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ABSTRACT 

Structural modification procedures are widely used to predict changes in the dynamics of a structure based on the 
addition of stiffeners, reinforcements, modifications of bolted joints, and payloads. A truncated modal basis of a 
linear dynamic system can be used to predict the changes of the mode shapes and frequencies due these 
modifications. This work proposes an extension of modal structural modification for geometrically nonlinear 
structures, by representing the structure with a set of nonlinear normal modes. An approximate quasi-linear modal 
model is defined from the fundamental frequency and maximum deformation shape of the nonlinear normal mode 
solutions. The resulting quasi-linear model has energy dependent mode shapes and natural frequencies. An 
iterative algorithm then applies modal structural modification to the quasi-linear modal model such that the modal 
parameters used in the substructuring routine are appropriate for each response level of interest. The method is 
demonstrated on a finite element model of a geometrically nonlinear beam with a variable elastic boundary 
condition. The model is meant to mimic the uncertain boundary conditions of a substructure in a hypersonic air 
vehicle. The nonlinear normal modes are computed for the unmodified beam, and a torsion spring is added to the 
boundary using the proposed method. It is found to give accurate predictions of the nonlinear modes of the 
assembly, potentially at a greatly reduced computational cost.  

Keywords: Nonlinear normal modes, structural modification, substructuring, reduced order modeling, nonlinear 
dynamics.  

1. Introduction 

Substructuring approaches in structural dynamics have been widely used to predict the changes in dynamics 
caused by the addition of a structural element, or even after coupling another substructure. Substructuring 
methods can be classified as to whether the system is represented in either the physical, modal or frequency 
domain. An example of physical domain coupling is the finite element method, where simple geometric elements 
are coupled to predict the behavior of an assembly [1]. The geometry of the assembly can be incredibly 
complicated if enough elements are coupled together, allowing for realistic structures to be modeled. Modal 
substructuring methods allow one to reduce the model order at the subcomponent level. A truncated modal basis 
can provide an accurate reduced order model of the system, allowing for an assembly of subcomponents to have 
significantly fewer degrees-of-freedom (DOF) than would be required for an accurate finite element model. 
Linear normal modes have been used to couple linear systems for over 50 years, one of the most popular 
techniques being the Craig-Bampton method [2]. In this work, a modal structural modification technique is 
extended to nonlinear subcomponent models represented by a truncated set of nonlinear normal modes (NNM). 
An iterative algorithm is developed in order to quickly estimate the NNMs of a nonlinear structure after the 
addition of a lumped mass or spring element. 

Nonlinearities in structural models are introduced by a variety of phenomena such as large deformations, 
nonlinear material constitutive laws, buckling, and friction in joints. These physics must be accounted for to 
accurately predict the behavior of a structure, especially when the linearity assumption is no longer valid. For 
example, large deformation analysis of a thin, flat, planar structure (such as the stiffened skin panel of a 
hypersonic air vehicle) shows that the coupling of the axial and bending motions actually reduces the maximal 
amplitude of the response. Using linear analysis for such predictions would actually over estimate the response 



 

amplitude and the dynamic stress, resulting in an overly conservative design. On the other hand, other nonlinear 
phenomena, such as localization and internal resonance, can drive a structure to far larger stresses than would be 
predicted by linear theory. In situations such as these, it is important to accurately model nonlinearity to avoid 
damaging response levels under certain operating conditions. Unfortunately, time simulations of large scale 
nonlinear finite element models are very computationally expensive and tend to drive design engineers away from 
nonlinear analysis, if possible. The nonlinear normal mode provides an interpretation of the nonlinear behavior of 
a structure that can be used as a design tool for models that exhibit nonlinearity, without the need for repeated 
transient analysis simulations. It is with this motivation that modal analysis techniques are extended to nonlinear 
systems using NNMs as a basis. 

A nonlinear normal mode has been defined as a “not necessarily synchronous periodic response to the 
conservative nonlinear equations of motion", as developed by Vakakis, Kerschen and others [3, 4]. This definition 
is an extension of the pioneering work of Rosenberg [5]. The NNM describes how the resonant frequency and 
deformation shape change with energy. Many key nonlinear phenomena can be described with this approach, such 
as internal resonance, localization and frequency-energy dependence. In many structural dynamic systems, an 
NNM can be thought of as an extension of a linear mode shape and frequency at low energy levels. One 
numerical method for computing NNMs is the shooting and pseudo-arclength continuation technique developed 
by Peeters et al [6]. Other numerical methods have been developed as well [7-10]. The nonlinear normal mode 
describes the resonant conditions of a nonlinear structure, as they form the backbone to the nonlinear forced 
response curves. Although the property of superposition and orthogonality do not apply, NNMs still provide 
tremendous insight into the behavior of the system.  

Several prior works have been put forth to extend substructuring techniques to nonlinear systems in the frequency 
and modal domain. A substructuring approach was developed by Cömert and Özgüven in [11], where two linear 
systems in the modal or frequency domain were coupled by a nonlinear spring element. The nonlinear spring 
element was approximated by a describing function, satisfying a single frequency harmonic balance model. The 
nonlinear assembly resulted in a nonlinear receptance matrix, which is used to predict the monoharmonic, steady 
state forced response. In later publications,  the method was extended to the attachment of a nonlinear element to 
a linear system [12] using the frequency based substructuring (FBS) approach presented in [13]. The method was 
also demonstrated by coupling a linear system to a localized nonlinear structure, represented by a nonlinearity 
matrix derived from the describing function method [14]. Other frequency domain methods were presented in 
[15-17], coupling a localized nonlinear element represented by a describing function to the linear FRF of a 
structural model. 

Other substructuring techniques have been developed for nonlinear systems based on the concept of the nonlinear 
normal mode. Chong & Imregun [18] developed a modal substructuring approach for structures with global 
nonlinearities. They defined a nonlinear mode as either a parametric modal model fit to nonlinear frequency 
response measurements, or as the eigenvalues and eigenvectors of the mass and tangent stiffness matrix about a 
given static configuration. They used an iterative algorithm based on the subcomponent nonlinear modes to 
satisfy a balance between the modal amplitudes in the assembly and subcomponent models. Another approach 
developed by Apiwattanalunggarn et al [19] was based on an NNM defined as a two-dimensional invariant 
manifold in phase space. The nonlinear subcomponent was represented by a single fixed interface NNM and a set 
of linear constraint modes. The method worked well for a SDOF subcomponent, but the manifolds required to 
describe higher order nonlinear models are very costly to compute so the method was deemed to be impractical. 
Recently, Allen & Kuether [20] have proposed a substructuring approach based on the NNM definition of 
Rosenberg, Vakakis and Kerschen mentioned earlier. The deformation shapes and fundamental frequencies from 
the exact NNM solutions were used to define a quasi-linear modal model, in which the mode shapes and natural 
frequencies were dependent on energy. The method of Lagrange multipliers was used to couple two nonlinear 
structures represented by the quasi-linear modal model. The full set of NNMs were used in this previous 
publication. The nonlinear structural modification procedure presented here is an extension of this work. 

This work presents a nonlinear structural modification procedure that can quickly and accurately predict how the 
NNMs of the system will change due to the addition of a lumped mass or spring element. This work is motivated 
by the need to predict the response of realistic structures that are modeled in commercial finite element packages. 



 

The nonlinear modification procedure uses a truncated set of NNMs computed from a nonlinear finite element 
model, allowing for order reduction at the subcomponent level. The NNMs of the unmodified structure are 
computed using the algorithm in [6], which relies on numerical time integration and the computation of the 
Jacobian matrix of the equations of motion. Recently, the authors found that one can accurately predict the NNMs 
of a structure by combining this algorithm with a nonlinear reduced order model (NLROM) of the structure [7]. 
This work uses a truncated set of NNMs computed using this approach, to predict how those nonlinear modes 
would change due to a modification; this avoids the need to re-run the finite element model to numerically 
recompute the reduced order model and then the nonlinear modes. The proposed method uses the deformations 
and fundamental frequencies from the exact NNM solution to define a quasi-linear modal model. This model is 
treated as a linear modal model, although while recognizing that the quasi-linear natural frequencies and 
deformation shapes vary with energy. An iterative approach is then used with the method of Lagrange multipliers 
to adjust the modes so they reflect the properties of the structure at the energy level of interest. The result is an 
estimate of the nonlinear modes of the structure at a certain energy level, and the procedure is easily repeated over 
the energy range of interest. 

The remainder of this paper is outlined as follows. Section 2.1 discusses how the nonlinear normal modes of a 
geometrically nonlinear finite element model are found using nonlinear reduced order models. A description of 
the quasi-linear modal model used to approximate the nonlinear system is defined in Section 2.2,  and the iterative 
nonlinear structural modification algorithm is explained in detail in Section 2.3. Section 3 demonstrates the 
proposed algorithm by modifying the boundary stiffness of a geometrically nonlinear beam. A discussion of the 
accuracy and limitations of the results are accompanied with a comparison between the modified and exact 
NNMs. 

2. Theoretical Development 

2.1 Representing Nonlinear Subcomponents with Nonlinear Normal Modes 

A nonlinear normal mode describes the periodic free response of the autonomous, conservative nonlinear 
equations of motion for a system. In general, the discretized equations for an N-DOF system can be written as  

  0)(  xfKxxM NL   (1) 

where M is the NN   mass matrix, K is the NN   linear stiffness matrix, and )(xf NL  is the 1N  nonlinear 

restoring force vector. The displacement, velocity and acceleration are represented by the 1N  vectors x , x , 
and x , respectively. The NNMs computed from the full order equations of motion exactly satisfy the periodicity 
condition, allowing for strong nonlinearities to be captured. The exact multi-harmonic NNM response can be 
written for the system in Eqn. (1) as a complex Fourier Series of the form  
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where kNNMX ,  is the complex amplitude of the kth harmonic, NNM  is the fundamental frequency, and t is time. 

The energy dependence of the solution comes from the fact that the fundamental frequency and complex 
amplitudes evolve as the amplitude of the response increases. At low energy, the periodic solution branches are in 
the neighborhood of the linear normal mode solutions of the linearized system. For an N-DOF system, there exists 
N nonlinear normal modes that are nonlinear extensions of linear modes.  

In general, the closed form equations of motion are not defined explicitly for the nonlinear finite element models 
of interest, so a numerical approach is required to compute the NNMs. One recently developed numerical 
approach is based on a shooting and pseudo-arclength continuation technique, and works by integrating the 
conservative nonlinear equations of motion and iteratively adjusting the initial conditions until a periodic response 
is found [6]. While this method is very accurate and effective, it is too computationally expensive to be practical 
for high fidelity finite element models, especially since the closed form equation of motion is not known. The 
numerical shooting and continuation techniques rely on the computation of the Jacobian matrix of the equations 



 

of motion, and must be computed using finite difference schemes. The Jacobian matrix requires 2N finite 
difference computations, and may need to be computed several times for a single solution on the NNM branch. 

In order to overcome these difficulties, in [7] the authors proposed to use a nonlinear reduced order model to 
decrease the size of the nonlinear equations of motion, and therefore the size of the Jacobian matrix required by 
the continuation algorithm. This NLROM can be used with the algorithm in [6] then to calculate the NNMs of the 
structure. A geometrically nonlinear finite element model with N-DOF can be reduced to a low-order system of 
nonlinear modal equations, based on a linear modal coordinate transformation. The low frequency linear modes 
are computed from the linear (or linearized) mass and stiffness matrices, M and K, from the equations of motion 
in Eqn. (1). A truncated modal basis, shown in Eqn. (3), is used to transform the full order system from N physical 
DOF to a reduced set of m generalized modal coordinates. In general, the low frequency modes in the bandwidth 
of interest are selected for the coordinate transformation, although higher frequency modes may be included.  

  qx   (3) 

Φ is the mN   mass normalized mode matrix with each column being a linear mode shape, and q is the 1m  
modal coordinate vector. Applying the coordinate transformation to the full nonlinear system of equations in Eqn. 

(1), and premultiplying by T , a nonlinear modal equation can be written as 
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where ),,,( 21 mr qqq   is approximated as a polynomial form as 
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The nonlinear coefficients Ar and Br are unknown for each modal equation. The resulting equations are nonlinear 
and fully coupled, but the order is much less than that of the original model ( Nm  ). The nonlinearity is 
approximated by a quadratic and cubic polynomial function of the modal amplitude, and captures stiffening and 
softening behavior caused by geometric nonlinearities. Several methods exist for determining these nonlinear 
coefficients from a nonlinear finite element model, as reviewed in [21]. The method chosen for this work is the 
Implicit Condensation and Expansion (ICE) technique [22]. The ICE method determines the nonlinear 
coefficients Ar and Br from a set of nonlinear static solutions to a series of applied loads. The resulting static 
deformations are used to form a least squares problem that can be solved to fit the nonlinear coefficients in Eqn. 
(5). For flat structures such as planar beams and plates, an expansion of the membrane displacements caused by 
the bending displacements is needed to account for axial-bending coupling. The ICE method uses the reduced 
modal basis and static solutions to compute a set of membrane modes that are orthogonal to the bending modes. 
The details of the approach are found in [23]. Once the coefficients Ar and Br are determined, the nonlinear 
equations (4) and (5) used with the continuation algorithm in [6] in order to compute the NNMs of the structure. 

2.2 Quasi-Linear Modal Models 

The proposed structural modification method is closely related to the nonlinear substructuring work of Özgüven 
and his collaborators [11, 12, 14].  In their works the nonlinear subcomponent model is approximated by a 
fundamental frequency harmonic balance model. Consider the nonlinear equations of motion of the form in Eqn. 
(1). It is often the case that a single frequency harmonic force causes a response that is well approximated by a 
single harmonic at the same forcing frequency. The steady state harmonic response can then be written as 

 )Re( tiXex   (6) 

where X is the complex amplitude of the response and ω is the fundamental response frequency. Under this 
assumption, the nonlinear restoring force vector is also assumed to be harmonic and can be written as 

 )Re()( ti
NLNL eFxf   (7) 



 

Budak and Özgüven [24] have shown that the harmonic nonlinear restoring force amplitude vector, FNL, can be 
written as a function of the response amplitude, X, as 

  XXKF NLNL )(  (8) 

where KNL(X) is an NN   nonlinear stiffness matrix that is a function of the unknown complex amplitudes, X. 
The Describing Function Method can be used to generate the nonlinear stiffness matrix for various types of 
nonlinearities, as described in [25]. Combining Eqns. (6), (7) and (8) with Eqn. (1), the fundamental harmonic 
balance model becomes 

   FXXKKM NL  )(2   (9) 

where F is the complex amplitude vector of the externally applied force. The nonlinear algebraic equations in 
Eqn. (9) can be iteratively solved for the steady state response X to a harmonic external load F.  

This fundamental harmonic approximation to the nonlinear equations of motion can be used with a variety of 
substructuring techniques, either in the physical or frequency domain. Here, the modification procedure for the 
addition of a discrete, linear spring element is shown to demonstrate the use of the nonlinear harmonic balance 
model. The method of Lagrange multipliers is used to couple the two systems; the details of the approach are 
outlined in [26]. The equation of motion for a discrete spring element attached to point "c" is expressed as 

 springcspring fxk    (10) 

The unconstrained equations of motion for the two uncoupled systems becomes 
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In order to assemble the two models, force equilibrium and compatibility must be satisfied. The compatibility 
constraints for the assembly are expressed as 
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The  1 1N   vector a  consists of an entry of 1 for the connection point on the unmodified structure, and -1 at 

the last entry related to xc. The remaining entries are zeros. Using the compatibility condition, the constrained and 
unconstrained coordinates are related by 
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Inserting Eqn. (13) into (11), and premultiplying by BT, the unconstrained equations of motion for the modified 
system becomes 
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This constitutes a set of nonlinear algebraic equations that must be solved iteratively to obtain the monoharmonic, 
steady state forced response of the modified nonlinear system. Note that a similar procedure can be applied to add 
a lumped mass or a nonlinear spring element, or it may even be used to couple two nonlinear systems together. 

One should note that this procedure presumes that the equations of motion are known explicitly, or at least that 
the harmonic balance model is known. For the nonlinear finite element models that are of interest in this work, the 
harmonic balance model KNL(X) is not easy to form, and the system matrices M, K and KNL(X) may be 
prohibitively large. Furthermore, this approach does not provide a mechanism for order reduction at the 



 

subcomponent level; each nonlinear subcomponent is represented by a physical model and equilibrium must be 
satisfied for every node in the assembly.  

On the other hand, it is interesting to note that the harmonic balance model has the same form as a linear model, 
only it is tuned to a specific amplitude of response. This prompts the question: Can an amplitude dependent linear 
modal model be used to predict the amplitude dependent frequency and deformation shape of a nonlinear structure 
in a similar way? If this were the case, then perhaps the number of subcomponent modes could also be truncated 
to reduce the number of generalized coordinates needed to represent the system, reducing the computational cost 
further. That is the impetus for the methodology proposed in this work.  Although a proof for the proposed 
procedure has not yet been developed, the idea behind the method is intuitive and quite similar to what was 
outlined above. 

Specifically, we propose to represent the substructure of interest using a quasi-linear (QL) modal form that is 
based on its nonlinear normal modes.  This is similar, in spirit at least, to the amplitude dependent harmonic 
balance model in Eqn. (9), only in the proposed the energy level of each NNM is used as the adjustable parameter 
rather than the response amplitude of each node.  Hence, the quasi-linear modal parameters can be written as  
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where P is the number of NNMs used in the QL model, )( r
QL
r E  is the mass normalized QL mode shape of the 

rth mode, and )( r
QL
r E  is the fundamental frequency of the rth mode. The QL mode shape is defined from the 

initial physical displacement (having a strain energy Er) that initiates the NNM response of the nonlinear 
equations of motion. This can be thought of as the maximum displacement field in the NNM response. For a 
given solution along the NNM curve, the QL mode shape is defined as 
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where Er is the strain energy of the initial physical displacement )(, rrNNM Ex . There are many discrete energy 

solutions for each NNM, each having a different QL mode shape and fundamental frequency. With the QL modal 
model, modal substructuring approaches (e.g. method of Lagrange multipliers) are used based on the modal 
equations of motion of the form 

       QL
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An iterative algorithm is proposed in the following subsection that seeks to satisfy the energy dependence in the 
QL modes.  

2.3 Structural Modification Algorithm using NNMs 

The quasi-linear modal model defined in the previous subsection approximates a nonlinear model as a linear 
system with mode shapes and frequencies that depend on modal energy. The modes are then assembled using the 
method of Lagrange multipliers, exactly as would be done when assembling linear substructures based on their 
modal models. This paper focuses on structural modification, so the algorithm is specialized to that case to a 
certain extent, as detailed below. 

1. Compute truncated set of NNMs: 

Compute the NNMs of the nonlinear equations of motion for the number of modes desired. 



 

 

2. Define QL modal model at a fixed energy level: 

Take the displacements that initiate the NNM solutions, )(, rrNNM Ex ,  in the truncated basis set at the same energy 

level jE . From each displacement )(, rrNNM Ex , define the mass normalized quasi-linear mode shape  )( r
QL
r E  

as shown in Eqn. (17). The modal amplitude for the rth mode is then defined as 
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such that the relation between the physical and modal response is QL
rr

QL
rrrNNM qEEx )()(,  . Next, specify the 

natural frequency )( r
QL
r E  of each QL mode from the NNM fundamental frequency at jE , and assemble the 

QL modal model in Eqn. (18). 

 

3. Apply structural modification procedure to QL modal model: 

With the QL modal model, the method of Lagrange multipliers can now be used to couple either a linear spring or 
lumped mass to the system. For example, attaching a linear spring to the xc DOF results a set of differential-
algebraic equations given by 
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A number of methods exist for solving this set of equations. For structural modification problems, the constrained 
and unconstrained generalized coordinates can be related as  
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where QL
uq  are the unconstrained coordinates of Eqn. (20). Using the B matrix, the new unconstrained equations 

of motion satisfying compatibility and force equilibrium become 

                    










 


















c

QL
QL
u

QL
QL
u

F

FE
BqB

k

E
BqB

I
B

T
TTT )(

0

0)(

00

0 
 (23) 

Next, the eigenvalues and eigenvectors are computed from the equations of motion in Eqn. (23). Resulting from 

this will be a set of mode shapes mod  and frequencies mod  of the modified QL modal model. 

 

4. Compute the energy distribution among the modes of the unmodified structure: 

The generalized coordinates of the unconstrained, modified equations can be related to the generalized 
coordinates of the unmodified coordinates as 

   QL
u

c

QL

qB
x

q










 (24) 



 

The generalized coordinates for the modified QL mode shapes are the same as the generalized coordinates of the 
unmodified QL modes, based on the form of the B matrix in Eqn. (22). Therefore, the physical deformation of 
each modal response of the modified structure can be written as 

 QL
rrr qx modmod   (25) 

Using each physical deformation mod
rx , the total strain energy in the unmodified structure is computed. The 

energy distribution of each physical response in Eqn. (25) is defined as 
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5. Check whether the strain energy of the modified deformation matches the energy in the unmodified 
modal model: 

Define a tolerance condition as 
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Ideally, the difference between the energy used in the QL model and the energy of the modified deformation 
should be equal to zero. Since this is a numerical approach, the algorithm proceeds until the difference in energy 
is below some tolerance,  .  

 5a.  If the tolerance is satisfied, then store the modified modal parameters. The approximate NNM of  

  the modified structure for the rth mode is then given by )( modmod,
r
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rq . 
  Increase the energy level that was used to initiate the algorithm and repeat steps 2 through 5. 

 5b.  If the tolerance is not satisfied, then return to step 2 and update the QL modal model parameters  
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r E  at the discrete modal energies modE . Note that for each iteration, the  

  modal amplitudes QL
rq  are not updated. In general, the distribution of energy between each mode  

  will not be the same. Repeat steps 2-5 until the tolerance in Eqn. (27) is satisfied.   

Based on the observed performance, the iterative algorithm converges to a balanced solution within 3-8 iterations 
for an   value of 1e-4. A schematic of the algorithm is shown below in Fig. 1. 
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Figure 1: Schematic of structural modification algorithm to predict NNMs of a modified 
structure. 

3. Numerical Results 

3.1 Structural Modification of Geometrically Nonlinear Beam 

The nonlinear structural modification technique is now applied to a planar, geometrically nonlinear beam that is 
modeled in Abaqus finite element software. This problem was motivated by prior studies [27, 28] which showed 
that the nonlinear dynamic response of an inlet ramp panel is sensitive to the stiffness of the structure which it is 
attached to. A torsion spring is coupled one end, as shown in Fig. 2, to represent the uncertain elastic boundary 
condition. The model is used to understand the effects of the boundary stiffness on the nonlinear normal modes of 
the structure. The beam is known to exhibit stiffening nonlinearities due to the coupling between the transverse 
and axial motions for large deformations. The beam under study is 9 inches in length, with cross sectional 
dimensions of 0.5 inches wide by 0.031 inches thick. It is modeled with forty B31 beam elements in Abaqus, 
resulting in 123 DOF. It is constructed of steel with a Young's modulus of 29,700 ksi, a shear modulus of 11,600 
ksi and a mass density of 7.36*10-4 lb-s2/in4. The dimensions of the beam come from a benchmark structure used 
to validate a variety of reduced order modeling techniques [29]. The torsion spring stiffness is denoted as Kt. 

 

Figure 2: Structural modification case study to understand the effects of an uncertain elastic 
boundary condition. A torsion spring is coupled to a geometrically nonlinear beam. 

The simply supported beam in Fig. 2 represents the unmodified structure to which the torsion spring is attached. 
A nonlinear ROM is built of this model and used to compute the NNMs of the structure to provide a basis for the 
quasi-linear modal model used in the structural modification procedure. The NNMs of the modified configuration 



 

(e.g. the simply supported beam with the torsion spring attached at the left boundary) are also directly computed 
by creating an NLROM of a second finite element model that includes the torsion spring. These results are 
considered the exact solutions for comparison with the structural modification procedure. Here, a torsion spring 
with a stiffness value of  Kt = 25 in-lbf/rad is studied. 

3.2 Linear Structural Modification Results 

The nonlinear normal modes of a geometrically nonlinear structure converge to the linear normal modes at low 
energy levels. As the response amplitude becomes small, the nonlinear effects due to large deformations become 
negligible and the periodic solutions to the conservative equations of motion simply become the linear modes. 
This is consistent with the assumptions made with linear vibration theory. The first 10 linear normal modes of the 
finite element models of the simply supported beam and spring-beam assembly are described in Table 1.  

Table 1. Exact linear normal modes of unmodified and modified beam 

Simply Supported Modified with  

Kt = 25 in-lbf/rad 

 

 

Mode Type Frequency (Hz) Type Frequency (Hz) 

1 Bending I 34.85 Bending I 45.08 

2 Bending II 139.4 Bending II 153.4 

3 Bending III 313.8 Bending III 329.7 

4 Bending IV 558.2 Bending IV 575.3 

5 Bending V 872.7 Bending V 890.7 

6 Bending VI 1258 Bending VI 1273 

7 Bending VII 1714 Bending VII 1733 

8 Bending VIII 2241 Bending VIII 2260 

9 Bending IX 2840 Bending IX 2860 

10 Bending X 3511 Bending X 3531 

 

A modal convergence study is initially performed on the linear modes of the simply supported beam when a 
torsion spring with Kt = 25 in-lbf/rad is coupled to the left end. The modal convergence provides insight into the 
number of NNM solutions to use as a basis to the nonlinear structural modification procedure.  The relative 
percent error of  linear natural frequencies from the modal structural modification are presented in Table 2. The 
predicted frequencies are compared to the exact solutions in Table 1. As the number of modes in the truncated 
modal basis is increased, the relative error in the predicted natural frequency decreases. In order for the frequency 
error to be less than 2% for the linear modes, the first 7 bending modes are required. The largest error comes in 
the first mode of the modified structure, as the low frequency modes have the greatest shift in frequency due to 
the modification.  

 

 

 

 

 

 



 

Table 2. Percent error of natural frequency 

Number of Linear Modes in Modal Basis of Simply Supported Beam 

- 1 2 3 4 5 6 7 8 9 10 

1 15.6 7.0 4.6 3.4 2.7 2.3 1.9 1.7 1.5 1.3 

2 - 4.8 2.7 1.9 1.5 1.3 1.1 0.9 0.8 0.7 

3 - - 2.0 1.3 1.0 0.8 0.7 0.6 0.5 0.4 

4 - - - 1.0 0.7 0.5 0.5 0.4 0.3 0.3 

5 - - - - 0.6 0.4 0.3 0.3 0.2 0.2 

6 - - - - - 0.4 0.3 0.2 0.2 0.2 

7 - - - - - - 0.3 0.2 0.2 0.1 

8 - - - - - - - 0.2 0.1 0.1 

9 - - - - - - - - 0.1 0.1 

 

 

 

 

Modified 
Beam 
Mode 

Number 

10 - - - - - - - - - 0.1 

 

3.3 Nonlinear Structural Modification Results 

Based on the results of the linear modal convergence study, the first 8 NNMs of the geometrically nonlinear beam 
were used as a basis for the nonlinear structural modification procedure. Hence, the error in the linear modes and 
the low energy NNMs will be less than 2%. The frequency-energy dependence of each mode in the NNM basis is 
presented in Fig. 3. The NNMs of the finite element model are computed from two separate nonlinear reduced 
order models. To minimize the computational cost, the inherent uncoupling due to the symmetry in the beam was 
exploited and the even modes (NNMs 2, 4, 6, 8) were computed from an NLROM with linear modes 2, 4, 6 and 8. 
Similarly with the odd modes, an NLROM with linear modes 1, 3, 5 and 7 are used to compute NNMs 1, 3, 5 and 
7.  
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Figure 3: Nonlinear normal modes 1 through 8 for unmodified simply supported beam. This set 
of modes constitutes the modal basis used in the nonlinear structural modification procedure. 

This set of nonlinear modes was used to define a quasi-linear modal model, which was used in the modification 
procedure to predict the NNMs of the system when a torsion spring with Kt = 25 in-lbf/rad was added to the left 
end of the beam. The frequency-energy dependence of the predicted NNMs is shown below. 
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Figure 4: Plot of frequency-energy dependence of first three NNMs of the simply supported beam 
for the (Black) unmodified NNMs used with QL modal model, (Red) NNMs predicted by the modal 
structural modification procedure, and (Blue) exact NNMs computed from a finite element model of 

the beam-spring structure. 

The frequency-energy plot shows that the predicted NNMs of the modified structure are in excellent agreement 
with the exact NNMs. At low energy, where the NNMs converge to the linear normal mode, the error between 
each of the frequencies is due to modal basis truncation error, as discussed previously. The error in frequencies 
along the entire solution branch is less than 2% for the first three modes (except where there is an internal 
resonance). It is expected that the error would decrease further if additional modes were used. By analogy with 
linear substructuring, one would also expect the error to decrease if the modal basis were improved. For example, 
we could mass load the interface so that the modes would have nonzero curvature (nonzero moment) at the end. 
This would constitute a nonlinear extension of the method presented in [30].  

To further explore the comparison between the predicted NNMs and the actual ones, we examine the predicted 
maximum deformation shape of the NNM at a discrete location along the 2nd NNM branch. The maximum 
deformation shape of the modified structure is compared in Fig. 5 for a solution at the highest energy considered 
on the 2nd NNM branch (marked with black circle in Fig. 4). The red line represents the response predicted by 
using the structural modification procedure, and the blue line is the exact solution. There is excellent agreement 
between these deformation shapes, even when the frequency has shifted over 75% from 154.8 Hz to 274.6 Hz. On 
the other hand, the deformation shape of this NNM is still dominated by the second linear bending mode shape, 
with small contributions from other linear modes.  
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Figure 5: Comparison of the maximum deformation the modified beam for the 2nd NNM at the 
highest energy considered.   

The time histories can also be compared. For example, Fig. 6 shows the transverse displacement at x = 2.25" over 
one period of the response from the NNM initiated by the initial deformation in Fig. 5. The blue line is the NNM 
found using the response integrated with the nonlinear reduced order model, and the red line is the quasi-linear 
response predicted using the structural modification procedure. The QL response is only capable of  estimating 
the fundamental frequency of the NNM, and cannot predict higher harmonics. The exact response is dominated by 
the fundamental frequency, and the higher order harmonics are relatively small. Therefore, the quasi-linear 
response is a good approximation to the exact response at this energy level. If the higher harmonics had a greater 
contribution to the exact response, the QL response would not be as accurate.  
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Figure 6: Time history of (red) QL NNM transverse displacement at x = 2.25" compared to the 
(blue) exact NNM of the modified beam at x = 2.25". 



 

On the other hand, one can see in Fig. 4 that there are energies at which the actual frequency-energy plot contains 
features that are not captured by the QL model. Since the QL modal model is based on the fundamental harmonic 
of the response, the modification procedure is only capable of predicting the fundamental harmonic of the 
assembly. Figures 7 and 8 show expanded views of NNMs 1 and 2, which reveal that there are folds in the 
frequency-energy curve where there is more than one solution at a discrete energy level. These are known as 
internal resonances, and occur when two NNMs interact with one another. Typically, these occur when two 
NNMs have commensurate NNM frequencies at a given energy level. 
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Figure 7: Frequency-energy plot of 1st NNM for (black) unmodified beam (blue) exact modified 
beam and (red) modified using the QL modification procedure. 
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Figure 8: Frequency-energy plot of 2nd NNM for (black) unmodified beam (blue) exact modified 
beam and (red) modified using the QL modification procedure. 



 

The predicted NNMs from the modification procedure follow the main solution branch quite well when there is 
no internal resonance present. One can actually predict candidate locations along the NNM branch where an 
internal resonant condition is possible. For example, the harmonics of the first predicted NNM are overlaid on the 
frequency-energy plot in Fig. 9. One can see that the 3x harmonic of NNM 1 intersects the predicted frequency-
energy curve of NNM 2. One would expect a 3:1 internal resonance in the NNM 1 branch at the energy level 
where these two solutions intersect. In fact, the first fold in the frequency-energy curve of the exact solution for 
NMM 1 is a 3:1 internal resonance with the NNM 2. 
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Figure 9: Plot of frequency-energy curves for (Solid Red) harmonics of first predicted NNM, 
(Dashed Blue) exact NNM 1, and (Dashed Red) modified NNMs. 

To further illustrate this internal resonance, the time history of the modal amplitudes are plotted in Fig. 10, taken 
from the point marked with a black circle in Fig. 9. The response of the modal coordinates q1 and q2 from the 
NLROM of the spring-beam finite element model demonstrates the interaction between the underlying linear 
modal coordinates. Clearly, the second modal coordinate is dominant and oscillates at 3 times the frequency of the 
first modal coordinate. The QL model cannot capture this type of response, as discussed previously. However, 
several investigators [31, 32] have suggested multi-harmonic balance approaches that might be able to capture 
such features. 

3:1 Internal Resonance
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Figure 10: Time history of modal coordinates in NLROM of 3:1 internal resonance.  

The main advantage of this approach is the ability to quickly iterate on a nonlinear structural model to predict the 
nonlinear dynamic behavior due to a modification. At this point the authors are unable to comment on the exact 
computational savings that would be achieved using this approach, as there were some issues regarding the 
manner in which the algorithm was implemented.  However, our experiences with other similar algorithms 
suggest that the reduction would be dramatic.  This approach avoids the need to recompute the nonlinear reduced 
order model (using the FEA software) and the need to perform repeated time integrations to predict the NNMs. 
During early stages of design, when many design configurations are proposed, this approach could provide a 
means to quickly study the changes to the system.  

4. Conclusion 

A new structural modification procedure based on the nonlinear normal modes of a structure is presented in this 
work. The method is validated by applying it to a geometrically nonlinear finite element model modified by the 
addition of a torsional spring. The results show that the proposed method is capable of accurately predicting the 
nonlinear modes due to this structural modification, presumably at a reduced computational cost. The 
discrepancies between the predictions and the truth model at low energy were shown to be due to the truncation 
error of the basis set used in the QL modal model. Experience with linear systems suggest that the results could be 
improved by using a richer modal basis for the unmodified structure. 

The results also demonstrated that the modification procedure does not capture multi-harmonic responses such as 
internal resonances. This is due to the fact that the QL modal model only accounts for the fundamental frequency 
of the response. However, the results did demonstrate that one can use the predicted NNM curves to determine 
candidate locations of an internal resonance. This method is entirely suitable for design studies where one often 
wishes to rapidly probe the design space to determine an optimal design. A higher fidelity model could then be 
used to check the results.  

In future work, the method will be extended to a substructuring approach where the NNMs of two finite element 
model subcomponents will be used to predict the NNMs of the assembly. This approach would allow one to 
replace computationally expensive subcomponent models with simpler models so the system level behavior can 
be studied quickly, and it provides the designer with certain insights regarding what types of changes should be 
made to the subcomponents to produce the desired responses. This type of analysis has been a cornerstone to 
structural dynamics for over half a decade. 
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