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Abstract: 
 
Many systems can be approximated as linear with coefficients that vary periodically with 

time.  For example, an anisotropic shaft rotating at constant speed on anisotropic bearings can be 
modeled as periodically time varying (PTV).  Similar models can be obtained for wind turbines, 
some mechanisms, etc…  However, the vast majority of modal analysis algorithms and 
techniques apply only to linear time invariant (LTI) systems.  In this paper, two methods are 
demonstrated by which the free response of a periodically time varying system can be exactly 
parameterized by an LTI system.  The parameters of the LTI representation can then be identified 
using standard techniques.  The analysis techniques are demonstrated on a simple system, 
representing a rotor mounted on an anisotropic, flexible shaft, supported by anisotropic bearings.  
They are then applied to synthetic response data for a system with parameters that vary only 
weakly with time, as might be encountered when attempting to detect small cracks in a rotating 
shaft.  These examples demonstrate the methods’ ability to characterize the anisotropy of the 
shaft, even when both the shaft and supports are anisotropic. 

 

1. Introduction 
Periodically time varying (PTV) systems are encountered in many engineering fields.  

They were first studied as early as 1831 by well known figures such as Faraday, Rayleigh and 
Matheiu.  More detailed studies were performed by Floquet and Lyapunov in the late 1800’s, who 
independently studied linear differential equations with periodic coefficients [1], and arrived at 
similar results.  Hence, the theory used to analyze such equations with is often called Floquet 
theory or Floquet-Lyapunov theory.  Two well known periodically time varying differential 
equations are the Hill equation and the Mathieu equation.  Richards [2] gave an excellent history 
of Floquet theory, and also reviewed a variety of applications, including: mass spectrometry, 
dynamic buckling of structures, elliptical waveguides, and electronics, focusing on second order 
systems.  Montagnier, Spiteri and Angeles [3] give a good review of some recent research 
involving Floquet theory.  These concepts have been applied to a variety of mechanical systems 
such as helicopters, wind turbines or other bladed machines [4], [5], mechanisms [3], buckling 
problems [4] and satellites.  Recently, the methods have also been applied to create analytical 
models of rotordynamic systems [6], [7], [8], [9].  Sinha et al [10] and Montagnier et al [3] have 
applied Floquet theory to automatic control of periodically time varying systems. 

While a number of powerful tools exist for modeling, controlling and assessing the 
stability of PTV systems, these are not always exploited in many applications where they could be 
of great advantage.  Furthermore, there has been little work in developing methods for 
experimentally parameterizing PTV systems.  While a wealth of tools, such as experimental 
modal analysis, exist for identifying the parameters of Linear Time Invariant (LTI) dynamic 
systems, most of these tools cannot be applied to linear PTV systems, so that one must use more 
difficult analysis methods.  For example, there are well established methods for identifying the 
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parameters of LTI systems, and once the parameters of an LTI system have been identified, one 
can easily predict the response of the system to a variety of inputs.  On the other hand, no 
comparable methods exist to experimentally characterize the behavior of time-varying systems, 
nor to efficient methods exist for computing their response to arbitrary inputs.  In view of the 
similarities between linear periodically time varying systems and LTI systems, one might expect 
to be able to extend many of the tools for LTI systems to LPTV systems.  This work demonstrates 
one such case in which system identification routines for LTI systems can be readily adapted to 
LPTV systems. 

A number of methods have been proposed for treating systems whose parameters vary 
slowly with time.  For example, those presented by Bendat and Piersol in [11].  In contrast, the 
methods presented here allow the treatment of systems whose parameters vary rapidly relative to 
the fundamental time constant of the system (i.e. the time constant of the system for a fixed set of 
parameters.)  Particular attention is given to systems whose parameters vary only slightly with 
time.  A rotordynamic system with a cracked or slightly anisotropic shaft in anisotropic bearings 
typifies such a system. 

The following section reviews some aspects of Floquet-Lyapunov theory for periodically 
time varying ordinary differential equations and presents two strategies for identifying the 
parameters of PTV systems from free response data.  In Section 3 these methods are applied to 
synthetic data for two PTV systems, one in which the system parameters vary strongly with time, 
and another with only slight variation as might be encountered in condition monitoring 
applications.  Section 4 presents some conclusions. 

2. Theoretical Development 
2.1. Review of Floquet-Lyapunov Theory for PTV Systems 

This section presents a brief review of the relevant aspects of Floquet Theory, as well as 
some justification using concepts from discrete system theory.  The equations governing a linear 
time varying system may be written in the following state space representation 

( ) ( )x A t x B t u= +   (1) 
where x is the system state vector, {u} the inputs to the system, and the matrices A(t) and B(t) 
vary with time.  If the input u} = 0, then the state transition matrix can be used to transfer the state 
vector from the initial state x(t0) at time t0 to the state at time t as follows 

)(),()( 00 txtttx Φ=   (2) 

with the property that 
),(),(),( 0110 tttttt ΦΦ=Φ .  (3) 

If the dynamics of the system from time t0+TA to t+TA are the same as those from time t0 to t, so 
that A(t) is periodic with period TA, then the state transition matrix for t ≥0 can be reconstructed 
from the state transition matrix for 0 ≤ t < TA as follows [3] 

n
AA tTttttnTt ),(),(),( 0000 +ΦΦ=+Φ   (4) 

where n is an integer.  This important result is often exploited to efficiently compute the response 
of linear periodically time varying systems [4].  A few methods for computing the state transition 
matrix are discussed in the Appendix. 
 The Floquet-Lyapunov theorem states that the state transition matrix of a linear PTV 
system with period TA can be decomposed as follows [4] 

 ( ) )()(exp)(),( 00
1

0 tPttRtPtt −=Φ − ,  (5) 

where R is a constant matrix and P(t) is periodic such that P(t+TA)=P(t).  Both matrices can be 
complex in general [3].  If R can be diagonalized as 

1)()( −Λ= RRR MMR   (6), 
then the Floquet-Lyapunov representation can be expressed in terms of modal parameters with 
time varying mode shapes {ψr} as follows 
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where Ψ(t)=[{ψ1}, {ψ2}, …]   is the time varying modal matrix and ΛR contains the constant Floquet 
eigenvalues of the system. 

2.2. Identifying the parameters of PTV systems 
In this section we shall present two methods by which the free response of a periodically 

time varying system can be represented exactly by that of an LTI system.  The first method 
consists of discretizing the PTV system over its fundamental period, resulting into a collection of 
LTI systems of the same order as the PTV system, corresponding to different portions of the 
fundamental period.  The second method expands the modal matrix of the Floquet representation 
in a Fourier series, resulting in a single, although possibly high order, LTI representation for the 
PTV system.  In either case, the parameters of the LTI system (or collection of systems) can be 
identified from the transformed response using standard system identification techniques.  The 
parameters identified for the LTI system are then easily related to those of the PTV system.  The 
relative merits of these two methods will be discussed throughout the remainder of the paper. 

2.2.1. Method #1 
From the state transition matrix representation in eq. (4), one can construct a discrete 

time system whose response exactly matches that of the LPTV system at the instants t0 + nTA 
where n is an integer.  First define x(n) = x(nTA+t0) where n = 0, 1, 2, …  Then one can see that 

)()()(),()1( 000 nxtAnxtTtnx DA =+Φ=+   (8), 

where the matrix AD(t0) is constant for a given initial time t0.  This shows that the samples at 
instants separated by integer multiples of TA are related by a linear time invariant system whose 
parameters depend only on the initial time t0.  As a result, one can identify the parameters of the 
matrix AD(t0) using standard methods for LTI systems, so long as the samples are taken at 
instants separated by integer multiples of TA. 

This method requires that one sample synchronous with TA.  However, it might be 
desirable to sample the response at a higher or lower rate.  This can be achieved by setting the 
time increment Δt = TA/P or Δt = P*TA, where P is an integer.  Setting Δt = P*TA corresponds to 
sampling once every P periods of the system.  The system matrix identified from such a response 
would then be (AD)P.  (One might also interpolate the response data if Δt is selected arbitrarily, but 
doing so may introduce interpolation error.) 

The more interesting situation occurs when one samples at a faster rate (such that Δt = 
TA/P).  In this case one can learn something about the time varying nature of A(t).  In this case, 
the response is separated into the following collection of responses. 

],,2,,[
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11111
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−−−−−

  (9), 

Each response yK can be parameterized by a matrix (AD)k, pertaining to a different initial 
time tk where tk = k*TA/P for k = 0,1,…P-1.  The system parameters can then be determined by 
applying a standard, LTI modal parameter identification routine to each response yk 
independently.  In the time domain, for example, one might use the Least Squares Complex 
Exponential method or a Subspace method [12, 13].  If the responses are transferred to the 
frequency domain, the Least Squares Complex Frequency Domain Algorithm (LSCF) [14] or the 
Algorithm of Mode Isolation (AMI) [15-18] could be used. 

Some of the aforementioned algorithms estimate the system matrix (AD)k directly whereas 
others identify the modal parameters that comprise it.  The modal parameters are related to the 
system matrix as follows 
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( ) ( ) 1−Λ== kkkkDkD MMAtA   (10), 

where Mk is the modal matrix whose columns contain the state space mode vectors and Λk is a 
diagonal matrix of eigenvalues. 

Comparing equation (10) with equation (7) and recalling that AD is a state transition 
matrix, one can see that when the Floquet state transition matrix in eq. (7) is diagonalizable, the 
eigenvalues of each matrix (AD)k should be equal (i.e. Λk = Λ = exp(ΛRTA) for all k) and their 
respective mode vectors should be the periodic Floquet mode vectors {ψ(tk)}.  In such a case, one 
can readily relate the modal parameters of the systems (AD)k to the Floquet-Lyapunov 
representation.  This was found to be the case for the PTV system presented herein using a 
variety of different parameter sets. 

When the eigenvalues Λk of (AD)k are not a function of k, the modal parameters of the 
systems (AD)k can be found in a single pass using a “common denominator” parameter 
identification algorithm.  The set of responses {yk} are processed as if they resulted from a single 
SIMO experiment with No*P outputs.  This results in a global estimate of the eigenvalues, and an 
estimate of the mode shapes for each system (AD)k.  For some systems this treatment might 
entail processing data from a large number of outputs simultaneously, in which case the authors 
recommend using either the AMI or the LSCF algorithms. 

At this juncture it is important to note that the imaginary parts of the eigenvalues of the 
matrices (AD)k, even when constant with k, can differ from the Floquet eigenvalues by an integer 
multiple of  the fundamental frequency of the parameters of the PTV system ωA=2π/TA.  This 
aliasing phenomenon is a well known feature of Floquet-Lyapunov theory [4].  Moreover, it is 
reasonable considering that the matrices (AD)k are only related to the system response at the 
instants tk + nTA.  However, if one considers the response at all time instants (i.e. for [t0, t1, …, tP, 
tP+1]), one can usually determine the integer multiple that relates the aliased eigenvalues to the 
true Floquet eigenvalues, as will be elaborated in the following sections. 

2.2.2. Method #2 
The Floquet representation of the response in eq. (7) can be expressed in summation 

form as follows 

( ) ( )

( ) { }

2

0 0
1

0

( , ) exp ( )

( ) ( )

N

R rr
r

R r rr

t t A t t

A t L t

λ

ψ
=

Φ = −

=

∑
  (11), 

where N denotes the number of modes, ψr(t) are the mode vectors or the columns of [Ψ(t)], and 
Lr(t) are the modal participation factors, or the rows of [Ψ(t)] -1.  The residue matrices (AR)r are the 
product of a periodic column vector and a periodic row vector, and hence are themselves 
periodic.  Because they are periodic, they can be readily expanded in a Fourier series.  Here we 
shall assume that they can be accurately represented using a fixed number (2*NR + 1) of terms 
so that the response may be written as 

[ ] ( )
2

0 0 0,
1

( , ) exp( ( )) exp ( )
R

R

NN

A rr m
r m N

t t B im t t t tω λ
= =−

⎛ ⎞
Φ = − −⎜ ⎟

⎝ ⎠
∑ ∑   (12), 

where [B]r,m is the mth complex Fourier coefficient of the rth residue matrix and ωA =2π/TA.  
Factoring out the summations reveals the nature of the response. 

[ ] ( )( )
2

0 0,
1

( , ) exp ( )
R

R

NN

r Ar m
r m N

t t B im t tλ ω
= =−

Φ = + −∑ ∑   (13) 

This can be thought of as the impulse response of an LTI system with 2*N*(2*NR + 1) 
eigenvalues λr + i*m*ωA.  The amplitude of each mode’s response is determined by the 
magnitude of the Fourier coefficient of its residue matrix.  The response and hence the state 
transition matrix must be real, so one can see that every complex eigenvalue must be 
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accompanied by it’s complex conjugate and that the Fourier coefficients of the residue matrices 
must also be real or part of a complex conjugate pair. 

The response in eq. (13) is indistinguishable from the response of a state-space LTI 
system having eigenvalues λr + i*m*ωA.  Hence, one can identify the parameters in eq. (13) from 
the time response or FFT of the time response directly using any standard parameter 
identification algorithm for LTI systems.  Equation (13) can then be used to interpret the result 
and/or reconstruct the Floquet representation. 

2.2.3. Comparison and Discussion 
One important difference between the identification methods is that Method #1 requires 

that the system response be sampled synchronous with the shaft angle or at a high enough rate 
that the response can be interpolated to a fixed set of shaft angles, whereas Method #2 places no 
special restriction on the sample rate.  (A variety of data acquisition systems are capable of 
sampling in such a manner.)  Another important distinction between the methods is that in 
general a much lower order system will be identified using Method #1, although it may have many 
outputs.  For Method #2, the system order, which depends on the number of terms in the Fourier 
series expansion of the residues, can be expected to be higher.  Each term required in the 
expansion increases the number of poles to be identified from the response.  For many 
Experimental Modal Analysis (EMA) algorithms, the complexity of the identification process is 
governed by the number of poles in the response.  On the other hand, a large number of 
response data sets are readily accommodated. 

When Method #1 is employed, standard EMA algorithms can identify the Floquet 
eigenvalues of the system utilizing all data simultaneously.  This is often called global curve fitting 
in the EMA literature.  On the other hand, to globally estimate the Floquet eigenvalues using 
Method #2, one must add a constraint in the fitting process to assure that the imaginary parts of 
each Floquet eigenvalue occur at integer multiples of ωA = 2π/TA (which is known).  If the 
eigenvalue and each of its multiples is estimated independently, one will likely end up with 
various estimates of the Floquet eigenvalue, each of which is likely to be somewhat different.  
This process could be greatly complicated if the system has many eigenvalues, especially if any 
of the contributions at λr + i*m*ωA overlap for any eigenvalue λr and any m corresponding to a 
significant Fourier coefficient [B]r,m.   

When Method #1 is used, one must “un-alias” the identified eigenvalues by determining 
the integer multiple of the fundamental frequency of the system parameters relating each to its 
corresponding Floquet eigenvalue.  This might be difficult when dealing with a high order system.  
In general, the best practice is probably to combine the information derived from each of the two 
approaches. 

3. Identification Examples 
In order to present the basic modeling and identification concepts as clearly as possible, 

a very simple LPTV system will be considered.  The system consists of a modified Jeffcott rotor 
on an anisotropic shaft that is supported by anisotropic bearings.  The system dynamics are 
equivalent to those of the discrete system in Figure 1.  The discrete system consists of a point 
mass suspended by two orthogonal, massless springs with spring constants kRx and kRy.  The 
springs are attached to a massless turntable that turns at constant speed Ω.  The turntable is 
fixed to ground by two massless springs kFx and kFy.  The equations of motion for this system are 
given in the Appendix.  Proportional damping is added to the system via the factor cf (see Section 
5.2 in the Appendix.)  For the first example, the springs representing the shaft stiffness are 
significantly different, resulting in a system whose stiffness matrix is a strong function of time.  
The second example illustrates the system identification techniques described previously on 
noise contaminated data for a system with parameters that vary weakly with time.  This is 
analogous to detecting a crack in the shaft in the presence of measurement noise. 
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Figure 1: Schematic of Simple PTV System 

3.1. Strongly PTV Example 
The following parameters are used for this example.  (See section 5.2 in the Appendix for 

the equations of motion.) 
 

kRx = 1 
kRy = 1.2 

cf = 0.004 

kFx = 1 
kFy = 1.5 

m = 1 
Ω = 0.5 

 
With these parameters, the fixed shaft natural frequencies of the system varied between 0.707 
and 0.911 rad/s depending on the angle at which the shaft was fixed. 

The response of the system to a unit impulse is identical to the free response of the 
system to a unit initial velocity (scaled by the mass, unity in this case) in the direction of the force.  
(This can be seen by integrating the equations of motion from 0- to 0+.)  A unit initial velocity at an 
angle of 45 degrees was used to assure that both modes of the system were excited, which 
corresponds to taking the initial state vector to be x0 = [0, 0, 0.707, 0.707]T.  The equations of 
motion are periodic with a period TA = 6.2832 = 2π, which corresponds to one half of a revolution 
of the shaft.  The sample increment was chosen to be Δt = 0.12566, corresponding to 50 samples 
per half revolution of the shaft.  The impulse response was found using time integration, via 
Matlab’s “ode45” function.  (This result was compared with that obtained by approximating the 
system matrix as piecewise constant over 50 increments, as discussed in Section 5.1 of the 
Appendix.  The two responses were almost indistinguishable.)  The response was evaluated over 
a time window encompassing 512 revolutions of the shaft, which was adequate to allow the 
impulse response to decay to a small fraction of its initial amplitude. 

3.1.1. Method #2 - Strongly PTV System 
The Fast Fourier Transform of the full record of the impulse response of this time varying 

system is shown in Figure 2.  The displacement in the fixed reference frame in both the x and y 
directions is shown.  A number of peaks are evident in the FFT, even though the system has only 
two natural frequencies.  The presence of additional peaks is explained by eq. (13), which states 
that the free response will have harmonic components at the damped natural frequencies 
imag(λr), and at the damped natural frequencies plus or minus integer multiples of the 
fundamental frequency of the system parameters ωA.  For this system, one might expect the 
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Fourier series coefficient corresponding to m = 0 in eq. (12) to dominate the response.  In that 
case, one can deduce that the Floquet natural frequencies are located near 0.8 rad/s where the 
two dominant peaks occur.  The other peaks must then correspond to contributions at λr + i*m*ωA 
for m = 2 and at (-λr + i*m*ωA) for m = 1 and 2.  (Note that ωA = 2*π/TA = 1 in this example.) One 
could use a curve fitting routine to determine the frequencies more precisely, or to determine the 
coefficients [B]r,m and assemble the Floquet representation. 

If one did not know which Fourier series coefficient was dominant in the expansion in eq. 
(12), then there might be some ambiguity in determining the Floquet eigenvalues and assigning 
the terms of the Fourier series to the proper indices (m). 
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Figure 2:  FFT of impulse response of 2nd order strongly PTV system.  (FFT of 

entire impulse response.) 

3.1.2. Method #1 - Strongly PTV System 
Method #1 gives quite a different view of the same data.  Figure 3 shows the FFT of the 

same data after decomposing it into a set of P = 50 LTI systems as discussed in Section 2.2.1.  
(Each LTI response corresponds to samples spaced TA seconds apart in time, beginning at tk = 
kΔt for k = 0, 1 … P, as was described in Section 2.2.1.)  Each of these responses can be 
described by an LTI system.  Response contributions are only visible at two frequencies, as one 
would expect for a 2-DOF system.  The peaks in the FRF appear at about 0.17 and 0.22 rad/s.  
These must be the Floquet eigenvalues, plus or minus some factor of the fundamental period of 
the system parameters ωA. 

If these results are combined with the information in Figure 2, one can deduce that these 
peaks correspond to ωA – imag(λr) where imag(λr) is the primary frequency component observed 
in Figure 3.  Hence, the first and second peaks observed here correspond to the second and first 
of the peaks observed near 0.8 rad/s in Figure 2.  This difference in frequencies can be attributed 
to aliasing, as described previously. 
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Figure 3:  FFT of LTI responses, found by decomposing the impulse response in 
Figure 2 into that of a collection of 50 LTI systems.  Responses for k = 0 and 22, 

corresponding to starting times t0 = 0 and 2.7646 are shown. 

The modal parameters of this collection of LTI systems can be extracted using any SIMO 
modal parameter identification algorithm.  The Algorithm of Mode Isolation [15-18] was applied to 
the collection of LTI responses in order to determine the eigenvalues and residue vectors of the 
modes comprising the response.  AMI processed a total of 100 FRFs simultaneously, 50 
responses in the x direction and 50 in the y direction.  The algorithm extracted the parameters 
automatically as described in [18].  The natural frequencies identified by AMI were 0.1582 and  
0.2178, which were within a fraction of a percent of the analytical values,  computed from the 
State Transition Matrix.  The modal damping ratios identified by AMI were 1.29 and 0.938 
percent, which were within 1% of the analytical values. 

The residues identified are shown in Figure 4, the top and bottom panes displaying the 
residues in the x- and y- directions respectively.  These residues were normalized as described in 
the Appendix (designated Azero) so as to be proportional to the time varying Floquet mode 
vectors.  The variation in the residues with shaft angle is clearly apparent.  The identified residues 
overlay the analytically derived residues. 
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Figure 4:  Real (‘r’) and Imaginary (‘i’) components of modal residues identified 
by AMI from the data decomposed into LTI responses (Method #1: Two of the 

LTI responses that were curve fit are shown in Figure 3.)  The analytically 
derived residues are also shown, which overlay the identified ones. 

3.1.3. Discussion 
This example illustrates a few important features of PTV systems.  The example system 

is 2nd order with time varying mode shapes.  When the response is decomposed according to 
Method #1, only two resonant peaks, corresponding to two distinct eigenvalues, appear in the 
response.  However, the mode shapes identified by this method vary with shaft angle.  On the 
other hand, if the entire time response of the PTV system is considered as in Figure 2, a number 
of peaks are seen in the response spectrum, each corresponding to a Floquet natural frequency 
plus some integer multiple of the shaft speed.  The residues identified for each of the modes 
corresponding to a single Floquet eigenvalue (i.e. λr + i*m*ωA) must be collected to assemble the 
Fourier series expansion of the time varying residue. 

Visual inspection of Figure 4 suggests that the zero frequency term should be dominant 
in a Fourier series expansion of residues.  It also appears than any term in the expansion beyond 
m = 2 or 3 would be small relative to the first few terms.  These observations confirm the validity 
of the qualitative results derived using Method #2.  Taken together, the two methods provide 
adequate information to attain a valid characterization of the system. 
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3.2. Weakly PTV Example (Cracked Shaft) 
One problem of interest is that of detecting cracks in a shaft that is supported in 

anisotropic bearings.  A crack in a round shaft is likely to cause the bending moment of inertia of 
the shaft to be different in two orthogonal directions.  The anisotropy of both the shaft and the 
bearings cannot both be captured by an LTI model.  However, the system fits a Floquet 
representation very well. 

The parameters of the simple PTV system were modified to simulate a shaft with a small 
level of anisotropy in anisotropic bearings.  The same parameters used previously were used in 
the model with the exception of the stiffness parameters for the shaft kRx and kRy.  These were set 
at kRx = 1 and kRy = 1.05, corresponding to a difference in stiffness of only 5%.  The Floquet mode 
shapes for the system are displayed in Figure 5.  The mode shapes are almost constant with 
shaft angle, as one might expect for a system that is almost isotropic. 
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Figure 5:  Floquet Mode shapes in the x- and y- directions versus shaft angle for 
the cracked shaft system.   ‘r’ and ‘I’ denote the real and imaginary parts of the 

mode coefficients respectively. 

The response of this system was simulated as was done previously for the strongly PTV 
system.  Gaussian white noise, scaled to have a standard deviation equal to 5% of the maximum 
of each impulse response was then added to the impulse responses to investigate the robustness 
of the identification methods to noise.  Figures 6 and 7 show the noise contaminated response of 
the data for the periodically time varying system.  Figure 6 shows the FFT of the PTV response 
(Method #2), while Figure 7 shows the FFT of the same data decomposed via Method #1. 

Only two frequency components are prominent above the noise in the response in Figure 
6.  These frequency components correspond to the two Floquet eigenvalues.  One must inspect 
the data carefully to detect the contributions at -λr + i*m*ωA for m = 1 and 2.  The contribution at λr 
+ i*1*ωA is not visible above the noise.  Consequently, careful treatment of the data is required to 
detect the periodically time varying nature of the system, yet it can be detected if one knows what 
features to look for. 
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Figure 6:  FFT of noise contaminated impulse response of 2nd order weakly PTV 

system.  (FFT of entire impulse response.) 
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Figure 7:  FFT of LTI responses found by decomposing the impulse response in 

Figure 6 into 50 separate responses, each of which has LTI dynamics.  
Responses for k = 0 and 22, corresponding to starting times t0 = 0 and 2.7646 

are shown. 

The Algorithm of Mode Isolation [15-18] was applied to the collection of LTI responses in 
Figure 7 in order to determine the eigenvalues and residue vectors of the modes comprising the 
response.  A composite FRF, created by averaging the magnitude of all 100 FRFs, is shown in 
Figure 8, along with a composite of AMI’s reconstruction of the data.  A composite of the 
difference between the two is also shown.  The response fits the data well, the difference being at 
the noise level. 
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Figure 8:  Composite FRF of the LTI data comprising 100 FRFs,  AMI’s 

reconstruction and the difference. 

The modal residues extracted by AMI were brought to a common reference using the 
procedure in the Section 5.3 of the Appendix.  These are shown in Figure 9.  (The shifting 
discussed in the Appendix requires knowledge of the Floquet eigenvalues, which were found by 
shifting the eigenvalues identified by AMI by the (known) fundamental frequency of the system 
parameters ωA.) 
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Figure 9:  Modal residues identified by AMI from the noise contaminated 

response data, compared with the analytically derived residues. 

The modal residues in Figure 9 appear to be essentially constant with shaft angle.  Figure 
10 plots the imaginary parts of the residues after subtracting their mean values to enhance the 
visibility of the variation with shaft angle.  The residue vectors agree fairly well with the analytical 
ones, although the variation with shaft angle stands out only slightly above the noise. 
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Figure 10:  Imaginary parts of residues identified by AMI with the mean removed 

to accentuate their variation with shaft angle. 

4. Conclusions 
The preceding examples have demonstrated that the parameters of linear, periodically 

time varying systems can be identified from the system’s free response (or impulse response) 
using conventional tools for linear time invariant systems.  Two methods have been investigated.  
The first breaks the response of the periodically time varying system into that of a number of low-
order LTI systems, the collection of which can be treated using standard methods for LTI 
systems.  The second method deals with the response of the periodically time varying system 
directly, using its Fourier series expansion to explain all of the frequency content observed in the 
response.  Standard system identification techniques can also be applied when using this second 
method, although a rigorous, global treatment of the data requires more specialized techniques, 
which can apply a constraint to the identified eigenvalues.  Either method can be used to detect a 
weak time-variation in the system parameters, even in the presence of noise.  For the simple low 
order system studied here, both methods appear to be of approximately equal value.  The first 
method may provide some advantage in future work, when higher order systems are studied. 
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5. Appendix 
5.1. Computing the State Transition Matrix 

 Considering the importance of the state transition matrix to the development here, some 
comments regarding how the state transition matrix can be computed are in order.  First we recall 
that the state transition matrix need only be computed for one period or for 0<t<TA.  The most 
common approach is to use a time integration method such as Runge-Kutta (i.e. “ode45.m” in 
Matlab).  The state vector due to a unit initial condition in the first generalized coordinate x(t0) = 
[1, 0, 0…0]T is computed and the result is stored as the first column of ),( 0ttΦ .  This process is 

then repeated for the second generalized coordinate until all of the columns of ),( 0ttΦ  have 
been populated.  While this approach is conceptually simple, it is not very efficient.  For example, 
Friedmann et al present a simple fourth order Runge-Kutta algorithm that solves for all columns of 
the state transition matrix simultaneously [4]. 
 Another conceptually simple approach involves discretizing the domain 0<t<TA into a 
number of subdomains tk<t<tk+1 over which the system matrix A(tk) is effectively constant.  The 
state transition matrix from tk to tk+1 can then be computed using the relationship for a linear 
system 

( ) ( ) 1
111 )(exp))((exp),( −
+++ −Λ=−=Φ MttMtttAtt kkkkkkk   (14), 

where A(tk) = MΛM-1 is the modal decomposition of A(tk).  If the matrix A(tk) can be diagonalized, 
then the matrix exponential on the right can be computed as the diagonal matrix whose elements 
are the exponential of the diagonal elements of Λ(tk+1-tk).  If it cannot be diagonalized then one 
must use a different approach to compute the matrix exponential, such as the algorithm 
implemented in the ‘expm’ command in Matlab. 
 Once the matrices ( )kSkk Att =Φ + ),( 1  have been computed, then the state transition 
matrices for the period starting at any initial time tk can be easily computed as follows 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )kSNsSNsSSkSkSkAk

SNsSNsSA

AAAAAAtTt
AAAtT

21021

0210

),(
),(

−−−−

−−

=+Φ

=Φ
  (15) 

where Ns is the number of time steps used to discretize the domain 0<t<TA. 
 A multitude of other algorithms exist.  Montagnier et al [3] present an algorithm that 
solves a boundary value problem to obtain the state transition matrix.  Sinha and his associates 
presented an algorithm that uses Chebyshev polynomials to compute a symbolic approximation 
of the state transition matrix [19, 20]. 

 

5.2. Equations of Motion for Simple PTV System 
The equations of motion follow where the state vector contains the response in the x and 

y directions in the fixed reference frame. 
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Note that a damping matrix is included which is set proportional to the turntable stiffness 
matrix. 
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5.3. Relating Residue Vectors to Mode Vectors 
It is important to note that although that the residues identified from the collection of LTI 

systems used in Method #1 are proportional to the mode vectors when taken individually, the 
constant of proportionality for each residue is different.  In Figures 4 and 9, the residues have 
been rescaled so that the constant of proportionality is not a function of shaft angle.  The method 
for rescaling the residues will be explained in this section.  Figure 11 shows the residue vectors 
identified by AMI for the strongly PTV system before rescaling. 

    0  22.5    45  67.5    90 112.5   135 157.5   180
-1

-0.5

0

0.5

1

Shaft Angle (o)

X 
- R

es
id

ue

Modal Residues Identified in X and Y directions

xr m1
xi m1
xr m2
xi m2

    0  22.5    45  67.5    90 112.5   135 157.5   180
-0.5

0

0.5

Shaft Angle (o)

Y
 - 

Re
si

du
e

yr m1
yi m1
yr m2
yi m2

 
Figure 11:  Residues identified by AMI from the collection of LTI systems 

(Method #1). 

The residues in Figure 11 appear to vary strongly with shaft angle, yet this variation is a 
consequence of the fact that the response of each LTI system to which the residues belong 
begins at a different initial time.  To remedy this, we appeal to the summation form of the Floquet 
representation of the response in eq. (11).  Applying the initial conditions to eq. (11), the impulse 
response in terms of the modal parameters follows. 

( ) ( ){ })()(exp)( 00

2

1
txttAtx r

N

r
rR −=∑

=

λ   (17). 

The responses at time instants separated by TA, which are processed by using Method #1, follow. 
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  (18), 

The strategy in Method #1 is to process these responses globally, as if they resulted from 
a single LTI system.  As a result, the identification routine finds the following representation for 
the impulse response: 
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  (19), 

Comparing eq. (18) and (19) reveals that the residues identified via Method #1 for various initial 
times ti are related to the true residues as follows. 

( ) ( ) ( ))(exp)( 0, tttAA irriRirIdent −= λ   (20), 

If the Floquet eigenvalues are known, it is trivial to solve for the Floquet residues, which are 
denoted AZero because they (for all i) relate to the same initial condition at t0. 

( ) ( ) ( ))(exp 0,, ttAA irirIdentirzero −−= λ   (21). 
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