with black squares in Fig. 7. (solid line = t0, dashed line = t1) 

In order to relate the differences in the ROMs to the life of the plate, the solutions at the points marked with 
black squares in Fig. 7 were applied to the full finite element model and the stresses and strains in the part were 
computed.  The von Mises stress from this computation, which corresponds to the state where the stress is highest 
over the vibration cycle, is shown in Fig. 9.  It is interesting to note that the peak stress of 71ksi for the t0 model is 
almost twice as large as that for the t1 model (42ksi).  This could translate into a difference of more than an order of 
magnitude in the fatigue life predicted by the two models.  It is also interesting to see that the region where the point 
of largest stress occurs is different between these two models. The ultimate tensile strength of this type of Titanium 
is reported as 135-143ksi in MIL-HDBK-5H, so a response at this level might represent an extreme event but the 
parts are not likely to be designed to routinely reach stresses this high. 

As discussed earlier, the test articles used in this work only reached about a 5% shift in the resonance frequency 
(under an 80 g base excitation).  To illustrate the ROM predictions near that case, the stress that the part experiences 
when vibrating in the NNM at each of the three points marked with triangles was also computed and the results are 
compared in Fig. 10.  If we compare the ROMs for the same shift in resonant frequency, e.g. points marked A and B 
in Fig. 7, then we see that the stress field differs noticeably between the two ROMs and that the maximum stress for 
the t0 ROM is 7.2% larger.  Such a comparison is meaningful if the structure is known to experience a certain 
frequency shift in operation and the ROM seeks to capture that.  If we instead compare points A and C, where the 
maximum displacement at the wing tip is approximately equal, then the t0 ROM predicts a 7.4% lower stress than 
the t1 ROM.  This comparison would be meaningful if the part was known to experience 0.06 in of displacement at 
the wing tip.  It is important to note that these two ROMs would not necessarily reach equal maximum 
displacements when subjected to the same force.  Because the system is nonlinear one must integrate the ROM to 
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compute the response to a given loading, and that response could involve all of the modes of the structure.  But the 
force required can be estimated using the method in [15].  Using that approach and assuming that the damping is 
fixed and modal, described by the low-level damping ratios that were measured, we find that to excite the observed 
NNM motions using a sinusoidal point force at the right wing tip, force amplitudes of 0.197 lb, 0.199 lb and 0.172 lb 
would be required for points A, B and C respectively.  The ROM can be integrated with this forcing to verify that 
these values are quite accurate. 

   
Figure 9. Maximum von Mises stress in the plate when vibrating in NNM 7 at the two points 

indicated with black squares in Fig. 7. (left = t1, right = t0) 

   
Figure 10. Maximum von Mises stress in the plate when vibrating in NNM 7 at the three 

points indicated in Fig. 7. (left = t1-A, middle = t0-B, right = t0-C) 

IV.   Panel from Lynx Helicopter 
The second system studied is dramatically more challenging than the cantilevered plate.  The linear dynamics are 
more complicated due to the curvature, geometry and material properties, and the nonlinear response of the panel 
will probably depend strongly on the stiffness of the frame and hence nonlinear updating will be critical. No 
drawings were provided by the manufacturer, so the panel model was developed empirically.  A set of 
measurements was acquired with a ruler and the plate profile was measured by tracing the curved edge onto graph 
paper.  The authors also used the Kinect™ system described in [11] to measure the geometry over a cloud of points 
and a visualization of this measurement is shown in Fig. 11a.  This data provided a useful reference and sanity 
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check.  The Kinect also makes it possible to account for the difference between the angle at which the measurement 
is taken relative to the surface and the surface normal. In the end a quadratic function 

20.00234 0.798y+68.4z y  , was found to describe the profile well.  A mesh of shell elements was created in 

Matlab®, defined parametrically to allow optimization of the mesh and geometry, and then used to write input 
scripts for Abaqus, which was used to perform all FE analyses.  The stiffeners at the back of the panel were 
approximated with one-dimensional beam elements, fixed to the shell in all relevant degrees of freedom with an 
offset equal to half their thickness.  The shell mesh is shown in Fig. 11b, and the corresponding beam mesh is 
overlaid on the relevant nodes; the offset between the neutral axis of the beam and their connection to the shell 
elements was accounted for but is not represented in this simple figure.  The model had a total of 20,116 nodes. 

 
Figure 11. Point cloud generated by Kinect (left) and finite element mesh generated for the 

plate (right). 

A. Linear Model Updating 
 The green line in Fig. 12 shows a composite (i.e. average over all of the measurement points) of the frequency 
responses measured on the panel using a low-level, broadband random excitation at the location shown in Fig. 1.  
The panel was then moved into a sound absorbing room and swept sine tests were performed at various amplitude 
levels.  Figure 12 also shows a few sample results from those tests.  Comparison shows that several of the modes of 
the panel are noticeably nonlinear with a 2N excitation force.  One of the dominant modes with this input location 
was the mode near 380 Hz, which exhibited a peak response of about 0.056mm at the measurement point to the 2N 
excitation.  Note that the place where the shaker input was applied was chosen such that the shaker would not mass 
load or otherwise change the dynamics of the panel very much; it certainly was not optimal to excite all of the 
modes.  The mode near 460 Hz also seems to exhibit significant nonlinearity. 
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Figure 12. Frequency responses measured on the plate in two setups.  In the first test (green), broadband 
random excitation was used and the mode shapes shown in Figs. 13 through 16 were acquired.  The second 
test was performed with nominally identical boundary conditions using stepped sine excitation and 
measuring at only one point on the panel. 
 
 The initial finite element model predicted the natural frequencies of the panel within about a factor of two, but 
significant error checking was required to correct the model and bring it into better agreement with the 
measurements, especially as regarded the definition of the bending directions and material properties for the beam 
elements.  Once these issues had been corrected the models agreed qualitatively and a few gradient-based 
optimization steps were then used to bring the frequencies into closer agreement.  The density of the shell was 
assumed to be 1500 kg/m3 and that of the beams was adjusted until the mass of the panel matched the measured 
mass, resulting in a density of 629 kg/m3 for the beams.  These parameters were not altered.  In a first step the beam 
properties were adjusted to bring modes 1 and 2, which were dominated by the beam stiffnesses, into close 
agreement.  These modes were dominated by the stiffness of the beams, so it was hoped that this step would serve to 
identify the beam stiffness properties.  Then several bending modes began to agree closely enough that they could 
also be considered and a second iteration was performed in which the shell modulus and thickness was also updated. 

 
Table 3: Parameters of FE model before and after various updating steps. 

Parameter Initial Values Update based on 
Modes 1 and 2 

Updated based on 
Modes 1,2,4,6,14 

I (beams) 2.3801e-09 m4 1.1028e-09 1.792e-09 
J (beams) 4.0164e-09 m4 4.322e-10 1.3544e-09 
E (shell) 17 GPa same 9.7808e9 
ho (shell thickness 
outer section) 

1.3 mm same 1.4 

hi (shell thickness 
inside section) 

1.3 mm same 1.2 

 
 The natural frequencies of the FE model are compared with those extracted from the LDV measurements in 
Table 4.  Several of the FEA mode shapes are compared with the operating deflection shapes measured with the 
LDV in Figs. 13 through 16. The comparisons show that the FE model is qualitatively quite similar for most of the 
first ten or so modes of the panel, but many of the modes are dominated by bending of the free edges of the panel 
and other small-scale features that this model doesn’t seem to capture very accurately.  However, the current model 
does seem to capture the stiffness of the frame (dominated by modes 1 and 2) and the membrane bending of the shell 
so it was hoped that it might be adequate to describe the nonlinear behavior of the panel. 
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Table 4: Natural frequencies of FEM and measured in SLDV test. 
Elastic 
Mode 

FE Model Measured Description 

1 73.768 74.06 1st torsion 
2 193.96 198.13 1st bending 
3 305.21 - (3,1) lobe membrane 
4 305.47 - 2nd Torsion 
5 315.92 327.5 (2,1) lobe membrane 
7 367.79 383.13 (4,1) lobe membrane 
8 442.22 - (4,1) lobe memb. + 3-node bottom edge 
 

- 
459.38 (4,1) lobe memb. + 2-node bottom edge 

+ 2-node top edge in phase 
  521.5, 527.5 3-node bottom edge 
14 581.63 578.44 (4,2) lobe membrane 
  598.75 (4,2) lobe memb. + 4 node bottom edge 

 

  
Figure 13. First mode from FEM at 73.77 Hz (left) and test at 74.06 Hz (right). 
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Figure 14. Mode 3 from FEM at 305.21 Hz  

 
Figure 15. Mode 5 from FEM at 315.9 Hz (left) and test at 327.5 Hz (right). 
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Figure 16. Mode 7 from FEM at 367.8 Hz (left) and test at 383.1 Hz (right). 

B. Nonlinear Modeling 
 Several reduced order models of the panel were created using the ICE method described in [12, 13].  Because 
this structure has free boundary conditions, the approach had to be modified slightly.  Specifically, the constraint 

T 0RB φ Mx  was applied as six multi-point constraints3 where RBφ  contained the six rigid body modes of the 

panel, M is the mass matrix and x the vector of displacements of all of the nodes in the FEA model.  This preserves 
all of the elastic modes while constraining away rigid body motion.  Then, the FEA model was deformed statically 
using a load that would excite only the 5th (315.9 Hz) linear mode at small force levels.  For larger loads, this static 
force also excites modes 2, 6, 7 and 9 due to nonlinear coupling, so those modes were included in a ROM. 

 Because of the way in which the constraints T 0RB φ Mx  were implemented, the cost of computing the static 

response of the constrained model was substantial (over ten hours were required to estimate a ROM).  Hence, there 
was only time to create about five different ROMs and of those the case that was thought to be most accurate was 
the case where modes [2,5,6,7,9] were displaced, respectively, by forces that would cause a linear deformation of 
[0.5, 0.2, 0.5, 0.5, 0.2] times the thickness.  The resulting nonlinear deformations ranged from 0.2 to 0.8 times what 
was expected for the linear model, so these loads are somewhat larger than the optimum suggested in [5].  The 
NNMs computed from these load cases are shown in Fig. 17.  Two curves are shown for each NNM corresponding 
to the case where the ROM is computed using a “constrained” fit (where certain symmetries are enforced) or 
“unconstrained” as explained in [5, 12].  The unconstrained fit was found to capture the static load cases more 
accurately; the norm of the difference between the static loads and those predicted by the ROM was 0.03 for that fit 
as opposed to 0.07 for the constrained fit, but in any event the two curves for each mode give some indication of the 
level of uncertainty that is present in the ROMs.  For modes 5 and 9, a maximum deformation of 1-2 millimeters is 
expected to correspond to a 1% shift in the natural frequency, and more than a 5% change in frequency is expected 
if the deformation exceeds 4-5 mm.  The panel is not likely to survive larger deformations for an appreciable amount 
of time, but the exact stresses that the panel would experience at these deformation levels are not yet known. 
 The simulations also reveal that the deformation shape of the structure is strongly dependent upon the response 
level.  For example, the deformation shape of NNM 5 is shown in Fig. 18 for both a linear deformation and for the 
two energy levels indicated in Fig. 17.  As energy increases the deformation is predicted to localize to the bottom 
edge of the panel.  This phenomenon is likely to be quite sensitive to the panel thickness on the edge and to the way 

                                                           
3 The authors later discovered that this set of constraints destroys the bandedness of the matricies, causing a large 
increase in the memory requirements and computational cost.  The Abaqus documentation suggests an alternative 
where one can avoid this by replacing these six equations with many equations involving additional variables, each 
having a much smaller number of terms.  The authors have not yet implemented that approach. 
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in which this part is joined to the frame and so the current model may need to be improved to reproduce this 
behavior. 
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NNM 9 f(E=0)=447.53

 
Figure 17. Nonlinear normal modes computed from a 5-mode reduced order model of the 

panel. 

  
Figure 18. Deformation shapes of the 5th NNM (315.9 Hz at low amplitude) for the cases 
indicated in Fig. 17.  The peak displacement is -1.2mm in Case A and -4mm in Case B. 

C. Nonlinear Testing 
 A sequence of stepped-sine tests was performed near a few of the resonances that exhibited the most nonlinearity 
to extract the nonlinear mode backbone.  For example, the stepped sine measurements near the 460Hz resonance are 
shown in Fig. 19.  A closed-loop control algorithm was used to adjust the signal sent to the shaker at each frequency 
line in order to assure that the input force was a sinusoid (to 99% tolerance) at the desired level.  Typically, the 
algorithm had to increase the drive voltage to the shaker by an order of magnitude near resonance to achieve this 
objective, and a few harmonics of the drive signal had to be adjusted to produce a sinusoidal force. 

Case A 

Case B 
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 The measurements show a softening nonlinearity, where the peak of the resonance decreases about 10 Hz as the 
input amplitude increased by a factor of 50. The NNMs was extracted from these measurements by identifying the 
point at which the response was 90 degrees out of phase with the force and the displacement versus frequency is 
shown in Figs. 20 and 21.  The measurements show that the nonlinearity becomes significant as the displacement 
approaches 0.01mm, which is about an order of magnitude smaller than what is predicted by the reduced order 
models.  The reason for this is not known, but perhaps it should not be too surprising since the finite element model 
only roughly reproduces the modes of the panel.  The results of this exercise suggest that one might need quite an 
accurate model for a panel such as this to accurately reproduce the nonlinear behavior, although it is perhaps 
encouraging to see that the model used here gives near the correct order of magnitude. 

425 430 435 440 445 450 455 460 465 470 475
0

5

10

15

20

25

30

35

Frequency (Hz)

M
o

b
il

it
y 

(m
m

/s
/N

)

Frequency Response at Various Forcing Levels

 

 

  5

  4
  3

  2

1.5

  1

0.6
0.3

0.1

 
Figure 19. Experimentally measured response near the 460 Hz resonance. 
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Figure 20. Comparison of the frequency-displacement behavior of the measured 5th NNM 

and that predicted by the finite element model. 
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Figure 21. Comparison of the frequency-displacement behavior of the measured 9th NNM 

and that predicted by the finite element model. 

 The simulation results show that the behavior of each nonlinear mode depends strongly on how the underlying 
linear modes couple as the force amplitude increases.  This behavior cannot be experimentally corroborated unless 
measurements are taken at many points on the surface.  This was pursued in this work using Continuous-Scan Laser 
Doppler Vibrometry [16-18].  Because the desired excitation was sinusoidal and a measurement with very high 
resolution was desired, the methodology outlined in [11] was employed.  Specifically, the scan pattern consisted of 
two slow sinusoids with 7.5 cycles/minute and 7.6 cycles/minute in the vertical and horizontal directions 
respectively.  Using this pattern, the laser covers the surface densely over the 10 minute measurement window, as 
shown in Fig. 22.  During initial tests the panel was mounted in an acoustically insulated booth and the laser imaged 
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the surface through a window as shown in the upper picture in Fig. 22.  However, spurious reflections from the laser 
on the glass caused considerable noise and measurement artifacts.  Eventually this setup was abandoned and the 
vibrometer and panel were mounted together within the booth as shown in the lower picture. 
 

 

 
Figure 22. Photographs of initial (top) and final (bottom) setup for CSLDV measurements. 

 Figure 23 shows the response of the panel in this configuration to a stepped sine near 460 Hz.  The response now 
shows two peaks near this frequency.  For these measurements the panel was excited from the front (see Fig. 22) and 
with a larger shaker than was used in the earlier tests.  Also the suspension system was changed replacing elastic 
cords with fishing line.  Presumably these changes have altered the system slightly so that two modes are now 
excited. 

Figure 24 shows example ODSs from the CSLDV scans, taken at various frequencies and force levels, trying to 
follow the resonant backbones of the two modes as best as possible. As a first approximation, the low-level ODSs 
were taken as estimates of the mode shapes (which was straightforward since the modes were well-separated in 
frequency at low force levels).  These shapes were also correlated against the ODSs measured at higher force levels 
to explore the mixing between the shapes as amplitude increased.  The correlation was performed using a 
normalised vector inner-product (e.g. the modal assurance criterion, MAC between the shapes). The correlation of 
mode A with itself is seen to reduce as the forcing level was increased, whilst the correlation of mode A with mode 
B is seen to increase as the forcing level increased. The same can be said of mode B. This is unsurprising, since the 
resonances converge at higher force levels, and so the ODS becomes a combination of two modes with similar 
energy levels. A plot such as this is expensive in terms of testing time, and is experimentally difficult.  It was not 
trivial to accurately track the backbones nor to minimize the higher harmonics in the forcing signal.  However, 
significant insight into the coupling between these modes is clearly made possible.  In the lower frequency mode the 
deformation is localized to the bottom edge of the panel, while the higher frequency deformation shape resembles a 
(4,1) lobe membrane mode.  These shapes are denoted Mode A and Mode B.  The frequency of Mode A remains 
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essentially constant, as one might expect for a mode that involves little membrane stretching.  In contrast, the 
frequency of Mode B drops, and as it drops its shape seems to take on more of the character of Mode A.  The 
behavior observed here is qualitatively similar to what the FEA model predicted for the modes near 315 Hz, as was 
illustrated in Fig. 18. 
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Figure 23. Photographs of initial (top) and final (bottom) setup for CSLDV measurements. 

 
Figure 24. Summary of operating deflection shape measurements with CSLDV.  Two 

distinct shapes seen at low force levels, are denoted Mode A and Mode B.  As the forcing 
amplitude increases the ODS changes becoming a linear combination of these shapes. 

A 
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D. Discussion 
The experimental campaign has confirmed that it is feasible to compute the frequency-energy behavior and the 

deformation shapes of a nonlinear panel with sufficient fidelity to understand the modal interactions that drive the 
nonlinear behavior.  Unfortunately, the FEA model is currently not of sufficient quality to be brought into close 
agreement with the measurements but with sufficient resources to collect additional measurements and more 
modeling effort it does appear that model updating based on nonlinear normal modes is feasible even for a fairly 
complicated structure such as this.  If the CAD geometry for the panel had been available and more was known 
about its construction the results would likely have been improved. 

V. Conclusions 
This work has sought to assess the suitability of nonlinear modeling, testing and model updating for 

geometrically nonlinear structures.  Two structures were considered, the first being a flat cantilevered plate that was 
relatively simple and a model was developed that very accurately captured the linear behavior and the nonlinear 
behavior up to relatively large energies, at least insofar as could be determined based on measurement data that was 
available.  The comparisons revealed that spatially detailed measurements would be needed to validate/update the 
model at higher energies, as the nonlinear behavior begins to depend on which linear modes interact. 

The second structure considered, a skin panel from a Lynx helicopter, posed a much more significant challenge.  
Because little was known about the construction of the panel significant updating was needed to obtain a model and 
the in time available for the project it was only possible to create a relatively crude model.  Furthermore, the curved 
structure exhibits rich dynamics with both softening and hardening nonlinearities and even more complicated 
interactions between the underlying linear modes.  An experimental campaign involving stepped sine testing and 
continuous-scan laser Doppler vibrometry showed that it is feasible to obtain highly detailed measurements that 
reveal how the deformation shape changes with increasing amplitude; measurements such as these may be the key to 
determining whether the nonlinear model accurately represents the structure of interest. 

This research has also highlighted several areas where further research is needed.  First, stepped sine testing is 
straightforward and does seem to produce high quality estimates of the nonlinear response.  However, at high force 
levels it is difficult to achieve a sinusoidal input signal and the tests are exceedingly slow.  It would be preferable to 
have a means of stepping directly along the NNM backbone rather than performing several sweeps near resonance 
and then extracting the backbone after the fact. The swept sine measurements used on the cantilevered plate were 
simpler to perform, and that may be an excellent alternative in many cases, especially if spatial data could be 
collected simultaneously. 

Several challenges also remain in the modeling realm; although the reduced order modeling techniques have 
been used for almost two decades, there is still little guidance in the literature regarding what load levels to use and 
how many modes must be included to obtain a model that is valid over a desired range of loads or displacements.  
The authors continue to explore these issues [5, 14, 19] and as a result better rules are emerging to guide the process 
of generating a nonlinear ROM.  All of the computations required for the cantilevered plate were easily performed 
on a laptop computer and none took more than a few hours.  It was far more expensive to solve the static load cases 
for the Lynx panel, and that inhibited our efforts significantly, but if a more efficient means had been available for 
constraining away the rigid body modes then presumably that structure would also have been relatively easy to deal 
with.  Once the ROMs were created the NNMs could be estimated in a few minutes, and the response to arbitrary 
loadings can also be computed very inexpensively. 
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