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ABSTRACT 

Recently, nonlinear reduced order models (ROMs) of large scale finite element models have been used to 
approximate the nonlinear normal modes (NNMs) of detailed structures with geometric nonlinearity distributed 
throughout all of its elements. The ROMs provide a low order representation of the full model, and are readily 
used with numerical continuation algorithms to compute the NNMs of the system. In this work, the NNMs 
computed from the reduced equations serve as candidate periodic solutions for the full order model.  A subset of 
these are used to define a set of initial conditions and integration periods for the full order model and then the full 
model is integrated to check the quality of the NNM estimated from the ROM. If the resulting solution is not 
periodic, then the initial conditions can be iteratively adjusted using a shooting algorithm and a Newton-Raphson 
approach. These converged solutions give the true NNM of the finite element model, as they satisfy the full order 
equations, and they can be compared to the ROM predictions to validate the ROM at selected points along the 
NNM branch.  This gives a load-independent metric that may provide confidence in the accuracy of the ROM 
while avoiding the excessive cost of computing the complete NNM of the full order model. This approach is 
demonstrated on two models with geometric nonlinearity: a beam with clamped-clamped boundary conditions, 
and a cantilevered plate used to study fatigue and crack propagation. 

Keywords: reduced order modeling, geometric nonlinearity, nonlinear normal modes, periodic orbits, finite 
element analysis.  

1. Introduction 

Geometric nonlinearity can be encountered in almost any structure where the thickness of a member is small 
enough that it can deform significantly while the material remains in the linear elastic regime.  The development 
of reduced order models of such systems has been motivated by the efforts of the United States Air Force (USAF) 
and the National Aeronautics and Space Administration (NASA) to model and design reusable hypersonic 
aircraft.  At hypersonic speeds (Mach > 5) the aerodynamic pressure is sufficient to cause skin panels to vibrate 
nonlinearly. Additionally, thermal loads can lead to buckling and highly nonlinear vibration of the panel between 
two buckled states.  Similar issues are encountered in stealth aircraft as exhaust from engines, which are buried 
within the structure to minimize their thermal signature, impinges on structural panels.  While these are certainly 
two extreme environments, it is important to note that geometric nonlinearity can also be encountered in a variety 
of more common situations.  For example, when accelerated endurance tests are performed on structures with thin 
sheet metal panels, the increased loads may cause the panels, and hence the structure, to behave nonlinearly. This 
could invalidate the endurance test if the nonlinearity is not considered.  As a rule of thumb, a thin panel will tend 
to behave nonlinearly if the displacement is on the order of the panel thickness, as bending deformations induce 
axial stretching.  This is illustrated schematically in Fig. 1 for a clamped-clamped beam. 
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Figure 1. Schematic of clamped-clamped beam subject to bending loads.  When the deformations are small axial 
stretching can be neglected, but for large deformations the total stiffness increases as the beam must both bend 

and stretch axially to accommodate the deformation. 

Finite element codes have been capable of geometrically nonlinear quasi-static analysis for several decades. On 
today’s computers, this type of analysis is feasible for models containing tens or perhaps even hundreds of 
thousands of degrees of freedom, with solution times on the order of tens of minutes to several hours, 
respectively.  This capability can also be used to compute the transient, dynamic response of the structure, 
essentially by solving a quasi-static problem at each time step.  However, considering the short time steps that are 
typically required and the time span over which analysis must be performed to obtain meaningful results, a 
dynamic analysis tends to take thousands if not millions of times longer.  Hence, these analyses are far too 
expensive to be practical as a design tool except perhaps on relatively simple structures or when considering short 
dynamic events.  

Fortunately, in the past few decades Reduced Order Modeling (ROM) approaches have been developed which can 
extract a lower order dynamic model from a detailed finite element model of a geometrically nonlinear structure 
and then its response can be computed very inexpensively.  The first approach of this kind seems to have been 
presented by Nash [1], and other early contributors included Segalman & Dohrmann [2, 3], McEwan [4] and 
Muravyov & Rizzi [5].  All of these methods use a small number of nonlinear quasi-static analyses to extract a 
low order model for the structure, typically using the structure’s linear modal deformation shapes as a basis to 
describe the nonlinear response.  As long as the method used accounts for the way that axial stretching is induced 
as the structure vibrates in these low order bending modes, an accurate and efficient reduced order model can be 
obtained.  The works by Hollkamp & Gordon [6, 7] provide an excellent review and thorough explanation of the 
methods.  A recent review [8] provides additional perspective on the myriad of methods that have been 
developed. 

While these methods show tremendous promise, it can still be very challenging to create an accurate reduced 
order model for a real structure.  To succeed, not only must one include all of the linear modes that participate in 
the response, but the static load cases used to determine the ROM must be chosen such that an appropriate level of 
nonlinearity is excited in each mode’s response.  If the loads are too small the numerical procedure becomes ill-
conditioned and if they are too large they may induce coupling between many modes so that fitting a low order 
model becomes unacceptable.  Furthermore, the number of static load cases required scales with more than the 
third power of the number of modes (or about the second power for a recent method [9]), so there is strong 
motivation to use the minimum number of modes that will be adequate. 

In order to validate the ROM, most works (see, e.g. [6, 9-12]) have generated responses from either a static or 
dynamic load applied to the full order finite element model and compared this expensive set of truth data to the 
response predicted by the ROM. From this truth data, the modes and load levels used to generate the ROM are 
fine tuned until it agrees acceptably with these results.  However, with this approach one cannot assure that the 
model will suitably agree with the results predicted by the full order model at a different load level, or load type.  
The authors recently proposed to instead compare the Nonlinear Normal Modes (NNMs) [13-15] of the candidate 
ROMs and to use them as a metric to gauge the convergence of the ROM [16-18]. Nonlinear modes are typically 
depicted on a frequency versus amplitude or frequency versus energy plot, which shows how each natural 
frequency evolves as the response amplitude changes, capturing a more complete amplitude range involving the 



  

geometric nonlinearity, independent of any external forces.  The NNMs are easy to relate, qualitatively at least, to 
the response of the structure to sinusoidal [19], transient [17] or even random [20] excitation, so they still provide 
a powerful connection back to the response to external loads. As a result, the NNMs provide an informative 
means for comparing two or more candidate ROMs. 

This paper builds upon the foundation established in [18], but instead here we discuss in more detail the general 
procedure that is used to arrive at a valid ROM so that its NNMs agree with the true NNMs of the structure as the 
number of modes included increases.  This paper now proposes to use the deformations found by a ROM to 
integrate the full model subject to those initial conditions at certain locations along the NNM curve in order to 
evaluate whether the ROM predicts an NNM solution or not.  If the solution is not periodic, than these 
deformations serve as an initial guess in a shooting algorithm [21] that iterates on the dynamic simulation of the 
full finite element model over one period until it exhibits a periodic response (to some tolerance) and hence a true 
NNM.  This avoids the lengthy computational effort required to fully resolve the NNM of interest using the 
continuation algorithm in [21], particularly because one can circumvent the internal resonances where much of the 
computational effort is expended.  These concepts are illustrated on a clamped-clamped beam, one of the simplest 
structures that exhibits geometric nonlinearity, and on a much more complicated 32,000 DOF model of a 
specimen used to study the fatigue behavior of Titanium [22]. 

The paper is outlined as follows. Section 2 briefly reviews the ROM modeling strategy and the definition of 
nonlinear normal modes used in this work. The general procedure for generating candidate ROMs and checking 
the computed NNM solutions on the full order model is also discussed. In Section 3 the methods are applied to a 
clamped-clamped beam, capitalizing on the work presented in [18, 21]. The methods are then applied to a fatigue 
specimen, where the true NNMs are too expensive to compute in detail, providing insight into how these 
approaches may fare in industrial practice. The conclusions are then presented in Section 4.  

2. Theoretical Development 

While damping can be included in a ROM [6], the nonlinearity due to large deformations only depends on 
displacements so this work focuses on the conservative model for the system.  After discretization by the finite 
element method, the system can be represented as,  

    tNL fxfKxxM   (1) 

where M and K are the NN   linear mass and stiffness matrices and the geometric nonlinearity exerts a 
nonlinear restoring force through the 1N vector,  xfNL .  Note that this nonlinear internal force is purely a static 

effect.  The external loads are accounted for by including the 1N  vector  tf , and the 1N  vectors  tx  and 

 tx  are the displacement and acceleration, respectively. 

2.1 Review of Reduced Order Modeling 

A reduced order model is obtained by presuming that the response can be well represented using a small set of 

mode shapes  2 0r r K M φ  so that, 

    tt mqΦx   (2) 

Each column in the N m  mode shape matrix, mΦ , is a mass normalized mode shape vector, φ , and q(t) is a 

vector of time-dependent modal displacements. The vectors in mΦ  are truncated to a small set mode shapes, 

typically reducing the number of degrees of freedom down to a few tens, or even fewer, of modal coordinates, so 
m << N. 

After applying the modal transformation to the full order equations in Eq. (1), the equation of motion for each 
modal degree of freedom becomes 

    tqqqqq rmrrrr fφT
21

2 ,,,     (3) 



  

where r  is the linear natural frequency,  T  is the transpose operator and rq  is the rth modal displacement. The 

nonlinearity couples the modal degrees of freedom so the nonlinear modal restoring force is generally a function 

of all of the modal displacements    T
r r NL m q φ f Φ q . The response of the modes that are excluded from the 

modal basis is hoped to be negligible. The theory for geometric nonlinearity reveals that the nonlinear modal 
restoring force can be modeled with second and third order polynomials, which are shown to be  

 1 2
1 1

( , , , ) ( , ) ( , , )
m m m m m

r m r i j r i j k
i j i i j i k j

q q q B i j q q A i j k q q q
    

    (4) 

The scalars and r rB A  are the coefficients of the quadratic and cubic nonlinear stiffness terms, respectively, for 

the rth equation of motion.  One approach to determine these coefficients is the Implicit Condensation and 
Expansion (ICE) method [10], where a series of static loads are applied to the full order model having the shape  

 r rcf Μφ  (5) 

with a scaling term cr defined for the rth mode in the basis set. Note that this force would only cause deformation 
in a single mode if the system were linear.  The nonlinear static response of the structure is found in response to 
the force in Eq. (5), and the process is repeated for each mode in the basis and for combinations of up to three 
modes. With a series of these forces and resulting nonlinear responses, a least squares problem is set up to solve 
for nonlinear stiffness coefficients and r rB A .  

Another popular ROM approach, termed the Enforced Displacement (ED) method, involves the converse static 
solutions where a series of modal displacements are applied to the structure and a quasi-static analysis extracts the 
reaction forces required to hold that displacement [5, 9].  Those forces and displacements are used to solve a 
series of smaller algebraic equations for the coefficients and r rB A .  Because a least squares problem is avoided, 

this method tends to be more numerically stable but it does not implicitly capture the axial effects so axial modes 
must be included to obtain accurate results.   

2.2 Review of Nonlinear Normal Modes 

The nonlinear normal mode definition used throughout this work is based on the extended definition by Vakakis, 
Kerschen and others [13, 14], where an NNM is a not necessarily synchronous periodic solution to the 
conservative, nonlinear equations of motion. Each NNM must satisfy the condition of periodicity, and can 
account for motions that are not synchronous which occur when two or modes interact at a specific integer 
frequency ratio.  Nonlinear modes are typically depicted on a frequency versus energy plot, or FEP, which shows 
how the natural frequency evolves as the response amplitude changes, revealing many qualitative insights into the 
amplitude dependent dynamics.  Even though the property of superposition and orthogonality no longer hold for 
the NNM, they are still conceptually useful in the identification of nonlinear dynamics as they form the backbone 
to the nonlinear forced response curves [13, 14], offer metrics for comparison between nonlinear modeling 
domains [17, 18, 23-25], and closely follow the freely decaying response of a lightly damped structure as energy 
dissipates [13, 26].  

A pseudo-arclength continuation algorithm, developed originally by Peeters et al. [27], is used throughout this 
work to compute the NNMs of each of the undamped reduced order models.  For the low order m-DOF systems 
represented by Eqs. (3) and (4) with   0f t , there exist m nonlinear normal mode branches that each initiate at a 
linear mode at low energy, or low response amplitude.  (Continuation algorithms need an initial solution in order 
to start tracing an NNM branch, and the linear mode solutions at low energy provide an excellent starting point.)  
The continuation algorithm uses the shooting technique to find a set of initial conditions and an integration period 
that satisfy periodicity as the amplitude in the response changes. A shooting function is defined as, 
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where T is the period of integration, and 0q  and 0q  are the initial modal displacements and velocities, 
respectively, for a candidate ROM. The ROM equations must be integrated over a period T subject to the initial 
conditions 0q  and 0q  to evaluate whether or not these variables produce an NNM motion.  The periodicity 

condition is based on a numerical tolerance shoot , such that an NNM motion is obtained when 
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Typically a numerical tolerance shoot  on the order of 10-4 to 10-6 is used, depending on the accuracy of the 

numerical time integration scheme.  Once periodicity is satisfied, an NNM solution is uniquely defined by 0q , 

0q , and T, which is used with the continuation algorithm to predict a new periodic solution at a slightly different 
energy level.  A step size controller determines the magnitude of the prediction step based on the number of 
iterations taken during the preceding correction steps.  

2.3 Proposed Procedure for Generating a Valid ROM 

The authors have developed the following procedure to obtain a valid ROM for a finite element model of interest 
using its computed NNMs as a convergence metric, as originally proposed in [18].  The analyst must first select 
the frequency and energy range of interest, and ultimately choose which nonlinear normal modes it should 
accurately compute.  In this section, the procedure is outlined for a ROM that will only capture the NNM that 
initiates from the rth mode of interest.  Note that the procedure is similar for a ROM that needs to accurately 
compute many different NNMs. 

1.) For a given force amplitude cr in Eq. (5), compute both the linear and nonlinear static response for the rth 
mode of interest.  As an initial guess, determine the load scaling cr that would give one thickness of 
deformation for the linear response. 

a. If the ratio of the nonlinear displacement to the linear displacement is not between about 0.85 and 
0.90, or 1.15 and 1.10, repeat with a larger or smaller load. This general rule of thumb has been 
found [6, 18] to activate the nonlinearity sufficiently so that and r rB A  can be accurately 

determined from the static load cases. 

2.) Use MxΦq T  to compute the modal displacement of each mode in response to the load case in step (1). 
Identify any modes that are strongly coupled (statically) to the mode of interest. 

3.) Compute a 1-Mode ROM using only the rth mode and compute the NNM from those equations. 

4.) Add a few of the modes that were most strongly coupled to the rth mode in step (2).  For the added modes, 
determine the appropriate scale levels, and compute a multi-mode ROM with the new mode set.  

5.) Recompute the NNM using the improved multi-mode ROM of interest.  Compare the NNM with that 
found in step (3). 

6.) If the NNM has not converged, one can either: 

a. Repeat the analysis in steps (4) through (5) by adding any additional modes to the ROM 
identified from step (2) and using the appropriate load levels. 

b. Consider whether smaller or larger load levels should be used when generating the multi-mode 
ROM and repeat steps (4) through (5). 

In the authors' previous work, the convergence of the ROM was evaluated based on the NNMs, just as outlined 
above, but these results were ultimately deemed accurate by comparing those to the NNM computed directly from 
the full finite element model using the Applied Modal Force (AMF) continuation algorithm in [21].  The AMF 
results are costly for large scale models since the continuation algorithm uses many time integrations of the full 



  

model to iterate on the initial conditions to satisfy the shooting function at many point along the NNM branch. 
The authors also found that much computational effort was wasted seeking to map out the NNM branch through 
internal resonances where several modes respond and the frequency-energy behavior is complicated, hence 
requiring many prediction/correction steps.  This work approaches the final validation step a little differently.  
Instead of running AMF on the full model to get the truth data, the NNM computed from the ROMs using the 
procedure above is checked at a few points on the curve by integrating the full model subject to the initial 
conditions found using the ROMs, thus requiring fewer numerical simulations on the full model.   

Specifically, suppose that one ROM denoted ROMA, involving a certain set of modal coordinates qROM (for 
example, the result for the ICE (1,3,5,7) ROM in Section 3.1 includes q1, q3, q5 and q7) produces a periodic 
response at a certain point along the frequency energy curve with initial conditions ROM,0q , ROM,0q  and 

integration period T.  These initial conditions are then used to compute the initial bending displacement at each 
point in the FE model using 

 ROM,0ROMb,0 qΦx   (8) 

and similarly for the velocities.  Then the expansion procedure in ICE [10] is used to compute the corresponding 
membrane deformations m,0x  and the two are added m,0b,0tot,0 xxx   to estimate the total deformation of the 

structure corresponding to the point of interest.  The result is then used as the initial condition for the full FE 
model.  Note that when the enforced displacements procedure is used the membrane modes are explicitly included 
in the ROM so Eq. (8) produces the total deformation tot,0x  directly. 

The finite element model is integrated subject to these initial conditions and the response after one cycle is 
extracted.  This is then used to check the quality of the solution for the NNM at this point by computing the 
shooting function (in terms of the displacements only) as, 

     tot,0tot,0tot,0tot,0tot,0 ,,,, xxxxxxH   TT  (9) 

The convergence metric is similar to the one in Eq. (7), such that  
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tot,0tot,0 ,,
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xxH T
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In previous works [21] the authors used a tolerance threshold of 10-4 to realize a periodic solution within a finite 
element code.  This procedure is repeated at a few key points of interest on the NNM and used to assess how well 
the ROM represents the full finite element model. 

If the candidate initial conditions do not provide an adequate periodic solution, then the Newton-Raphson 
approach can be used to iterate on the initial conditions supplied by the ROM until the shooting function is 
satisfied to a preferred numerical tolerance. This is the same approach used in the shooting portion of the AMF 
algorithm in [18] with the initial conditions determined as follows.  First, a nonlinear static analysis is performed 
to compute the reaction forces, tot,0f , required to hold the structure at the displacement tot,0x  estimated from the 

ROM.  Then, those reaction forces are projected onto each of the modes in the ROM basis as, 

 T
ot,0 ROM tot,0t̂ f Φ f  (11) 

where tot,0f̂  is the 1m  vector of modal force amplitudes.  The initial conditions FE,0x  used to evaluate the 

shooting function in Eq. (9) are then determined by solving the nonlinear static response of the full model to the 

force tot,0ROMf̂MΦ .  The full finite element model is integrated to these initial conditions to check for periodicity, 

and the free variables tot,0f̂  and T are updated using a Newton-Raphson approach until the shooting function is 

satisfied.  Additional modal forces can be added if convergence is not obtained, as outlined in [21] 



  

3. Numerical Results 

The proposed approach was applied to two different geometrically nonlinear finite element models: a clamped-
clamped beam that was modeled with forty B31 beam elements, and a flat cantilevered plate with over 30,000 
degrees of freedom.  Both models were created and evaluated in Abaqus®, although in other works Nastran® [9] 
and Ansys® [16] have also been shown to have similar capabilities. 

3.1 Clamped-Clamped Beam from [18, 21] 

The ROMs of the clamped-clamped beam and the approach used to find them were described thoroughly in [16, 
18], so only the final result will be highlighted here and used to explore whether the metric in Eqns. (9) and (10) 
can be effectively used to discern between candidate ROMs.  In [18], a 1-mode ROM denoted ICE (1) (e.g. a 
ROM generated with Implicit Condensation and Expansion with only mode 1 in the basis) was found to 
accurately capture the backbone of the beam’s first NNM, and a ROM that included modes 1, 3, 5 and 7, denoted 
ICE (1,3,5,7), captured the backbone more accurately and also two of its modal interactions.  An ED (1) ROM 
will also be considered here, as an example of a ROM that does not as accurately reflect the structure.  Recall that 
axial modes must be included in the Enforced Displacement method to obtain an accurate ROM.  In [18] the 
authors show that an ED (1,26,39) ROM can be created that has similar accuracy to the ICE (1) ROM.  The 
frequency energy plot (FEP) of the first NNM computed from each of these models is shown in Fig. 2a. 

One can see that the FEPs predicted by the ICE (1) and ICE (1,3,5,7) ROMs agree very well with each other, 
except for the fact that the former misses the 5:1 modal interaction with NNM 3 at 88 Hz.  Because these 
successive ROMs agree along the backbone, one might expect that they correspond to the true NNM, but in 
practice it can sometimes be difficult to be sure that convergence has been achieved.  For example, it is possible 
that a ROM with additional degrees of freedom, for example an ICE (1,3,5,7,9,11) ROM, will encounter 
numerical ill conditioning and give a different answer.  As a first attempt to evaluate the quality of these ROMs, 
four points were selected (as shown with markers in Fig. 2a) and the full model was integrated over one cycle 
with the initial conditions corresponding to those of the ROM at each of these points.  The shooting tolerance was 
then computed using Eq. (10) and the result is shown in Fig. 2b.  The most refined ROM gave a tolerance near 
0.001, indicating that the full finite element model very nearly satisfies the shooting function for the initial 
conditions that the ROM supplies.  For reference, the authors used a tolerance of 0.0001 in the AMF algorithm 
described in [21] to compute the “true” NNMs of this structure.  Similarly, the results show that the ICE (1) ROM 
is quite adequate in some cases while one can expect errors of 0.1<<0.5 if the ED (1) ROM is used. 
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Figure 2. (a) Frequency-energy plot showing the first NNM of various ROMs, and (black circles) represent 
converged NNMs with the full FE model. (b) Base 10 logarithm of the shooting tolerance, , in Eq. (10). 

Certainly this evaluation of four points is not nearly as robust as the comparisons that were used in [18], where the 
NNMs from each ROM were compared with the NNMs computed from the full FEA model.  However, it only 
took about 30 seconds per point to evaluate the shooting function in Eq. (9), while the AMF algorithm would take 
about two hours to compute the backbone of this NNM over the same range, and even more time for the internal 
resonances.  On larger systems this difference will be even more dramatic.  The time histories of the nodal 
transverse displacements are shown in Fig. 3 for the solutions near 115 Hz in Fig. 2a, revealing the degree to 
which the displacements differ from a true, periodic response (and hence an NNM).  The response from the ICE 
(1,3,5,7) ROM initial conditions appears to be periodic, whereas the ED (1) ROM clearly does not predict the 
correct initial conditions to satisfy the full model.  One could similarly compute the time history of a different 
quantity of interest, such as strain or stress, to determine whether its deviation from perfect periodic motion is 
large enough to invalidate life predictions or other key quantities of interest. 
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Figure 3. Time histories found after integrating the full FEA model subject to the initial conditions prescribed by 
each of the ROMs for the points near 115 Hz in the FEP in Fig. 2. 

To further evaluate the quality of the ROMs, the black circles shown in Fig. 2a are converged NNM solutions 
using the shooting algorithm to drive the tolerance below 0.0001, as done in the AMF algorithm.  The initial 
conditions were seeded from each of the ROMs at the four points of interest.  During the Newton-Raphson 
iteration, the period of integration was held fixed, therefore the algorithm only converged on solutions with the 
same initial frequency.  Therefore, the percent errors in the ROM energy and true energy, as shown in Table 1, 
can be used to gauge how close the ROM is to the truth model.  For each of the points on the ICE (1,3,5,7), the 
shooting algorithm took at most two iterations (approximately 7 minutes) to converge below a tolerance of 
<0.0001.  The algorithm converged in anywhere between two to four iterations with the ICE (1) NNM as starting 
guesses, and between three to five for the ED (1) NNM.  The results suggests that if fewer than about 15 points on 
the NNM were desired then it would be cheaper (for this system) to compute the ROM first and then use its NNM 
to seed the shooting algorithm at each desired point. 

Table 1. Percent error of energy after AMF shooting converged to true NNM solution. 

Point Energy Error 

ED (1) 

Energy Error 

ICE (1) 

Energy Error 

ICE (1,3,5,7) 

1 56.4 % 8.4 % 1.8 % 

2 51.2% 4.8 % 1.8 % 

3 47.8% 2.4 % 0.1 % 

4 46.0 % 1.3 % 0.1 % 

 

The NNMs predicted by the ICE (1,3,5,7) ROM match the energy, within 2% error, of that predicted by the NNM 
of the full model at 4 frequency locations along the NNM: three points along the backbone and one along the 
tongue of the 5:1 internal resonance with NNM 3.  Also, the initial conditions predicted by the ICE (1,3,5,7) 
ROM reasonably satisfies the periodicity condition from the full FE model at the same four points. Both of these 
observations suggest that one can have confidence that the other solutions along the backbone are also accurate, 
and that the ROM has converged to solutions on NNM 1.  The fact that the NNM has converged has important 
implications.  For example, if the structure is lightly damped, then one can show [19], that the forced response of 
the ROM (in the worst case resonant condition) is also likely to agree over this same range of energy. 

3.2   Cantilevered Plate 

The next system studied is a cantilevered plate used to test the fatigue strength of materials and to validate models 
that simulate crack growth [28]. The shape of the plate and sinusoidal clamp at the bottom edge cause this plate to 
have a two-stripe mode (mode with two vertical node lines) where the region of highest stress is in the center of 
the top portion of the plate.  The design was optimized to minimize the stresses near the clamp because it is 
difficult to control the stress field and to limit crack initiation in that region.  The plate was modeled with a total 
of 5,378 nodes using a mixture of S3 and S4 shell elements, as shown in Fig. 4.  The material properties of the 
model are those of a titanium alloy, having a Young's Modulus of 17.92 Mpsi, density of 0.164 lb/in3, and a 



  

Poisson's ratio of 0.291.  The thickness of the plate was 0.0511 inches.  Springs are connected to each node below 
the curve in the out of plane direction.  The bottom edge of the plate is constrained in the vertical direction and the 
bottom-left node is constrained in the horizontal direction. The model was updated based on experimental data to 
determine the stiffness of the springs (k=141 lb/in for the model used in this work), and a comparison of the linear 
natural frequencies of the plate are shown below in Table 2. 

Table 2. Linear natural frequencies of the cantilevered plate. 

Mode Number Experimental Nat. Freq. (Hz) FE Nat. Freq. (Hz) 
1 27.7 28.424 
2 98.6 99.501 
3 167.9 169.71 
4 437.6 436.95 
5 566.0 567.65 
6 756.9 754.03 
7 861.1 848.07 
8 1041.3 1048.6 
9 1206.5 1188.8 

10 1378.5 1370.6 
11 1408.4 1396.4 
12 1608.9 1607.5 
13 2043.3 1983.6 
14 2062.8 2066.3 

 

The key mode of interest of this plate is the two stripe mode, Mode 7, which is the only mode that is significantly 
excited during fatigue testing. During the endurance test, the plate is excited with a base excitation at a 
monoharmonic frequency near Mode 7's natural frequency and typically at a large enough response amplitude to 
cause the plate to exhibit significant geometric nonlinearity.  As a result, it is important to capture the 7th NNM 
when creating a ROM that will be used to model the response to such harmonic excitation.  O'Hara and Hollkamp 
have successfully predicted both the direction and the rate of crack growth using a reduced order model in 
combination with the generalized finite element method (GFEM) [28].  When selecting a modal basis for the 
ROM, one should include any modes that are nonlinearly coupled with linear Mode 7, as these will influence the 
deformation field, and hence stress distribution, that will drive crack growth.   



  

 

 

Bending Mode 7: Two Stripe Mode 

 

Figure 4. (left) Finite element model used to model the cantilevered flat plate (right) 7th bending mode. 

As a result, Mode 7 was used to seed the process presented in Sec. 2.3 and various load scales were applied using 
Eq. (5) to evaluate its nonlinearity and the modes statically coupled to it.  The result is shown below in Fig. 5, 
where the vertical axis shows the modal displacement amplitude, and the horizontal axis shows the maximum 
linear displacement to thickness ratio if the force in the shape of Mode 7 were applied to the linear structure.  A 
force-displacement analysis with 60 static solutions takes about 17 minutes for this model.  This analysis revealed 
that the displacement must reach between 2 and 4 plate thicknesses to see appreciable nonlinearity.  The results of 
these loadings were also used to determine which linear modes of the structure were activated and hence statically 
coupled to Mode 7.  As shown in Fig. 5, Modes 1, 3 and 6 are most strongly coupled (statically) to Mode 7, so 
they were the next candidates to add to the model.   



  

-4 -3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Linear Disp/Thick

M
od

al
 A

m
pl

itu
de

 

 
28.424

99.501

169.71

356.42

401.64

436.95

567.65

754.03

848.07

1048.6

1188.8

1370.6

1396.4

1607.5

1800.6

1983.6

2066.3

2140.4

2501.9

2624.8

2730.1

2765.1

2894.7

2959.9

3234.7

  3390

3480.4

3601.1

3642.6

3828.6
 

Figure 5. Force-displacement analysis of the plate when a force in the shape of Mode 7 is applied to the nonlinear 
finite element model. The colored lines represent the modal amplitudes of the statically coupled modes, whose 

linear natural frequencies are in the legend. 

On the first iteration, a one mode ROM was created with a force that would have displaced Mode 7 two times the 
thickness, denoted ICE (7) CD (2).  Based on the couplings observed above, a 4-mode ROM was then created and 
additional static load cases were performed for Mode 1 and 3 and linear displacements CD (10,3,1,2) were 
determined to be suitable (the values for Modes 1 and 3 were determined through additional force-displacement 
calculations, while that for Mode 6 was assumed to avoid computing an additional set of static load cases).  These 
displacements caused nonlinear displacements that, respectively, had the following ratios relative to the computed 
linear displacement:  0.995, 0.84965, 0.6174, 1.1476.  The first value is well outside the desired range of 0.85-0.9, 
but little nonlinearity was expected from this fundamental cantilever mode. It was hoped that this load level 
would be adequate to assure that the ROM did not prematurely predict nonlinear response in this mode, while 
being small enough to avoid contaminating the other modes.  For reference a second ROM was created with the 
same modes and using CD (1,1,1,1), which could be considered an approach based on blindly applying a rule of 
thumb. Finally, an even higher order ICE (1,3,6,7,9,10,12) ROM was generated with the load case 
CD(10,3,1,2,1,1,1), referred to as Case 1. Case 2 was also generated with the same modes, but instead using half 
as large of force amplitudes when creating the ROM.  

Figure 6 shows the NNM for Mode 7 computed with each of these ROMs.  The NNM computation has revealed 
that there are quite significant differences between the five ROMs and the variations are such that it is difficult to 
say which of these ROMs might be most accurate.  One might wonder, which load cases will give the best 
results? Will adding modes increase the accuracy due to the more complete modal basis, or decrease it as 
numerical ill conditioning becomes more severe? 
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Figure 6. Estimate of 7th NNM computed from various ROMs of the cantilevered plate.  In the last two lines of the 
legend, Case 1 corresponds to CD(10,3,1,2,1,1,1) while Case 2 used forces half as large with CD(5,1.5,0.5,1, 0.5, 

0.5, 0.5). 

Three points were identified on the NNM computed with each of the ROMs, as shown with black squares in Fig. 
6, and were used to initiate a transient response on the full finite element model.  About 42 minutes were required 
to compute each of the nonlinear transients and to write the response (at all nodes) to disk at all time instants 
during the response.  The resulting shooting tolerances in Eq. (10) are summarized in Table 3, suggesting that 
both of the seven mode ROMs are similar and quite close to the true NNM of the FEA model at the first two 
points.  At the higher energy level, these ROMs apparently deviate quite a bit from the true NNM, so the ROM 
may need to be further refined if that regime is of interest.  At point 1 the ICE (1,3,6,7) ROMs agree fairly closely 
with the higher order ROMs, so either of these might be close to the true NNM as well, explaining why the FEPs 
of all the multi-mode ROMs nearly agree around 580 Hz in Fig. 6.   

Table 3. Values of shooting function tolerance, , from Eq. (10) for the points shown with black squares in Fig. 6. 

Point Frequency 
(Hz) 

  
ICE (7) 
CD (2) 

  
ICE (1,3,6,7) 
CD (1,1,1,1) 

  
ICE (1,3,6,7) 
CD (10,3,1,2) 

  
ICE (1,3,6,7,9,10,12) 
CD (10,3,1,2,1,1,1) 

  
ICE (1,3,6,7,9,10,12) 

CD (5,1.5,0.5,1,0.5,0.5,0.5) 

1 580 0.241 0.0853 0.0875 0.00896 0.00897 

2 610 0.344 0.205 0.216 0.0663 0.0657 

3 640 0.396 0.267 0.278 0.177 0.173 

 

In order to illustrate how these values of  relate to the error in the solution, the time history of modal 
displacements over the integration period is shown for points 1, 2 and 3 using the ICE (1, 3, 6, 7, 9, 10, 12) CD 
(10, 3, 1, 2, 1, 1, 1) ROM. The physical displacements from the full finite element model were projected onto the 



  

unit displacement normalized modes, such that the modal degrees of freedom have units of inches. Each of these 
time histories are plotted below in Fig. 7, showing just the first 8 most dominant modes of each response from the 
full order model.  
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Figure 7. Time histories of the integrated response of the full order model for the points shown with black squares 
in Fig. 6 using the ICE (1, 3, 6, 7, 9, 10, 12) CD (10, 3, 1, 2, 1, 1, 1) ROM.  The first 8 most dominant modal 

displacements are shown over one integration period. 

The integrated response from points 1 and 2 show that the solution is nearly periodic, although point 2 begins to 
have significant contributions from the other modes coupled to Mode 7. The significant error in  for the response 
at point 3 may be attributed to the fact that modes 14, 16 and 18 become excited, indicating that these modes are 
dynamically coupled to Mode 7 and may need to be included in the ROM to more accurately compute NNM 7.  It 
is interesting that there is noticeable difference in modal amplitude of Mode 7 from t = 0 to the final time.  This 
suggests that this mode is not well represented in the ROM or that coupling with other modes has caused it to 
deviate from a periodic response.  The time histories show how  reveals the inaccuracy of the ROM at point 3, 
however the response at points 1 and 2 would be considered acceptable. 

Based on these results, the next step would be to generate a ROM with additional modes (14, 16 and 18) and track 
how the NNM computed from the new ROM compares to the ones in Fig. 6.  The initial conditions from these 
NNMs could then be used to seed the shooting algorithm discussed in Section 2.3, providing further insight into 
the location of the true NNM of the full order model and whether any of the ROMs capture these solutions.  
Neither of these items were explored in this work, but will certainly be considered in the future.  Also, so far only 
NNM 7 has been studied in detail, but in reality it is significantly affected by the other NNMs that are extensions 
of the linear modes in the basis. Modal interactions with NNM 7 are strongly dependent on the accuracy of the 
other NNMs generated by the ROM, therefore it would probably be wise to assess the convergence of those 
NNMs. 



  

4. Conclusion 

This work explores a systematic approach to obtain validated reduced order models from finite element models 
with geometric nonlinearity based on their computed nonlinear normal modes. Ideally, as more modes are added 
to the basis set, or the scaling of the loads are adjusted, these low order equations should converge and accurately 
predict the NNMs of the full order model.  In this paper, the ROMs provide a set of initial conditions from the 
predicted NNM, which are integrated with the full order model to check the quality of the ROM.  A small set of 
points along the branch can be selected to span the desired range of response amplitude, covering a more 
complete operating range of interest.  If the initial conditions of the ROMs do not produce periodic motions, they 
can be iteratively adjusted using the shooting algorithm and a Newton-Raphson approach in hopes of converging 
on a true NNM. These converged solutions provide further insight into the deficiencies of the ROM.  This 
approach avoids the need to run the costly AMF continuation algorithm [21] to trace the full NNM branch directly 
from the full finite element model, which has shown to require many more time integrations, and has a tendency 
to waste a lot of computational effort when tracing out the internal resonances. 

The approach was demonstrated on a simple beam with geometric nonlinearity and fixed boundary conditions at 
both ends. The ICE ROM had nearly converged on the backbone of the 1st NNM using only a single-mode ROM, 
and captured one of the beams internal resonances when using four modes.  The initial conditions supplied by 
these ROMs were integrated with the full finite element model and produced acceptable NNMs.  Even the 
converged NNMs found with the shooting algorithm agreed very well with these ROMs, validating them at 
various energies and frequencies.  The single-mode ED ROM did not perform as well (as predicted due to the lack 
of membrane modes in the basis) since the estimated backbone was much stiffer than the true NNM, resulting in 
integrated responses that were clearly not periodic and FEPs that were far of from the true NNM.  A cantilever 
plate model with 32,000 degrees of freedom was used as an industrial application where this approach might be 
useful.  The ICE ROMs with various mode shapes showed that the 7th NNM of interest was difficult to accurately 
capture, as no convergence was observed in the FEPs.  Integrating the initial conditions at three points along the 
branch with each ROM revealed that the ROMs may be converging at lower energies, but more deformation 
shapes would be needed in the ROM basis to capture the higher energy response.  The results revealed that as 
more modes were added to the basis, the evaluation of the shooting function improved, suggesting that the ROMs 
were converging to the true solution. 

This procedure shows great promise as an approach to validate a ROM without having to run very many overly 
expensive time simulations on the full order model.  One can choose the operating range of interest for the ROM, 
and validate it at those energy levels, or frequencies.  The NNM is independent of any external forces applied to 
the structure, providing a more robust comparison metric between candidate ROMs and the full order model.  In 
future works, additional modes will be added to the ICE ROM of the cantilever plate in hopes of further 
improving the prediction of the 7th NNM. Also, the shooting algorithm will be used to find true NNMs at select 
points along the backbone, in hopes of guiding further improvements to the ROM procedure, or validating the 
existing ones.  Other NNMs will be considered as well.  
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