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Abstract 

It is commonly known that nonlinearities in structures can lead to large amplitude responses that 
are not predicted by traditional theories. Thus a linear design could lead to premature failure if the 
structure actually behaves nonlinearly, or, conversely, nonlinearities could potentially be exploited to 
reduce stresses relative to the best possible design with a purely linear structure.  When examining 
structures that operate in environments where a nonlinear response is possible, one can gain insight into 
the free and force responses of a nonlinear system by determining the structure’s nonlinear normal modes 
(NNMs).  NNMs extend knowledge gained from established linear normal modes (LNMs) into the 
nonlinear response range by quantifying how the unforced vibration frequency depends on the input 
energy.  Recent works have shown that periodic excitations can be used to isolate a single NNM, 
providing a means for measuring NNMs in the laboratory.  An extension of the modal indicator function 
can be used to ensure that the measured response is on the desired NNM.  The experimentally measured 
NNMs can then be compared to numerically calculated NNMs for model validation. In this investigation, 
a circular perforated plate containing a distributed geometric nonlinearity is considered. This plate has 
demonstrated nonlinear responses when the displacements become comparable to the plate thickness.  
However, the system is challenging to model because the nonlinear response is potentially sensitive to 
small geometric features, residual stresses within the structure, and the boundary conditions.   

1. Introduction 

 Structures have been shown to exhibit nonlinear responses when large deformations occur due to 
extreme mechanical and environmental loading conditions, or in other cases at seemingly small 
amplitudes if the structure contains materials with nonlinear constitutive properties or when thin shell 
geometries experience vibration levels approaching the shell thickness.  Over the past several decades a 
suite of testing and modeling approaches has been developed for linear systems.  The term linear is 
important here since characterization of systems using modal analysis is based on quantifying the system 
in terms of invariants such as resonant frequencies, damping rations, mode shapes, and frequency-
response functions.  Once these system invariants are quantified, a system model, typically a finite 
element model, is updated to reflect the measured properties.  These techniques can not be directly 
applied to nonlinear systems since the linear system invariants become functions of input energy, so new 
methods are sought to address nonlinear behavior while preserving as much as possible the simplicity of 
the traditional design and test paradigms. 

This work proposes to use the nonlinear normal mode (NNM) concept as a basis for testing and 
model updating of nonlinear structures.  A structure’s nonlinear modes provide significant insight into the 
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structure’s free and forced response and they allow its behavior to be expressed in terms of a few compact 
plots [1]. For example, in a companion paper the authors explore how nonlinear modes can be used to 
evaluate the fidelity of a reduced order model [2], illustrating that when a structure’s NNMs are correctly 
modeled the model will be accurate for a range of different types of inputs, excitation levels, etc… 
Several advances in recent years have begun to make nonlinear modeling and testing for model updating a 
reality for realistic structures.  First, new methods have been developed to calculate the nonlinear normal 
modes of a structure.  Peeters et al. [3] recently presented a technique based on numerical integration and 
continuation which has proven effective for computing the NNMs of a structure with hundreds of degrees 
of freedom so long as the nonlinearities are localized.  Allen, Kuether & Deaner [4, 5] recently extended 
that approach to structures with geometric nonlinearities that are modeled within commercial finite 
element software, making high fidelity model updating a possibility.  On the testing front various 
approaches have been explored and one of the more promising seems to be a variant on stepped sine 
testing in which a structure can be made to vibrate in only one nonlinear mode [6].  The excitation can 
then be removed and the response would then presumably decay along that NNM. Peeters et al [7] applied 
this technique to a beam with a local nonlinearity at one end with good results.  Kuether & Allen 
proposed a variant on this technique that was used to compute NNMs [8] but also could be extended to 
compute an NNM by progressively adjusting the excitation frequency and amplitude while observing an 
extension of the modal indicator function (MIF). 

This work proceeds along similar lines, using stepped-sine testing to estimate the nonlinear 
frequency response of a structure over a range of excitation amplitudes and the NNMs are then estimated 
from the backbones of these nonlinear frequency responses.  The methods developed in  [4, 5] are then 
used to compute the NNMs of the geometrically nonlinear structure using a detailed finite element model, 
and then the experimentally estimated nonlinear modes are compared with those computed from the 
model to determine how the model should be updated.  
 A simplified analytical model of the plate was also used in the initial troubleshooting, based on 
the work of Leissa [9], which details the analysis of the vibration of plates with various boundary 
conditions, thicknesses, and geometries using continuum vibrations. In reference to circular plates, Leissa 
uses Kirchhoff-Love plate theory to derive the various mode shapes and natural frequencies based on the 
geometry and boundary conditions.  Additionally, we exploit the work of Jhung and Jo [10], who showed 
how one can precisely model a perforated plate by simply adjusting the elastic modulus and density based 
on the perforation geometry and pattern.  
 This initial investigation focuses on the first two symmetric modes of the plate.  The following 
section provides some background information regarding nonlinear normal modes while Section 2 
discusses the testing that was performed.  Section 3 describes the comparisons that were used to update 
the computational model and the results. 

2. Analysis and Experimental Setup 

2.1 Test Specimen 

 The article under investigation is a circular perforated plate with rolled ends which is shown in 
Figure 1. A mechanical punch was used to create the circular perforations in a flat 16 gauge (1.52 mm 
thick) 409 stainless steel plate in an array of equilateral triangles with 10.16 mm long edges.   Once this 
process was completed, the plate was formed around a 317.5 mm diameter mold with the excess trimmed 
so a lip of 317.5 mm remained.  The plate was then welded to a 89 mm high cylinder made from a 14 
gauge (1.9 mm thick) 409 stainless steel plate that was cold rolled to the 317.5 mm diameter as shown in 
Figure 1b. The welded plate assembly was then bolted to a 317.5 mm diameter by 19 mm thick aluminum 
fixture with twelve 6.4 mm evenly spaced holes. A 444 N modal shaker was then attached to the center of 
the fixture via a stinger to excite the structure. It is important to note that all stated dimensions are 
nominal and subject to variation. Additionally, the processes the plate is subjected to can induce residual 
stresses in the structure which also might modify the dynamics of the plate in its final configuration.  
While this system is relatively simple compared to the engine to which it is designed to be attached, work 
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will show how important it is to have a test to validate any computational models that are created; there 
are a variety of subtle details that might easily be neglected initially, and yet they could change the 
response considerably.  
 

(a) 
 
 

 
 
 

(b) 

 
 

 
(c) 

 
 

Figure 1: Perforated Plate. a) perforated plate before welding into test configuration, b) 
Perforated plate welded into the supporting cylinder, c) based plate to which the system was 

attached for testing.  

 

2.2 Finite Element Model  

 Circular plates exhibit complex behavior which can be difficult to model, even in a linear range.  
In this investigation, a finite element model (FEM) was built based on the previously stated nominal 
geometries of the perforated plate before it was welded to the steel cylinder.  Therefore, it is assumed that 
the welded boundary between the plate and steel cylinder provide fixed boundary conditions in the model.  
The plate curves from the weld and is flat over the entire central region, and hence will be referred to as a 
model with “No Initial Curvature (NIC)” in all of the following.  A very fine mesh would have been 
required in order to model each of the perforations.  However, Jhung and Jo [10] found that a perforated 
plate behaves identically to a non-perforated plate of the same dimensions, as long as the elastic 
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properties are adjusted appropriately.  Hence, the reduced elastic modulus and density were calculated 
based on the perforation geometry as detailed by Jhung and Jo [10], which for the triangular perforation 
pattern of this plate yields a new elastic modulus of 1.68 GPa and density of 5120 kg/m3. The resulting 
meshed Abaqus model is shown in Figure 2, and has 1440 S4R shell elements.  The elastic modulus was 
later updated based upon comparison with experiments.  The reduced density was not updated because it 
can be computed from the geometric properties of the perforations (ex. size of hole and count) and hence 
it was thought to be quite accurate.  On the other hand, the effective modulus is dependent on any residual 
stresses from the addition of perforations, or imperfections of the perforation location geometry. 
  

  
Figure 2: Meshed Perforated Plate Model  

 The nonlinear normal modes of the plate were computed from this model using the procedure 
discussed in [4, 5].  Specifically, a reduced order model was created for each mode of the plate 
(separately) using the Implicit Condensation method [11-13].  Then the ROM was integrated in the 
NNMCont Matlab routine provided by Peeters, Kerschen, et al. [6] to compute the nonlinear modes.  In [4, 
5] this approach was found to provide an excellent approximation for the backbone of each NNM of a 
geometrically nonlinear beam while neglecting any internal resonances which would increase the 
computational cost. 

2.3 Experimental Setup 

 The experimental setup is shown in Figure 3.  The 12.5 in circular perforated plate assembly 
previously described was attached to a Ling Dynamics LMT-100 electrodynamic shaker via a 5 mm 
diameter stinger. In some of the tests the shaker was controlled using closed loop feedback based on the 
input force measured by a Piezotronics PCB208C04 force transducer, with a sensitivity of 22 mV/N, 
mounted between the base plate and the stinger.  The response of the plate is measured using two 
ISOTRON 25B accelerometers with a nominal sensitivity of 5 mV/g.  The accelerometers were placed at 
two key points on the plate to ensure the dynamic response could be measured at the modes of interest.  
The first accelerometer, with a sensitivity of 4.627 mV/g; was placed in the center of the plate to identify 
modes that contain nodal diameters (ex. Mode 1, Mode 4, etc.). The second accelerometer, with a 
sensitivity of 5.230 mV/g; was placed exactly one third of the radius from the center of the plate to 
identify modes that have nodal lines. Since forces and frequencies were relatively low, all accelerometers 
were secured using wax.  The setup was then suspended from four points by small bungee cords as seen 
in Figure 3. A Data Physics®, ABACUS data acquisition system was used to drive the shaker and to 
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acquire measurements and the SignalCalc Mobilyzer software produced by Data Physics was used to 
compute the steady state response frequency and amplitude at each frequency. 

Initially, quite a bit of effort was spent seeking to used the closed loop feature of the Data Physics 
software, together with a swept sine excitation to acquire the nonlinear frequency response.  
Unfortunately, the control software must adjust the input very quickly near resonance do avoid perturbing 
the system off of resonance and onto a co-existing low amplitude branch, so it proved challenging to 
obtain reasonable estimates of the nonlinear resonances using swept sine measurements.  Furthermore, the 
swept sine measurements had to be post processed to estimate the amplitude and phase at each frequency 
and so it seemed that a stepped-sine test would be more reliable. 
 In the end the Stepped Sine capability of the Data Physics controller was used.  In this mode the 
shaker is driven in open loop, but after each step the force amplitude is monitored and the shaker voltage 
adjusted until the force returns to the target value.  For this study 100 steps were taken in a small band 
around each NNM that was only 10 Hz in width resulting in frequency steps of 0.1 Hz.  The frequency 
was stepped up and then back down at each force amplitude.  Considerable effort was required in order to 
assure that the software would wait long enough for steady state, and to adjust the number of iterations 
that the algorithm would attempt at each frequency line to drive the force amplitude towards the target 
value, but with some experience it proved fairly easy to acquire measurements at a range of forcing 
amplitudes. 
 

 
Figure 3: Experimental Setup 

3. Results 

3.1 Linear Comparison 

 Although this system will be shown to be nonlinear, it is first helpful to test the structure and 
update the FEM for the low-amplitude, linear dynamic response.  The first several modes of the FEM 
were extracted using the built in Lanzos Eigen solver in Abaqus. The experimental natural frequencies 
and mode shapes were determined using a roving hammer test while measuring the responses at the 
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accelerometer locations previously discussed.  The system exhibited nonlinearity for relatively small 
excitations, so a very small modal hammer (a PCB 086E80 modal hammer, Figure 4) was used to keep 
the excitation force very small.  A 50 mm grid of impact locations was selected on the surface of the 
perforated plate resulting in 37 evenly spaced nodes.  The mode shapes determined from the FEM were 
interpolated at these locations for comparison.  Five averages were taken at each impact location.  The 
coherence and transfer function were monitored after each impact to ensure the response stayed in a linear 
region and the impact hammer adequately excited the modes of interest. Natural frequencies and mode 
shapes were extracted using the algorithm for mode isolation (AMI) [14]. 
 

 
Figure 4: Miniature Modal Hammer (PCB 086E80) 

 
 The natural frequencies of the initial FEM were compared with those from the linear modal test 
revealing revealed that, while the mode shapes of the FEM agreed quite well with those from the test, the 
reduced modulus computed from [10] seems to be off by a factor of four or more so the natural 
frequencies are all far lower than those measured experimentally.  In an effort to obtain better correlation, 
the modulus in the FEM was increased until the first natural frequency from the test matched that in the 
FEM very closely.  The results are shown in Table 1.  The natural frequencies extracted from the test are 
shown in the first column while those from the FEM frequencies are in the column labeled “fn, FEM 
NIC.”  The other columns, denoted “FEM -IC” will be explained subsequently. For further comparison, 
Figure 5 shows the measured mode shaped overlaid the mode shapes obtained from both FEM models. 
Figure 5a, c, e, g, i, and k are for NIC model. Figure 5b, d, f, h, j, and l are for the IC model.  A 
reasonable comparison is shown in first 6 modes, as confirmed in Table 1.  It is interesting to note that the 
model captures the higher modes of the system more accurately than the lower modes.  The higher modes 
of a structure are typically affected more weakly by the boundary conditions, so perhaps this signifies that 
the weld where the perforated plate joints the can is not truly rigid.  
 The FEM with an updated elastic modulus matches the experiment much more closely, however, 
all of the natural frequencies except for the first are overestimated by 20-40% or more.  It is also 
interesting to note that the frequencies are uniformly too high, suggesting that the modulus is now too 
high.  However, if the modulus were reduced slightly the model would still exhibit between 10-20% error 
in each natural frequency and the first mode would be far less accurate.  As the testing and analysis was 
being performed, some other contradictions were noted which shed additional light onto the situation, so 
rather than pursue further improvements to the linear FEA model we shall next consider how well the 
model captures the nonlinear response. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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(i) (j) 

(k) (l) 

Figure 5: First six mode shapes for the NIC and IC models. Sub plots a), c), e), g), i), and k) are 
for NIC model. Sub plots b), d), f), h), j), and l) are modes for IC model.  

 

Table 1. Linear natural frequencies of the FEMs after updating the elastic modulus.  
(*No rotation applied to mode shape comparison) 

 fn, Test 

FEM 2- 
NIC 

Mode # 
fn, FEM 2-

NIC %error 
FEM 2-

NIC MAC 

FEM 2- 
IC 

Mode # 
fn, FEM 2-

IC %error 

FEM1-
IC-

MAC 
1 205.36 1 204.80 0.27 0.980 1 205.26 0.05 0.773 
2 327.86 2 424.88 -22.83 0.686* 2 283.51 15.64 0.870* 
3 348.65 3 424.88 -17.94 0.707* 3 283.51 22.98 0.835* 
4 489.17 4 701.64 -30.28 0.903* 4 300.95 62.54 0.884* 
5 510.22 5 702.93 -27.42 0.945* 5 303.02 68.38 0.925* 
6 572.61 6 803.68 -28.75 0.945 10 578.79 -1.07 0.657 
7 699.94 7 1033.70 -32.29 0.651 7 349.70 100.16 0.544 
8 814.12 9 1226.10 -33.60 0.930 13 618.63 31.60 0.736 
9 827.68 10 1226.10 -32.50 0.906 14 618.63 33.79 0.750 

10 916.77 11 1421.70 -35.51 0.933 8 465.22 97.06 0.934 
13 938.96 12 1424.00 -34.82 0.941 9 466.01 101.49 0.941 
14 1096.27 13 1713.70 -45.21 0.956 15 688.16 59.30 0.938 
15 1178.72 15 1817.40 -35.14 0.444     
16 1191.36 16 1872.10 -36.36 0.401 12 615.51 50.79 0.488 
17 1200.57 17 1872.10 -35.87 0.431 11 615.51 48.96 0.623 
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3.2 Nonlinear Comparison 

 A series of stepped sine measurements was acquired near each of the first few resonances of the 
structure and the amplitude of response was recorded (at steady state) at a series of frequencies around 
each resonance. A quasi-closed loop algorithm in the shaker control software assured that the force 
remained within 10% of the desired amplitude. Figure 6 shows the amplitude of the response of the center 
of the plate for the first mode as the control frequency was stepped from 200 to 210 Hz.  Because of the 
shaker/stinger setup that was used, the force was limited to a range of 0.44 N to 13.44 N in these tests.  
Above this force level the plate would oscillate from side to side, apparently due to bending in the stinger, 
and the system would not reach steady state.  From this figure, it is clear that the first mode has a 
softening nonlinearity, resulting in a frequency shift of 5.3 Hz over this range of forces. The peak 
displacement observed was about 1 mm (0.042 in), or about 70% of the thickness of the plate. In order to 
extract the NNM backbone, the phase between the force and response was plotted, revealing that the 
response is quite close to 90 degrees at the point at which the response jumps down in amplitude in the 
downward sweeps.  This is illustrated in Figure 7, where the phase of the transfer functions is plotted with 
markers added corresponding to the peak the response curves. These points are all quite close to 90 
degrees as desired. As shown by Peeters et al [6], a NNM has been isolated when all of the harmonics of 
the response are 90 degrees out of phase with the force.  The Data Physics software did not have any 
convenient feature for checking the phase of higher harmonics nor for saving the time history at each 
frequency, so this condition was not checked for the higher harmonics. 
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Figure 6: (a) Transfer function of first mode stepping up in frequency. (b) Transfer function of 

first mode stepping down in frequency. (c) FFT of first mode stepping up in frequency. (d) FFT of 
first mode stepping down in frequency 

 
 This same procedure was repeated for modes 4, 5, and 6 (modes 2 and 3 were poorly excited anti-
symmetric modes and hence were skipped).  For these modes the maximum frequency shift that was 
observed was 0.3 Hz, 0.4 Hz, and 0.3 Hz respectively, for forces ranging from 0.1 to 8.0, 8.0 and 1.0 lbs 
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respectively, revealing that these modes behave quite linearly at this range of force levels.  Once again, 
the maximum force achieved was that at which the setup began to oscillate with excessive lateral motion.  
As an example, the nonlinear response of mode 4 is shown in Figure 8; modes 5 and 6 showed a similar 
level of nonlinearity.  While it is subtle, it appears that mode 4 is initially softening (only very slightly) 
after which the response appears to become slightly hardening.  The nonlinearity is not strong enough to 
observe a jump, so the upward and downward sweeps were almost identical. 
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Figure 7: Phase lag of the acceleration with respect to frequency of the first mode.  The dark 

circles show the points at which the phase was closest to 90 degrees, and from which the NNM 
was extracted. 
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Figure 8: (a) Transfer function of fourth mode stepping up in frequency, and (b) down in 
frequency. (c) FFT of fourth mode stepping up in frequency and (d) down in frequency 
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 Once the backbone curves, or estimated NNMs, had been extracted from each mode, they were 
compared with the NNMs calculated from the finite element model, as shown in Figure 9 by the green 
curve marked “NIC 2” (see Table 1).  As previously mentioned, the modal shaker is limited in the amount 
of force that can be used to excite the system, but the numerical simulation did not have this same 
constraint, so, the NNMs were numerically computed to a much larger maximum displacements than 
were tested.  This comparison reveals that the finite element model and the actual nonlinear system 
exhibit completely different nonlinear behavior!  The FEM predicts a hardening nonlinearity while the 
actual structure is softening.  This unexpected behavior suggests that some important physics were 
missing from the model, as the sign of the nonlinearity is completely erroneous.  Furthermore, the NIC 2 
model also overestimates the degree of nonlinearity at a given displacement amplitude. 
 The measured and computed NNMs of Modes 4, 5 and 6 were also compared to further assess the 
NIC 2 model and the comparison is shown in Figure 10.  As was shown previously, there are clearly large 
errors in the linear natural frequencies, but it is also interesting to compare the degree of 
stiffening/softening that each mode exhibited in the model with what was observed experimentally.  The 
results in Figure 10 show that the NIC 2 model predicts that the plate will be significantly hardening over 
the amplitude range of interest for modes 4, 5 and 6, while in fact the actual measured NNMs show only 
very slight softening/hardening.  Furthermore, the measurements show that modes 4 and 5 have slightly 
different frequencies whereas the model suggests that these frequencies should be equal and also have 
identical nonlinearity. 

3.3 Finite Element Model with Initial Curvature 

Softening nonlinearities are characteristics of curved plates, plates with initial compressive stress, 
or other structures that might buckle.  After this discrepancy was noted the plate was examined and it was 
discovered that the central region of the plate, which was supposed to have been flat, actually curved 
upwards slightly, with the center being about 4 mm higher than the edges of the plate.  A detailed 
measurement of the topography was not available, so the surface was approximated as being deformed 
from the initial geometry in the shape of the first linear elastic mode with a peak central displacement of 4 
mm.  In all of the following this model will be referred to as the IC model or the model where the center 
of the plate has a nonzero initial curvature. 

 The results in Figures 9 and 10 show that the first mode of the IC model shows an initial spring 
softening, which eventually becomes hardening at large displacement amplitudes; over the range of 
amplitudes tested the response is always softening and in excellent agreement with the measurements for 
NNM 1.  The IC model predicts softening behavior for modes 4 and 5, and hardening behavior for mode 
6, as shown in Figure 10.  A closer look at modes 4, 5, and 6 is shown in Figure 11.   As a reminder, 
modes 4 and 5 are repeated roots in the FEM, but show up as separated modes in the test. In Figure 11a 
mode 4 from the test shows a spring hardening effect, while mode 5 shows a spring softening.  When 
comparing these results to both FEM models, IC FEM shows spring softening, while the NIC FEM shows 
spring hardening, again leading to the conclusion that the test specimen operates between both models.   
Mode 6 is predicted as spring hardening in both FEMs; however, the test shows a clear softening effect.  
While it is clear that the system's nonlinear dynamics have not been captured, it is important to note that 
the NNMs computed by the IC model do not begin to show significant frequency shifts until a center 
displacement of 0.2 to 0.3 mm, which is beyond the range tested for all modes.  To fully exercise the 
nonlinearities, larger amplitude excitations are needed.   

It is also informative to consider whether adding initial curvature has improved the correlation 
between the linear natural frequencies at all.  Returning to Table 1, the left hand columns compare the 
experimentally measured linear modes with those from the IC model before and after updating the elastic 
modulus, respectively.  The results reveal that, while the updated IC model does more accurately predict a 
few of the natural frequencies, on average it is less accurate than the IC model.  The MAC values reveal 
that the mode shapes were also generally more accurate with the NIC model; the MAC for mode 1 has 
dropped considerably although the MAC values for a few modes have increased.  The IC model also 
predicts a very different order for the modes, and a few modes which did not appear in the test results. 
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Figure 10: Complete Back Bone Curve Comparison 
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It is also interesting to note that while the IC model consistently over predicts the natural 
frequencies, the NIC model consistently under predicted the natural frequencies.  Perhaps the degree of 
curvature applied in the IC model was more than was warranted, or the shape of the curvature over the 
surface is not well approximated by the first mode shape as was assumed.  It was noted that the curvature 
was difficult to measure because the perforated plate did not sit completely flat inside the cylinder.  The 
height of the center of the plate was compared with four measurement points taken around the plate 
resulting in measurements of 3.31mm, 3.7mm, 5.01mm, 5.03mm when moving clockwise from the top 
point shown. So along different diameters the height of the center relative to the edges varied between 3 
mm and 5 mm showing a rotation of the fixed plate in its welded position.  Additionally, the procedure in 
[10] that was used to arrive at an effective modulus treats the perforated plate as isotropic, when in fact 
the hole pattern might make this plate somewhat orthotropic. Both of the FEMs have pairs of modes with 
repeated roots, while the test shows a slight separation in the natural frequencies of these pairs of modes, 
suggesting that the actual plate is not perfectly axisymmetric. 

 
(a) 

0.995 1 1.005
10

-6

10
-5

10
-4

Frequency/Linear Frequency, -

A
m

pl
itu

de
, 

m

 

 

NNM 4, 5 - IC
NNM 4, 5 - NIC
Sweep Up 4
Sweep Down 4
Sweep Up 5
Sweep Down 5

 

(b) 

0.998 0.999 1 1.001 1.002 1.003 1.004 1.005

10
-4

10
-3

Frequency / Linear Frequency, -

A
m

pl
itu

de
, 

x

 

 
NNM 6 - IC
NNM 6 - NIC
Sweep Up 6
Sweep Down 6

 
Figure 11: Magnified view of experimentally measured backbones with included linear frequency shift. 

a) NNMs 4 and 5, and b) NNM 6 
 

  
4. Conclusions 
  In this investigation, the nonlinear dynamic response of a circular perforated plate was measured 
using stepped sine excitation at various force levels in order to extract the first few nonlinear modes of the 
structure.  The linearized natural frequencies and mode shapes were also measured in a low level modal 
hammer test.  These results were then used to assess the ability of two finite element models to accurately 
predict the modal dynamics of the plate.  The comparisons revealed that the linear and nonlinear tests 
provide complimentary information which is critical when seeking to update a nonlinear model.  For 
example, when the measurements were compared with an initial finite element model with zero initial 
curvature over the center of the plate (the NIC model), the mode shapes compared well but the 
frequencies were in error by 30% on average and there was no pattern in the comparison to suggest how 
the FEM might need to be updated to better predict the linear modes of the structure.  In contrast, when 
the first nonlinear mode was compared with that of the FEM the two were found to exhibit completely 
different physics and this led the authors to notice a slight difference in curvature over the center of the 
plate which seems to be an important source of discrepancy between the models. 
 Unfortunately, the publication deadline for this article does not allow further iteration on these 
results, so one can only speculate as to the final outcome of this model updating exercise.  In future works 
the authors will mount the test piece to a much larger shaker so that the nonlinear modes can be 
characterized out to much higher displacement levels, to provide a richer database for model updating.  
The initial geometry of the plate will also be measured more thoroughly and used to create a higher 
fidelity model of the system.  There are also other physics which have not yet been considered, such as 
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the residual stresses caused by the formation of the plate and the added perforations and perhaps in the 
end these factors will need to be considered to fully characterize the nonlinear behavior of this system.  
The NNMs of the structure might also be quite sensitive to the ambient temperature, as that will change 
the distribution of initial stresses in the plate, so that should also be considered. 
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