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This paper presents experimental and computational results used during the model 

calibration of two curved perforated circular plates with geometric nonlinear stiffness 

characteristics. The initial geometry of each plate is experimentally identified using a static 

3D Digital Image Correlation (3D-DIC) measurement system and linear natural frequencies 

and mode shapes are found from a roving hammer test. Due to the uncertainty in the 

stiffness characteristics from the manufactured perforations, the linear natural frequencies 

are used to update the effective modulus of the finite element model. Additionally, full-field 

experimentally measured nonlinear ‘normal’ modes (NNMs) obtained with a High Speed 

3D-DIC system are used to identify modal interactions in the NNM and to update the 

boundary conditions so measurements of the structure’s NNMs match computed NNMs. The 

updated models are then used to understand how the stress distribution changes at large 

response amplitudes providing a possible explanation of failures observed during testing.  

1.  Introduction 

odel calibration is an important step in the development of computational models that are representative of 

physical structures. In this context, there is a large suite of test and analysis approaches which use a structure's 

linear modes of vibration to guide the calibration of computational models [1, 2]. It is beneficial to note here that 

these techniques can be centered on a structure’s linear modes of vibration using the complex mode definition or a 

more specific subset of complex modes known as a structure’s linear normal modes (LNMs) of vibration [3]. In 

many instances, the LNMs, which are dependent only on the mass and stiffness distribution of a structure, are 

adequate in the definition of the modes of vibration. The use of LNMs in model calibration is centered on a 

structure’s natural frequencies and mode shapes. However, characteristics of these LNMs such as amplitude 

invariance and orthogonality break down when a structure behaves nonlinearly. This has motivated many studies 

focused on expanding the definition of a structure’s LNMs to include nonlinear behavior resulting in several 

definitions of what are termed Nonlinear Normal Modes.  

 

Two main definitions of nonlinear normal modes (NNMs) can be found in literature [4-7]. The first was developed 

by Rosenberg [4] for nonlinear conservative (i.e. un-damped) systems and limits a NNM to a vibration in unison of 

the nonlinear system. This definition was later extended by Kerschen et al [6] to include non-necessarily 

synchronous periodic motions of the nonlinear system. Although still centered on the conservative nonlinear 

equations of motion (computed using only mass and stiffness), this extended definition allows the inclusion of 
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internal resonances which can lead to non-synchronous motions of the nonlinear system. A generalization of 

Rosenberg’s definition was proposed by Shaw and Pierre [5] which defines an NNM as a two-dimensional invariant 

manifold in phase space extending the NNM concept to damped systems. Jiang et al [8] presented a further 

expansion of the invariant manifold approach to include internal resonances by defining internally resonant NNMs 

as a 2m-dimension invariant manifold where m is the number of modes retained for the definition of the invariant 

manifold. In this investigation the definition of a non-necessarily synchronous periodic motion of the conservative 

equations of motion is utilized for a NNM. 

 

There have been several applications of NNMs in the field of structural dynamics. For instance, NNMs have been 

used to provide insight to guide the design of nonlinear vibration absorbers [9] as well as a structure with tunable 

bending-torsion coupling [10]. NNMs have also been used to characterize FE models of complicated, geometrically 

nonlinear structures aiding the creation of accurate nonlinear reduced order models [11, 12]. Kurt et al [13] 

numerically demonstrated the use of NNM backbone curves to guide the identification of nonlinear stiffness 

coefficients for a system with local nonlinearities. Of particular interest to this work, NNMs provide a tool to 

connect computational results with experimental measurements. For instance, NNMs have been used to correlate 

simulations [14] with experimental measurements [15, 16]. The summation of nonlinear behavior with the use of 

NNMs provide a compact means to compare experimental and computational results making NNMs a great tool for 

model calibration. 

 

The implementation of NNMs for the purpose of model calibration requires advanced techniques in their analytical 

or numerical calculation as well as their experimental measurement. Analytical techniques include the method of 

multiple scales [6, 7, 17, 18], normal forms [19], and the harmonic balance approach [20], but are typically restricted 

to structures where the equations of motion are known in closed form limiting their application to simple geometries 

or low order systems. Numerical methods have also been developed to calculate a system’s NNMs without the 

approximations required in the analytical approaches [21] and have been used to compute the NNMs of relatively 

complicated structures with local nonlinearities [16]. These techniques have been extended to the calculation NNMs 

of geometrically nonlinear finite element models (FEM) using an approach whereby the NNMs are calculated by 

coupling numerical continuation to transient dynamic simulation of full order FEM [22]. While numerical 

techniques are powerful, they are time consuming to implement for a large order FEM making application to 

iterative procedures (i.e. model calibration) difficult. Therefore in this investigation, the full order FEM created and 

updated in Abaqus® is used to determine nonlinear reduced order models (NLROMs) following procedures 

discussed in [23]. The low order NLROMs are then used to examine NNMs with the use of NNMCont as described 

by Peeters et al. [21]. 

 

Nonlinear normal modes can also be measured experimentally, but far less has been published in this area due to the 

difficulty of accounting for damping in the dynamic response of a structure which is needed to isolate a NNM. 

Recent work has sought to identify NNMs using phase separation techniques relieving the need to cancel damping in 

the measurement of a NNM [24]. Alternatively using a phase resonance approach, NNM backbones have been 

identified from the damped dynamics of a structure using the free decay of a response initiated near a NNM solution 

[15, 25] or the stepped forced response using a multi-frequency input force [26]. The free decay results presented in 

[15, 25] have shown good agreement between calculated and experimentally identified NNMs; however, modal [26] 

and shaker-structure interactions [27] demonstrate that there is no guarantee a lightly damped transient will follow a 

NNM. Alternatively, the force appropriation technique used to initiate a free decay in [15] has been extended to 

identify a NNM by incrementally increasing the input force amplitude and tracking the phase lag criterion along a 

NNM backbone [26]. This stepped-force technique allows the implementation of multi-frequency inputs to account 

for damping changes with response amplitude and is used in this investigation. 

 

The goal of this work is to propose and implement a model updating framework that can be used to accurately 

capture the linear and nonlinear dynamic response of geometric nonlinear structures. The first step in updating a 

model is to decide which dynamic properties to measure and how to compare them between the model and 

experiment. In this work we focus on the physical parameters that have potential uncertainty and their effects on the 

global dynamics of the structure (i.e. LNMs and NNMs). Here, updates to the initial conditions, material properties, 

and boundary conditions are considered. The initial conditions are measured with static 3D digital image correlation 

and the difference between the calculated and measured LNMs and NNMs are used to update material properties 

and boundary conditions since LNMs and NNMs are closely tied to the physics of the real structure. The resulting 

models are shown to better represent the structure's linear and nonlinear dynamics. It is also shown that the changes 
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made to the model based solely on its linear modal parameters may or may not improve the correlation of the model 

in nonlinear response regimes. This is an important consideration since finding a model that accurately represents an 

experiment requires the perturbation of uncertain parameters, which is not always possible in a linear regime. Hence, 

it is critical to simultaneously consider both the linear and the nonlinear behavior of the system in the model 

updating process.  

2. Background 

2.1. Nonlinear Normal Modes 

 

The concept of nonlinear ‘normal’ modes (NNMs) has seen much interest due to their usefulness in interpreting a 

wide class of nonlinear dynamics. While definitions are limited to conservative or weakly damped systems, NNMs 

provide an excellent summary of a mode of vibration’s dependence on response amplitude. The reader is referred to 

[4, 6, 7, 21] for an in-depth discussion of NNMs in regards to their fundamental properties and methods of 

calculation. A summary of the methods used in this work is provided next.  

 

Here, NNMs are numerically calculated using shooting techniques and pseudo arc-length continuation with step size 

control as implemented in NNMCont [21]. This method of calculation solves for periodic solutions of the nonlinear 

equations of motions, presented in Eqn. (1). Calculation begins in the linear response range and follows the 

progression of the system’s dependence on the energy of the response. In Eqn. (1), [M] is the mass matrix, [K] is the 

stiffness matrix, and fnl is the nonlinear restoring force that is a function of x. This method is capable of following 

the frequency-energy evolution around sharp changes in the NNM with the ability to track bifurcations, modal 

interactions, and large energy dependence of the frequency of vibration.  

 

         0)()()(  txftxKtxM nl
 (1) 

 

The NNMs of a structure can be measured with the use of force appropriation and an extension of phase lag 

quadrature as discussed by Peeters et al. in [14]. It was shown that an appropriated multi-point multi-harmonic force 

can be used to isolate the dynamic response of a structure on an NNM. The nonlinear forced response of a structure 

with viscous damping can be represented in matrix form by Eq. (2), where [C] is the damping matrix and p(t) is the 

external excitation. As discussed before, an un-damped NNM is defined as a periodic solution to Eq. (1). So, if the 

forced response of a structure is on an NNM, then the defined conservative equation of motion is equal to zero. 

Therefore, the forced response of a nonlinear system is on an NNM if the input force is equal to the structural 

damping for all response harmonics. As with linear force appropriation, the appropriated force can be simplified to 

single-point mono-harmonic components to produce a response in the neighborhood of a NNM, providing a 

practical application to experimental measurement. This simplification breaks down when the input force is not able 

to properly excite all modes in the response requiring careful consideration of input force location and harmonics 

needed. This technique has been experimentally demonstrated in [26]. 

 

             )()()()()( tptxftxKtxCtxM nl   (2) 

 

2.2. Perforated Plate Description 

The structure under investigation is a circular perforated plate with rolled ends which is shown in Fig. 1a. A 

mechanical punch was used to create the circular perforations in a flat 16 gauge (1.52 mm thick) 409 stainless steel 

plate. The center each perforation was located at the vertex of an array of equilateral triangles with 10.16 mm long 

edges. Once this process was completed, the plate was formed around a 317.5 mm diameter mold with the excess 

trimmed so a lip of 24 mm remained. The plate was then welded to an 89 mm high cylinder made from a 14 gauge 

(1.9 mm thick) 409 stainless steel plate that was cold rolled to the 317.5 mm diameter as shown in Fig. 1b. The final 

experimental setup shown in Fig. 1b is meant to simulate in situ conditions. The entire assembly was then bolted to a 

fixture with twelve 6.4 mm evenly spaced bolts attached to a rigid base. The linear natural frequencies and mode 

shapes were determined using a roving hammer test with 37 evenly spaced impacts and two light weight 

accelerometers mounted in the center of the plate.  

 

The initial motivation of this work was to characterize nonlinear behavior of the fundamental mode of vibration at 

large response amplitudes as described in [26]; however, during testing an unexpected failure occurred in the center 
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of the first plate tested (PP01) as shown in Fig. 1d in blue. A detailed image of the failure is shown in Fig. 1e, where 

the failed ribs are outlined in blue. This failure was repeated in the second plate tested (PP02). The region of this 

failure has been emphasized on the image of PP01 in Fig. 1d in green for comparison. A detailed image of the 

failure seen in PP02 is shown in Fig. 1f where the failed ribs are outlined in green. Although there is a slight 

difference in the location of the failure between the two plates (potentially from geometric differences discussed in 

Section 3.1), the failures occurred repeatedly and in an unpredicted location for the expected stress distribution. 

Using the measured LNMs and NNMs, a dynamically representative model is created which points to the potential 

mechanism of this observed failure.  
 

 

 
 

 

(a) 
 

(b) 

 
(d) 

 
(e) 

 
(f) 

Figure 1: Experimental setup of the perforated plates. a) Perforated plate before welding into test configuration, b) Perforated 

plate welded into the supporting cylinder, d) Region of failure in both plates, and e & f) Detail of failures in both plates tested. 

The image has been modified using a threshold adjustment and edge detection algorithm in ImageJ [28] to emphasize the cracked 

ribs. 

 

2.3. Model Description 

In this investigation, an initial finite element model (FEM) was built using the nominal measured geometries of the 

perforated plate described in the previous section and is termed the Flat model. It is initially assumed that the welded 

boundary between the plate and steel cylinder provide fixed boundary conditions. If a detailed representation of the 

stress distribution is needed, a very fine mesh would be required in order to model each of the perforations. 

However, Jhung and Jo [29] found that a perforated plate behaves dynamically identical to a non-perforated plate of 

the same dimensions, as long as the elastic properties are adjusted appropriately. A reduced elastic modulus and 

density were calculated based on the perforation geometry as detailed by Jhung and Jo. For the triangular perforation 
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pattern of this plate a new elastic modulus of 168 GPa and density of 5120 kg/m3 was found. The resulting meshed 

Abaqus® model is shown in Fig. 2, and has 1440 S4R shell elements.  

 

Figure 2: Meshed dynamically equivalent plate model 

Although the resulting 8886 degrees of freedom (DOF) model is substantially reduced when compared to the 

number of DOF needed to model the perforations (~400000 DOF), it is still prohibitively large to run dynamic 

simulations. Therefore, a nonlinear reduced order model (NLROM) is created using the Implicit Condensation and 

Expansion (ICE) method [30-32]. In this method, the expected geometric nonlinearity due to large amplitudes of 

deformation is implicitly accounted for using nonlinear static solutions in Abaqus®. The nonlinear coefficients are 

determined using specific levels of applied modal forces and decomposing the resulting displacement onto the 

preselected modal basis for the NLROM and implicitly accounting for membrane effects. A system identification 

procedure is then utilized on the resulting restoring force/modal displacement relationship. The ICE method 

produces an N DOF system of equations in the modal domain as shown in Eqn. 3, where n is the number of r modes 

included in the modal basis.  
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This type of NLROM should be adequate for this investigation since: 1) the focus of this investigation is near a 

single mode and 2) the nonlinear effects due to stiffness should dominate the geometric nonlinearity of this thin 

structure. The creation of NLROMs for the nominal dimensions of the plate has been discussed in [23] where it was 

shown that an accurate NLROM should include the first and sixth mode resulting in a two degree of freedom (2-

DOF) representation of the structure. For this work, Eqn. 3 can therefore be summarized with a 2-DOF spring-mass 

system as shown in Fig. 3. In this context, it is beneficial to view the nonlinear behavior as a coupling between the 

first and sixth mode of vibration. Accordingly, in linear response regimes the system response remains uncoupled 

using the linear modes of vibration; however, in nonlinear response regimes, the system response now includes both 

the first and sixth mode. The 2-DOF NLROMs created using the ICE method are used to find NNMs of the structure 

by implementing continuation techniques discussed in [21] for a further comparison with experimentally measured 

NNMs.  

 

 
Figure 3: Schematic of modal domain NLROM. 

 

2.4. Modeling Considerations 

Although the plate is a relatively simple structure compared to the vehicle it is attached to, validating the FEM with 

experimental measurements involves some engineering judgment and physical insight to the inherent uncertainty of 

the physical assembly. Uncertainties in initial geometry, material properties, and boundary conditions are expected 

to dominate errors between the model and experimental structure. Therefore, a general model, shown schematically 

in Figure 4, is considered. In Figure 4, the areas of potential uncertainty are shown in orange: KR represents the 

stiffness of the boundary in the radial direction, and the orange line represents the initial geometry. The starting 

point for the model updating procedure uses the nominal geometry (shown in black), nominal material properties (as 

predicted by [29]), and fixed boundary conditions (KR = infinity). Variations in the initial geometry (shown in 
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orange) are taken into account with the use of full-field static 3D digital image correlation coordinate measurements 

of the plate surface. The remaining error between the model and measurement is accounted for by tuning the 

modulus of elasticity and boundary conditions. All six degrees of freedom at the boundary are initially considered; 

however, it was found that only KR is important. The reduced density was not updated since it can be computed from 

the geometric properties of the perforations (i.e. size of hole and count) and hence should be quite accurate. On the 

other hand, the effective modulus is dependent on any residual stresses from the addition of perforations, 

imperfections of the perforation location geometry, and curvature from the forming processes. Similarly, the 

stiffness, KR, has potential variation due to the flexibility of the cylinder to which the perforated plate is welded. 

 
Figure 4: Boundary Condition Schematic 

3. Updating Results 

3.1. Initial Conditions and Linear Updating 

Although subjected to similar mechanical loads during manufacturing, each plate will have variations in the final 

geometry which are important to identify during model calibration. Using static 3D digital image correlation, the 

initial geometry of the surface of each plate is measured resulting in a dense point cloud describing the shape. It is 

assumed that the lip of the plate (i.e. the edge welded to the cylinder shown in Fig. 1) remains near circular and 

would have little effect on the final structural response since the primary deformation is along the Z-axis (as defined 

in Fig. 5). The surface measurement is directly applied to the FEM using bi-harmonic interpolation resulting in two 

FEMs describing the initial shape of PP01 and PP02 as seen in Fig. 5. The resulting initial curvatures show only 

include the updated surface of the model neglecting the 25mm lip which is unchanged. It is interesting to note that 

each plate shows a slightly different asymmetry in the peak deformation. This is most noticeable in the XY plot of 

the curvature (Figs. 5a and 5c) where the largest deformation (dark red) is skewed in the positive Y direction and the 

negative X direction. For comparison, the peak curvature observed for PP01 (3.73mm) is lower than the peak 

curvature observed for PP02 (4.84mm) resulting in slightly different natural frequencies between the two plates seen 

in Tab. 1. 
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Figure 5: Initial geometry of each plate measured with 3D digital image correlation. a-b) PP01, c-d) PP02 
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Since there are several areas of uncertainty between the model and the experiment, there is potential for the model 

calibration process to deliver non-physical results or lead to a non-optimal result. Therefore, in this investigation, we 

will use experimental and numerical data from PP01 to guide each model calibration step, and blindly apply the 

resulting values to PP02 to gain insight into the robustness of the model calibration for the curved plates. In addition 

to the two models created with the measured geometry of PP01 and PP02, a nominal (Flat) model is created to 

demonstrate the difference in nonlinear behavior. During the model calibration of the Flat model, an average 

between the PP01 and PP02 experimentally identified natural frequencies is used to guide the model calibration 

steps in an attempt to produce the ‘best’ flat model that could be used for both plates.  

 

Table 1 provides a summary of the first 10 natural frequencies for the results obtained during the first stages of 

model calibration. Using the material properties previously defined as a starting point, the Flat (NUM 1) model was 

created to reduce the percentage error between the measured natural frequencies. Several combinations of physical 

parameters were used to update the Flat model based on the expected experimental uncertainties (i.e. boundary 

conditions and modulus of elasticity). The best updated Flat (NUM 1) model is presented in Tab. 1, where KR was 

not changed (i.e. boundary was infinitely stiff) and the modulus of elasticity decreased to 132 GPa (decrease of 

21%). While some linear modal frequencies are captured accurately, the resulting model does not appear to capture 

the linear natural frequencies in Modes 1, 3, and 9, as shown in Tab. 1. However, the MAC value between the 

resulting Flat model and experimentally measured PP01 mode shapes for Modes 1, 3, and 9 show a good agreement. 

This information provides an indication of the distributed nature of the error (i.e. geometry of the structure) which 

would preserve the distribution of mass and stiffness thereby minimally changing the mode shapes.   

 

The same procedure was applied to the PP01 (NUM 1) model to reduce the percent error between the measured 

natural frequencies for PP01 (EXP). The best updated model produced a reduction in the modulus of elasticity to 96 

GPa (decrease of 43%) with no change in KR. The resulting update brought the errors between natural frequencies 

within 6%, and had varying effects on the MAC values. The reduction in modulus for PP01 (43%) compared with 

the Flat model (21%) emphasizes the importance of the initial curvature in the updating process when examining the 

effective modulus. The resulting modulus update for PP01 was then blindly applied to the PP02 (NUM 1). Both 

PP01 and PP02 models show better agreement in the first ten natural frequencies when compared with the Flat 

model as seen in Tab. 1 leading to the conclusion that the model is a good representation of the experimental setup 

after simply updating the elastic modulus and curvature. The larger frequency error but good agreement in MAC 

value observed in PP02 further emphasizes the influence of curvature on the effective modulus. Since only minor 

differences are observed between the mode shapes of PP01 and PP02, only the modes shapes of the experimentally 

measured PP01 and updated PP01 model are presented in Fig. 6. Here a good agreement is seen between both sets of 

modes. 

 

In the absence of a measurement of the initial curvature, the updated Flat model may be all that is available to 

understand the dynamics of the structure. Since the mode shapes of the measurement and flat model match well, one 

may be tempted to factor in the frequency difference in any further analysis and stop updating at this point; however, 

the flat model misses important nonlinear characteristics of the dynamic response as discussed in Section 3.3. For 

the sake of discussion, all three models (Flat, PP01, and PP02) will be used throughout all stages of updating. 

 
Table 1: Perforated Plate Correlation Results 

Model Flat PP01 PP02 

Mode # 

fn, Hz, 

EXP 

AVG 

fn, Hz, 

NUM 1 

Mean  

% Err. 
MAC 

fn, Hz, 

EXP 

fn, Hz, 

NUM 1 
% Err. MAC 

fn, Hz, 

EXP 

fn, Hz, 

NUM 1 
% Err. MAC 

1 213.75 154.01 27.95 0.980 205.36 202.26 1.51 0.990 222.13 210.77 5.11 0.983 

2 339.18 319.52 5.80 0.870 327.84 328.86 -0.31 0.983 350.51 350.80 -0.08 0.976 

3 356.80 319.52 10.45 0.835 348.65 352.10 -0.99 0.955 364.95 363.78 0.32 0.990 

4 506.18 527.64 -4.24 0.903 489.17 512.93 -4.86 0.887 523.19 548.75 -4.88 0.912 

5 526.68 528.62 -0.37 0.945 510.23 528.16 -3.51 0.972 543.12 564.80 -3.99 0.857 

6 571.87 604.38 -5.68 0.945 572.63 559.94 2.22 0.900 571.12 573.49 -0.41 0.869 

7 711.78 777.36 -9.21 0.930 697.90 736.59 -5.54 0.844 725.66 783.02 -7.90 0.903 

8 715.14 777.36 -8.70 0.906 699.95 737.37 -5.35 0.779 730.33 787.95 -7.89 0.897 

9 796.45 922.05 -15.77 0.933 814.12 821.08 -0.86 0.851 778.78 840.18 -7.88 0.820 

10 852.27 922.05 -8.19 0.941 827.68 832.57 -0.59 0.854 876.85 849.89 3.07 0.867 
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Figure 6: Experimental and numerical mode shapes of the first 10 modes 

 

3.2. Examination of Experimental NNM Backbone Curves 

The NNMs for the perforated plate can be obtained experimentally using phase quadrature relationships as described 

in [26]. In this investigation, a mono-frequency base excitation was applied to the structure as the phase was tracked 

between the input voltage to the shaker and the response velocity at the center of the plate to follow the NNM at 

higher amplitudes. The resulting experimental NNM for PP01 is shown in Fig. 7a. For the experimental setup, we 

were able to capture 12Hz of spring softening before 4.5Hz of spring hardening. Above this level of response, PP01 

failed as previously described. At a higher level of response amplitude along the NNM (i.e. at the point labeled 

‘Point 1’ in Fig. 7a), a multi-frequency response is observed in Fig. 7b, although only mono-frequency voltage was 

used to drive the shaker, the measured base motion also shows higher frequency content bringing into question the 

validity of the mono-frequency excitation. To provide context, the amplification factor from the base motion to the 

response at the center of the plate at 1*fin is 360 (i.e. 360 times more response is observed than base motion) and is 

328 at 3*fin describing the dominant behavior of the structure. The large amplification factor almost 10Hz from the 

1st linear mode of vibration and 7Hz from the 6th linear mode of vibration (closest to 3*fin) provides an indication to 

the level of nonlinearity in the response of the structure. An examination of the phase between the response of the 

plate at 1*fin and 3*fin (4.43deg compared to 0 degrees for perfect NNM measurement) provides an indication of 

how well the NNM of the structure is captured at the largest amplitude of deformation.  

 

In this experimental setup we had the benefit of measuring full-field dynamic displacements using high speed 3D 

digital image correlation from a previous setup [33] capturing images at 4000 Hz. The full-field measurement of the 

response of the plate provides an indication of which linear modes of vibration are participating in the multi-

frequency dynamic response shown in Fig. 7b. A qualitative examination of the physical deformation at 1*fin (Fig. 

7c) reveals a distinctive Mode 1 shape. Similarly, at 2*fin (Fig. 7d) a combination of Mode 1 and Mode 6 is 

observed, whereas at 3*fin (Fig. 7e) only a Mode 6 shape is observed. Finally, at 4*fin (Fig. 7f) a distinctive Mode 10 

shape is observed. This measurement shows a strong participation of Mode 1 and Mode 6 in the dynamic response at 

1*fin and 3*fin (i.e. the dominant frequencies) giving a good indication of the important modes participating at this 

response level. The fact that Mode 6 is shown to be important in the measured nonlinear response of the plate 

reinforces previous numerical studies [23]. However, a deeper understanding of how Mode 6 participates in the 

dynamic response is sought and will be discussed in the next section. 
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Figure 7: Experimental NNM backbone curve. a) Peak displacement vs. frequency, b) FFT of input (acceleration and voltage) 

and response velocity, c) Deformation at 1*fin, d) 2*fin, e) 3*fin, and f) 4*fin 

 

 

3.3. 2DOF NLROMs and Comparison with Experimental Results 

From a previous numerical study it has been shown that Mode 6 must be included in the formation of the NLROM 

to predict the nonlinear behavior of the plate [23], which is also confirmed in the measured NNMs shown in the 

previous section. Therefore, 2-DOF NLROMs are created using Mode 1 and Mode 6 as a basis for the three models 

created in this work. The inclusion of Mode 6 to the NLROM requires consideration of the level of the maximum 

static deflection each mode undergoes to implicitly account for membrane effects and build the NLROM. It was 

previously found that a deformation of Mode 1 and Mode 6 for a converged NLROM was 1*thickness and 

0.25*thickness of the plate, respectively. The first NNM of all models are compared with the measured NNM of 

PP01 and PP02 in Fig. 8. It is observed that the general characteristics of the NNM are captured (i.e. spring 

softening to hardening), but there is a discrepancy to the amplitude of deflection where hardening begins and the 

amount of softening observed in the NNM for the PP01 and PP02 models. It is of interest to note that the Flat model 

completely misses the nonlinear behavior predicted and observed in the perforated plate and only shows spring 

hardening behavior. 

 

More insight to the dynamic response of the plate can be gained by examining the time series of a period of the 

predicted and measured response at different amplitudes. In Fig. 8b-f the full field displacement is projected onto the 

mode shapes which have been normalized to the peak z-deflection to preserve the relative scale of the deformation 

of each mode in the physical response. The time series of Mode 1 (dash) and Mode 6 (dot) are shown for the two 

experimental measurements and the three models near a peak deflection of 0.1mm (purple), 0.2mm (green), and 

0.3mm (orange) in Figs. 8b-f. In Fig. 8b, the experimental time series of the measured NNM at these points for PP01 

is shown. As expected, Mode 6 becomes more pronounced at higher levels of response amplitude and primarily 

oscillates at three times the fundamental frequency. It is interesting to note that at all levels an asymmetry is 
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observed in the amplitude of the peak deformation of the time series of both modes. A similar behavior is observed 

in the PP02 experimental results shown in Fig. 8c; however, a lower amplitude of Mode 6 is at a similar level of 

peak center deflection. A comparison of the experimental results from PP01 (Fig. 8b) and the numerical results of 

PP01 (Fig. 8d) reveals an over prediction of the participation of Mode 6 at higher levels of response amplitude. This 

provides an indication of missing or inappropriately accounted for coupling between Mode 1 and Mode 6. Also, the 

phase relationship between Mode 1 and Mode 6 is 180 degrees different for the model while the experiment predicts 

an in-phase behavior. The phase difference can be traced back to the phase of the calculated linear modes when 

compared to the measured modes of vibration. The NNM of the Flat model (Fig. 8f) shows minimal participation of 

Mode 6 in the period of the response emphasizing again the important difference observed in the Flat model. At this 

point it is difficult to determine the next step in the model updating procedure, but a consideration of the 

experimental setup points to a potential need to relax the boundary conditions due to the assembly of the perforated 

plate.  
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Figure 8: a) Initial and measured NNMs and time series results for Mode 1 (dash) and Mode 6 (dot) at 0.1mm (purple), 0.2mm 

(green), and 0.3mm (orange) deflections for b) PP01 Experiment, c) PP02 Experiment, d) PP01 Model, e) PP02 Model, and f) 

Flat model. 
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3.4. Updating Based on Nonlinear Normal Mode Backbone Curves 

Using the NNM of PP01, the difference between the measured and predicted peak deflection at the center of the 

plate at the ‘turning point’ from spring softening to spring hardening is reduced. Using a forward difference gradient 

based optimization leads to a reduction in boundary stiffness to KR = 650000 N/m. This boundary condition is 

blindly applied to PP02 and the Flat model. Both curved models show a better agreement with the experimentally 

measured NNMs as seen in Fig. 9a. The time series of PP01 (Fig. 9b) also shows better agreement with the 

experimentally measured time series of PP01 (Fig. 8b). The relaxation of the boundary conditions improves the 

amplitude of Mode 6, and the phase between Mode 1 and Mode 6. The updated boundary conditions applied to the 

PP02 model (Fig. 9c) which shows a better representation of the contribution of Mode 6 to the dynamic response, 

but does a worse job predicting the asymmetry observed in Mode 1 when compared with the experimental results 

previously presented in Fig. 8c. It is interesting to note that the reduction in boundary conditions shifted the 

asymmetry of the modes in the time domain for the Flat model (Fig. 9d) toward the measured asymmetry. While the 

updated models do not provide an exact comparison with experimental results, the resulting NLROMs describe the 

behavior of the perforated plates well. 
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Figure 9: a) Updated NNMs and time series results at 0.1mm (purple), 0.2mm (green), and 0.3mm 

(orange) deflections for b) PP01 Model, c) PP02 Model, and d) Flat model 
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So as not to invalidate all previous updating results, the relaxation of the boundary conditions should have limited 

effect on the linear natural frequencies. At this point it is beneficial to revisit a comparison between the linear 

natural frequencies of the NLROMs and the experimental measurements. With the relaxation of the boundary 

conditions, the natural frequencies of all models show minimal change. This emphasizes that the boundary 

conditions were not fully perturbed during linear testing and was missed in the first updating step. A better 

representation of the perforated plates could be found by using both PP01 and PP02 results during the updating 

providing a more optimum result; however, the model updating steps have shown a level of robustness since the 

primary focus has been on creating the best model to match PP01. 

 
Table 2: Frequency results from boundary condition update 

Model Flat PP01 PP02 

Mode # 

fn, Hz, 

EXP 

AVG 

fn, Hz, 

NUM 3 
% Err. 

fn, Hz, 

EXP 

fn, Hz, 

NUM 3 
% Err. 

fn, Hz, 

EXP 

fn, Hz, 

NUM 3 
% Err. 

1 213.75 153.45 28.21 205.36 202.03 1.62 222.13 210.71 5.14 

2 339.18 317.43 6.41 327.84 327.89 -0.01 350.51 350.48 0.01 

3 356.80 317.43 11.03 348.65 351.37 -0.78 364.95 363.47 0.41 

4 506.18 524.51 -3.62 489.17 511.94 -4.66 523.19 548.16 -4.77 

5 526.68 525.87 0.15 510.23 526.34 -3.16 543.12 564.36 -3.91 

6 571.87 601.63 -5.20 572.63 558.33 2.50 571.12 572.31 -0.21 

7 711.78 774.59 -8.82 697.90 735.73 -5.42 725.66 782.54 -7.84 

8 715.14 774.59 -8.31 699.95 737.8 -5.41 730.33 787.65 -7.85 

9 796.45 924.26 -16.05 814.12 824.29 -1.25 778.78 837.55 -7.55 

10 852.27 924.26 -8.45 827.68 835.38 -0.93 876.85 847.43 3.36 

 

3.5. Stress Distribution of the Final Updated Models 

Using the updated NLROMs, we can now explore potential causes of the failures observed in the experimental 

testing of PP01 and PP02. Before examining the stress distribution throughout increasing nonlinear responses, it is 

beneficial to note that a circular flat plate with fixed boundary conditions undergoing distributed loading is expected 

to have the highest stresses near the clamp when deformations are on the order of half of the plate thickness. 

However, small differences in the boundary conditions will reduce edge stresses while increasing the deflection and 

stresses at the center of the plate [34]. The plates presented here show an interesting combination of these effects 

due to the changes in the boundary conditions we have implemented as well as internal forces predicted in the 

plates. It was demonstrated in Fig. 7, that along the NNM backbone a dominant interaction with Mode 6 is observed 

at 3*fin with secondary effects observed at 2*fin and 4*fin. Since the failures observed were in the center of the plate, 

the modal interaction is thought to change the stress distribution at higher response amplitudes so a ‘hot spot’ forms 

near the center of the plate.  

 

This is demonstrated using the updated NLROMs by expanding the membrane effects condensed during the ICE 

procedure and projecting the predicted deformation of the modal NLROM at several levels along the NNM to find 

the deformation of the structure in the physical space. This deformation is then applied to the structure using a 

nonlinear static analysis in Abaqus®. The internal stresses due to the predicted in- and out-of-plane deformations are 

resolved within the analysis. Plots of the peak stress observed over a period of the response at four levels of 

deformation along the NNM are shown in Fig. 10 for the three updated models. For the flat plate (Fig. 10d) the low 

amplitude deformation (purple) shows a high von Mises stress at the center and edge of the plate indicating the 

importance of the relaxed boundary condition at low amplitudes. At higher levels of deformation (blue to red) the 

stiffening from in-plane stretching becomes more apparent as the stress concentrates near the edge of the plate. For 

PP01 (Fig. 10b) and PP02 (Fig. 10c), the von Mises stress is highest at the edges for low amplitude of deformation 

(purple) indicating a stiffer boundary condition due to the high curvature near the edge of the plate. At higher levels 

of deformation (blue to red), the Mode 6 interaction concentrates the highest level of stress just offset of the center 

of the plate forming a ‘hot spot’. The location of this larger stress corroborates the failures observed in the 

experiment and provides a final emphasis to the difference between a flat and curved geometrically nonlinear 

structure. 
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Figure 10: Von Mises Stress Distribution and corresponding peak stress at 0.02mm (purple), 0.10mm (blue) 

0.20mm (orange), and 0.35mm (red) deflections along the NNM for the b) Flat model, c) PP01, and d) PP02.  

4. Conclusions 

This work has explored the use of NNM backbones as a metric for finite element model calibration in nonlinear 

response regimes for two axi-symmetric perforated plates. Full field measurements and previous numerical work has 

shown the importance of the coupling between mode 1 and mode 6 at larger response levels. Through the 

examination of single point responses at the center of the perforated plate, the frequency-amplitude relationship is 

presented and used for model updating. For the nominally flat plate, the fundamental natural frequency of the final 

updated model is still outside acceptable frequency error ranges; however, there is gained insight to the final stress 

distribution at increasing amplitudes of response pointing to a more optimal design. The curved plates agree well 

throughout the updating process, and final stress distributions point to a potential mechanism of the observed 

experimental failures. This work has shown the benefit of using NNMs to characterize nonlinear behavior and guide 

model updating for geometrically nonlinear structures. Additional emphasis is placed on the importance of 

accounting for potential uncertainties in the experiment before changing nonlinear characteristics to obtain a more 

complete picture of how the structure behaves nonlinearly. 

Acknowledgments 

Support for this research was provided by the Engineering and Physical Sciences Research Council, the University 

of Wisconsin – Madison Graduate School with funding from the Wisconsin Alumni Research Foundation and 

through the Structural Sciences Center in the Air Force Research Laboratory's summer internship program. 



 

Journal of Sound and Vibration 

 

14 

References 

[1] D. J. Ewins, Modal Analysis Theory, Practice, and Application, Second Edition ed.: Research Studies Press 

Ltd., 2000. 

[2] M. I. Friswell, and Mottershead, J.E., Finite Element Model Updating in Structural Dynamics: Kluwer 

Academic Publishers, 1995. 

[3] G. F. Lang, "Matrix Madness and Complex Confusion... A Review of Complex Modes from Multiple 

Viewpoints," Journal of Sound and Vibration, vol. 46, 2012. 

[4] R. M. Rosenberg, "Normal Modes of Nonlinear Dual-Mode Systems," Journal of Applied Mechanics, vol. 

27, pp. 263-268, 1960. 

[5] S. W. Shaw, "An Invariant Manifold Approach to Nonlinear Normal Modes of Oscillation," Journal of 

Nonlinear Science, vol. 4, pp. 419-448, 1994. 

[6] G. Kerschen, M. Peeters, J. C. Golinval, and A. F. Vakakis, "Nonlinear normal modes, Part I: A useful 

framework for the structural dynamicist," Mechanical Systems and Signal Processing, vol. 23, pp. 170-194, 

2009. 

[7] A. F. Vakakis, Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.M., and Zeven, A.A., Normal Modes and 

Localization in Nonlinear Systems. New York: John Wiley & Sons, 1996. 

[8] D. Jiang, Pierre, C., and Shaw, S.W.,, "The Construction of Non-Linear Normal Modes for Systems with 

Internal Resonance," International Journal for Nonlinear Mechanics, vol. 40, pp. 729-46, 2005. 

[9] T. P. Sapsis, D. D. Quinn, A. F. Vakakis, and L. A. Bergman, "Effective stiffening and damping 

enhancement of structures with strongly nonlinear local attachments," Journal of Vibration and Acoustics, 

Transactions of the ASME, vol. 134, 2012. 

[10] D. A. Ehrhardt, Neild, S.A., and Cooper, J.E.,, "Experimental and Numerical Investigation of the Nonlinear 

Bending-Torsion Coupling of a Clamped-Clamped Beam with Centre Masses," presented at the 

International Modal Analysis Conference XXXIV, Orlando, FL, 2016. 

[11] R. J. Kuether, and Allen, M.S., "Computing Nonlinear Normal Modes Using Numerical Continuation and 

Force Appropriation," presented at the 24th Conference on Mechanical Vibration and Noise, 2012. 

[12] R. J. Kuether, B. Deaner, M. S. Allen, and J. J. Hollkamp, "Evaluation of Geometrically Nonlinear 

Reduced Order Models with Nonlinear Normal Modes," AIAA Journal, vol. Submitted August, 2014. 

[13] M. Kurt, Eriten, M., McFarland, D.M., Bergman, L.A., and Vakakis, A.F.,, "Metholodology for Model 

Updating of Mechanical Components with Local Nonlinearities," Journal of Sound and Vibration, vol. 357, 

24 November 2015 2015. 

[14] M. Peeters, G. Kerschen, and J. C. Golinval, "Dynamic testing of nonlinear vibrating structures using 

nonlinear normal modes," Journal of Sound and Vibration, vol. 330, pp. 486-509, 2011. 

[15] M. Peeters, G. Kerschen, and J. C. Golinval, "Modal testing of nonlinear vibrating structures based on 

nonlinear normal modes: Experimental demonstration," Mechanical Systems and Signal Processing, vol. 

25, pp. 1227-1247, 2011. 

[16] M. Peeters, Kerschen, G., Golinval, J. C., Stéphan, C., and Lubrina, P., "Nonlinear Normal Modes of Real-

World Structures: Application to a Full-Scale Aircraft," in International Design Engineering Technical 

Conferences and Computers and Information in Engineering Conference, Washington, DC, 2011, pp. 223-

242. 

[17] A. H. Nayfeh, Introduction to Perturbation Techniques. New York: Wiley, 1981. 

[18] W. Lacarbonara, Rega, G., Nayfeh, A.H., "Resonant Nonlinear Normal Modes Part I: Analytical Treatment 

for Structural One-dimensional Systems," International Journal for Nonlinear Mechanics, vol. 38, pp. 851-

872, 2003. 

[19] S. A. Neild, Cammarano, A., and Wagg, D.J.,, "Towards a Technique for Nonlinear Modal Analysis," in 

ASME International Design Engineering Technical Conferences and Computers and Information in 

Engineering Conference, 2012. 

[20] A. H. Nayfeh, Nonlinear Oscillations. New York: John Wiley and Sons, 1979. 

[21] M. Peeters, Viguie, R., Serandour, G., Kerschen, G., and Golinval, J.C., "Nonlinear Normal Modes, Part II: 

Toward a Practical Computation using Numerical Continuation Techniques," Mechanical Systems and 

Signal Processing, vol. 23, pp. 195-216, 2009. 

[22] R. J. Kuether, and Allen, M.S., "A numerical approach to directly compute nonlinear normal modes of 

geometrically nonlinear finite element models," Mechanical Systems and Signal Processing, vol. 46, pp. 1-

15, 2014. 



 

Journal of Sound and Vibration 

 

15 

[23] R. J. Kuether, Deaner, B.J., Hollkamp, J.J., and Allen, M.S., "Evaluation of Geometrically Nonlinear 

Reduced-Order Models with Nonlinear Normal Modes," AIAA Journal, vol. 53, pp. 3273-3285, 2015. 

[24] J. P. Noel, Renson, L., Grappasonni, C., and Kerschen, G., "Identification of Nonlinear Normal Modes of 

Engineering Structures under Broadband Forcing," Mechanical Systems and Signal Processing. 

[25] J. M. Londono, Neild, S.A., and Cooper, J.E., "Identfication of Backbone Curves of Nonlinear Systems 

from Resonance Decay Responses," Journal of Sound and Vibration, vol. 348, 2015. 

[26] D. A. Ehrhardt, and Allen, M.S., "Measurement of Nonlinear Normal Modes using Multi-Harmonic 

Stepped Force Appropriation and Free Decay," Mechanical Systems and Signal Processing, 2016. 

[27] J. M. Londono, Neild, S.A., and Cooper, J.E., "An Approach for the Compensation of Resonant Decays in 

the Identification of Nonlinear Structures," in International Modal Analysis Conference XXXIV, Orlando, 

FL, 2016. 

[28] W. S. Rasband. (1997-2015). ImageJ, U.S. National Institutes of Health. Available: http://imagej.nih.gov/ij/ 

[29] M. J. Jhung, and Jo, J.C.,, "Equivalent Material Properties of Perforated Plate with Triangular or Square 

Penetration Pattern for Dynamic Analysis," Nuclear Engineering and Technology, vol. 38, October 2006 

2006. 

[30] R. W. Gordon and J. J. Hollkamp, "Reduced-order Models for Acoustic Response Prediction," Air Force 

Research Laboratory, Dayton, OH2011. 

[31] J. J. Hollkamp and R. W. Gordon, "Reduced-order models for nonlinear response prediction: Implicit 

condensation and expansion," Journal of Sound and Vibration, vol. 318, pp. 1139-1153, 2008. 

[32] J. J. Hollkamp, R. W. Gordon, and S. M. Spottswood, "Nonlinear modal models for sonic fatigue response 

prediction: a comparison of methods," Journal of Sound and Vibration, vol. 284, pp. 1145-63, 2005. 

[33] D. A. Ehrhardt, Allen, M.S., Yang, S., and Beberniss, T.J.,, "Full-Field Linear and Nonlinear 

Measurements using Continuous-Scan Laser Doppler Vibrometry and High Speed Three-Dimensional 

Digital Image Correlation," Mechanical Systems and Signal Processing, vol. In Review, 2015. 

[34] W. C. Young, and Budynas, R.G., Roark's Formulas for Stress and Strain. New York, NY: McGraw-Hill 

Companies, Inc., 2002. 

 

 

http://imagej.nih.gov/ij/

