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Abstract 
A structure undergoing large amplitude deformations can exhibit nonlinear behavior 

which is not predicted by traditional linear theories. Structures with some initial curvature offer 
an additional complication due to buckling and snap through phenomena, and can exhibit 
softening, hardening and, internal resonance. As a structure transitions into a region of nonlinear 
response, a structure's nonlinear normal modes (NNMs) can provide insight into the forced 
responses of the nonlinear system. Mono-harmonic excitations can often be used to 
experimentally isolate a dynamic response in the neighborhood of a single NNM. This is 
accomplished with an extension of the modal indicator function and force appropriation to ensure 
the dynamic response of the structure is on the desired NNM. This work explores these methods 
using two structures: a nominally-flat beam and a curved axi-symmetric plate. Single-point force 
appropriation is used by manually tuning the excitation frequency and amplitude until the mode 
indicator function is satisfied for the fundamental harmonic. The results show a reasonable 
estimate of the NNM backbone, the occurrence of internal resonance, and couplings between the 
underlying linear modes along the backbone. 
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1 Introduction 
 Over the past several decades a suite of testing and modeling approaches, under the title 
of modal analysis, has been developed for linear structures under dynamic loading. The term 
linear is important here since characterization of a structure using modal analysis is based on 
quantifying the structure in terms of invariant properties inherent to the structure. With the 
quantification of these structural properties, (e.g., resonant frequencies, damping ratios, mode 
shapes, etc.) a complex structure can be described with a small number of known variables in 
linear response regimes. However, these properties lose their invariance when a structure is in a 
nonlinear response regime caused by large amplitude loading conditions (thermal, acoustic, 
mechanical, etc.). Therefore, techniques created for linear structures can not be directly applied to 
nonlinear behavior since the structural properties become functions of input energy. An 
understanding of this energy dependent behavior informs the design of critical components and 
can be exploited to dissipate energy throughout the structure or aid in failure prediction. So new 



experimental methods are sought to address nonlinear behavior while preserving the simplicity 
and connection to the linear design and test paradigms.  
 Linear experimental modal analysis techniques can be classified into two groups: phase 
separation and phase resonance methods. There are certainly other classifications of modal 
analysis techniques, but this is done for convenience of the following discussion. The most 
popular and easiest implemented methods available today for linear structures are phase 
separation methods, which excite several or all linear normal modes of interest at a single time 
with the use of broadband or swept-sine excitation. The modes of vibration can be separated in 
these measurements using the phase information between the input force and measured response 
allowing the assessment of natural frequencies, mode shapes, and damping ratios. A good 
reference for this type of testing and analysis can be found [1, 2]. In contrast, phase resonance 
testing methods [3-5] for linear structures focus on a single mode of vibration using a multi-point 
mono-harmonic forcing vector, and are less popular in linear experimental modal analysis 
because they can be time-consuming. With phase resonance, a mode of vibration is isolated in a 
test when the phase relationship between the applied harmonic force and measured displacement 
response fulfills phase lag quadrature. In other words, all degrees of freedom displace 
synchronously with a phase lag of 90 degrees from the harmonic input force.  
 The use of these methods with nonlinear vibrations require an extended definition of a 
mode of vibration since a nonlinear mode is energy dependent and can involve complex 
interactions between modes. Rosenberg [6] initially defined a nonlinear normal mode (NNM) as a 
synchronous solution of the nonlinear system, but this definition has been extended to include not 
necessarily synchronous solutions of the conservative nonlinear equations of motion [7, 8]. 
Oscillations of this nature provide significant insight into the structure's free and forced 
responses, including complex dynamics such as bifurcations, internal resonances, and a strong 
dependence on input energy. Additionally, the damped dynamics of the system can often be 
interpreted based on the topological structure and bifurcations of the NNMs of the underlying un-
damped system. 
 The extension of phase separation techniques to characterize a structure's nonlinear 
response has seen much attention in the form of system identification as shown in [9, 10] which is 
by no means a complete list of references. Developed phase separation methods have not been 
readily applied to industrial practice except for low order systems. Phase resonance methods have 
been extended to the measurement of NNMs through the implementation of different methods of 
force appropriation. Atkins et al [11] presented a force appropriation of nonlinear systems 
(FANS) method using a multi-point multi-harmonic force vector to isolate a linear normal mode 
(LNM) of interest. This permits the direct nonlinear characteristics of the isolated mode to be 
calculated without modal coupling terms. Peeters et al [12, 13] showed that a multi-point multi-
harmonic sine wave could isolate a single NNM. For application to real world structures, it was 
then demonstrated that a single-point single harmonic force could be used to isolate a response in 
the neighborhood of a single NNM with good accuracy [12, 14]. In these investigations, once 
phase lag quadrature was met, the input force was turned off and the response allowed to decay 
tracing the backbone of the NNM. Building off of this work, Ehrhardt et al [15] used step sine 
testing to measure the response around a specific NNM and at several input forcing levels leading 
to nonlinear frequency response functions (FRFs). From these FRFs, responses in the 
neighborhood of the NNM can be isolated from measured responses.  
 This investigation focuses on measuring the first linear normal mode of a flat beam and 
curved axi-symmetric plate and its nonlinear continuation on the NNM at higher energies. Modal 
interactions from internal resonances are also detected but not rigorously isolated since the main 
NNM backbone is the primary focus of this investigation. The next section provides some 
background information regarding NNMs including important characteristics and expected 
NNMs from finite element models (FEMs). An examination of force appropriation and its 
application to experimentally isolate an NNM is also presented. Section 3 offers a description of 



the geometric properties of both structures and Section 4 then discusses results from the 
application of force appropriation to the measurement of NNMs for both structures. 
 
2 Nonlinear Normal Modes 
2.1 Numerically Calculated NNMs 
 For an in-depth description of NNMs, their fundamental properties, and methods of 
calculation, the reader is referred to [7, 8]. Of interest, NNMs have been shown to capture 
complicated dynamics such as bifurcations, modal interactions, and large energy dependence of 
the fundamental frequency of vibration. These characteristics can be presented compactly in a 
frequency-energy plot (FEP) where the change in fundamental frequency of vibration is presented 
as a function of input energy. Due to these appealing characteristics, much has been done to 
expand and apply the NNM concept to finite element models (FEMs) [16, 17].  
 In previous works, finite element models were created for the structures studied here: the 
flat clamped-clamped beam in [16] and the curved axi-symmetric plate from the exhaust system 
of a large diesel engine in [15]. Results from the calculation of the first NNM for both of these 
models is shown in Figure 1 and Figure 2. For reference, a demarcation is added to these plots 
showing where a maximum displacement of the structure would be equal to one thickness of the 
structure (eg. 0.76mm for the beam and 1.52mm for the plate).  
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Figure 1: Numerical NNM 1 for flat clamped-clamped beam- a) Frequency-energy plot,  
b) Deformation 1 shape, c) Deformation 2 shape 

 



 As seen in the FEP presented in Figure 1a, the flat beam shows a characteristic spring 
hardening, or an increase in fundamental frequency of vibration with increased input energy as 
discussed in [18, 19]. The large change in fundamental frequency of vibration is captured on the 
backbone of the NNM and is observed for relatively small input energies. Two regions of internal 
resonance appear as branches off of the backbone curve, also observed in Figure 1a. These 
branches indicate 5:1 (near 88Hz) and 12:1 (near 120Hz) internal resonances in the response of 
the beam. For comparison with experimental measurements, it is helpful to examine the 
deformation of the beam at points along the FEP which are indicated in Figure 1a. Deformation 1, 
shown in Figure 1b, resembles a mode shape for the first natural frequency of a clamped-clamped 
beam showing little change in linear shape at this low energy. Deformation 2, shown in Figure 1c, 
resembles a mode shape for the third natural frequency of a clamped-clamped beam showing the 
effect an internal resonance has on the overall deformation of the beam. The mode 3 shape 
becomes more pronounced at higher energies on the internal resonance branch, and less 
pronounced at lower energies on the internal resonance branch. So, while the mode 3 shape is not 
dominant at lower energies, the interaction between these modes is still visible as will be shown 
in the experimental results for this NNM. 
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Figure 2: NNM 1 for axi-symmetric plate - a) Frequency-energy plot,  
b) Deformation 1 shape, c) Deformation 2 shape 

 Figure 2a shows the first NNM FEP for the curved axi-symmetric plate. The numerically 
calculated backbone was determined with a reduce-order model (ROM) where the continuation of 
the first linear normal mode to higher energies was isolated. While this removes the ability to 



calculate internal resonances in the plate, this one mode ROM still provides insight into the 
frequency-energy dependence of NNM 1. As observed here, the NNM undergoes a change in the 
characteristic nonlinearity as the fundamental frequency of vibration undergoes a decrease prior 
to increasing. This softening to hardening characteristic can commonly be found in curved 
structures [20, 21]. Similar to the flat beam, deformations of the plate can also be examined at 
points along the FEP. Since only mode 1 was used to calculate the NNM, Deformation 1 and 2, 
shown in Figure 2b and c, are purely mode 1 shapes with different scale factors. The effect of 
higher modes on an initially flat axi-symmetry plate was examined numerically in. Modes 1 and 6 
were both found to be important to describe the response along the NNM backbone providing 
insight to possible modal interactions. 
 
2.2 Measuring NNMs with Force Appropriation 
 The implementation of force appropriation to isolate a NNM requires an extension of the 
phase lag quadrature as discussed in [13] and is repeated here for clarification. The nonlinear 
forced response of a structure with viscous damping can be represented in matrix form by Eq. (1), 
where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, fnl is the 
nonlinear restoring force that is a function of x(t), and p(t) is the external excitation. An un-
damped NNM is defined as a periodic solution to Eq. (2), and is the response of the system in Eq. 
(1) when Eq. (3) is satisfied for all response harmonics. Simply stated, the response of a structure 
is on the NNM when the forcing function exactly cancels the damping forces in the structure. 
This approach was used on the clamped-clamped beam studied in this work. 

For the circular plate, an inertial load (base excitation) was used where the displacement 
of the structure is proportional to a rigid body mode, ψRBab(t), so the negative of the base 
acceleration is shown to be equal to [C]{ẋ(t)}, and hence there is a certain phase relationship 
between the velocity of the structural response and the base acceleration. The phase relationship 
between input force and velocity response can be determined by writing the displacement and 
velocity as Fourier cosine and sine series as shown in Eq. (4). From the defined relationships, an 
appropriated force is obtained when the applied base acceleration is 180 degrees out of phase 
with the response velocity. Methods of force appropriation to experimentally isolate a NNM have 
been used with success on a beam with localized nonlinearity [12], an aircraft with nonlinear 
joints [14], and an axi-symmetric plate [15]. A structure is defined to respond on an isolated 
NNM when all harmonics of the response fulfill the phase lag criterion. Building on this work, 
and the methodology of NNM calculation presented in [17], force appropriation is experimentally 
applied using a mono-harmonic excitation to isolate the response of the structures in the 
neighborhood of the desired NNM. For one NNM, the response of the structure is first isolated in 
the linear range at low energy. After measurement, an increase of input energy is made and the 
input frequency is adjusted until the phase lag criterion is fulfilled again. Subsequent increase of 
input energy and changes of frequency are then made until the range of response for the desired 
NNM is measured. 
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3 Structure Description 
3.1 Beam Description 
 The first device under test for this investigation is a precision-machined feeler gauge 
made from high-carbon, spring-steel in a clamped-clamped configuration previously studied in 
[22]. The beam had an effective length of 228mm, a nominal width of 12mm, and a thickness of 
0.76mm. All presented dimensions are nominal and subject to variation from clamping and stress 
variations from machining process to obtain the desired thickness. Prior to clamping, the beam 
was prepared for three dimensional digital image correlation (3D-DIC) and continuous-scan laser 
Doppler vibrometry (CSLDV) as discussed in [23] and shown in Figure 3. Locations of the initial 
laser Doppler vibrometry (LDV) measurements are also shown at the center of the beam and 
12mm to the left of the first measurement. The clamping force was provided by the two 6.35-28 
UNF-2B bolts located on the inside of the clamping fixture, which is the same fixture used in 
[22]. After clamping the beam to the fixture, a single-input single-output modal hammer test was 
performed on the beam so natural frequencies and damping ratios could be identified. Results for 
the first seven modes are shown in Table 1.  
 

 
Figure 3: Beam Specimen 

 
Table 1: Linear (low amplitude) natural frequencies of flat clamped-clamped beam 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 

f, Hz 63.8 193.4 392.7 659.8 855.9 994.1 1396.5 

ζ1 , % 0.91 0.25 0.21 0.17 0.12 0.14 0.13 
 
3.2 Plate Description 
 The second article under investigation is a circular perforated plate with rolled ends 
which is shown in Figure 4 and previously studied in [15]. A mechanical punch was used to 
create the circular perforations in a flat 16 gauge (1.52 mm thick) 409 stainless steel plate in an 
array of equilateral triangles with 10.16 mm long edges. Once this process was completed, the 
plate was formed around a 317.5 mm diameter mold with the excess trimmed so a lip of 12 mm 
remained. The plate was then welded to a 89 mm high cylinder made from a 14 gauge (1.9 mm 
thick) 409 stainless steel plate that was cold rolled to the 317.5 mm diameter as shown in Figure 
1b. The welded plate assembly was then bolted to a 317.5 mm diameter by 19 mm thick 
aluminum fixture with twelve 6.4 mm evenly spaced holes. Figure 4 also shows the location of 
the single point laser Doppler vibrometers (LDV). After mounting, a single-input single-output 
modal hammer test was performed on the plate so natural frequencies and damping ratios could 
be identified. Results for the first nine modes are shown in  



Table 2. CSLDV was not used in this measurement due to the discontinuities from the 
perforations. It is important to note that all stated dimensions are nominal and subject to variation. 
Additionally, the processes the plate is subjected to can induce residual stresses in the structure 
which also might modify the dynamics of the plate in its final configuration. While this system is 
relatively simple compared to the engine to which it is designed to be attached, work will show 
how important it is to have a test to validate any computational models that are created; there are 
a variety of subtle details that might easily be neglected initially, and yet they could change the 
response considerably.  
 

 
Figure 4: Final Mounted Perforated Plate 

 
Table 2: Linear (low amplitude) natural frequencies of curved axi-symmetric plate 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 

f, Hz 202.2 324 342.8 489.7 509.9 554.1 697.2 777.9 794.2 

ζ1 , % 0.2 0.13 0.31 0.092 0.15 0.087 0.11 0.49 0.43 

 
3.3 Experimental Setup 

The final mounted beam and plate are shown in Figure 5. For this experimental setup, 
there are 3 systems: 1) exciter/controller, 2) full-field measurement systems, and 3) system for 
force appropriation:  

1) Excitation was provided by two separate mechanisms, both controlled in an open-loop 
using a Wavetek Variable Phase Synthesizer. The beam was excited by a magnetic driver with a 
Piezo Amplifier. The input force exerted by the magnetic driver was measured using a force 
transducer mounted to a solid base between the magnetic driver and input location. Due to the 
weight and size of the curved axi-symmetric plate, the magnetic driver did not produce sufficient 
force, so excitation was provided by shaking a base on which the plate was mounted with a 
5000N MB dynamics shaker and power amplifier. Excitation for this setup is provided through 
the mounting base at a set excitation acceleration. This type of excitation limits the ability to 
examine asymmetric modes and keep the plate response in a linear regime.  

2) Full-field measurements were taken of the structures using a combination of 
Continuous-scan laser Doppler vibrometry (CSLDV) and high speed three dimensional digital 
image correlation (3D-DIC). Details for both of these measurement techniques can be found [23]. 
Due to the discontinuities of the perforations, CSLDV was only used on the flat clamped-clamped 
beam. 

3) A second laser Doppler vibrometer (LDV) is used to measure the response of the plate 
as it is subjected to a single frequency sinusoid at a specified excitation amplitude. The voltage 



input to the exciter was measured as well as the input force for the magnetic driver and the base 
acceleration for the shaker. The velocity response and input voltage signals were analyzed in real 
time using a Onosoki FFT Analyzer to track the phase between the signals. Here, the input 
voltage was used instead of the measured force/acceleration to limit noise contamination from the 
measurement sensors. The measured force/acceleration signals were compared after measurement 
to ensure the correct phase relationship between input and response was maintained. Natural 
frequencies could then be determined by adjusting the frequency until the input voltage and 
response velocity are 180 degrees out of phase since the appropriation is between a force and 
velocity. In a post processing step, the phase relationship for the fundamental harmonic was 
examined more precisely and the phase relationships for the higher harmonics were computed as 
well. In the future it would be ideal to be able to monitor all of the phase relationships in real 
time.  

 
(a) 

 

 
(b) 

 
Figure 5: Experimental Setup. a) Close up of clamped beam, b) Close up of axi-symmetric plate. 

 
4 Results 
4.1 Clamped-Clamped Beam 
 Using the described methodology and equipment, mono-harmonic force appropriation 
was used to measure the first NNM of the flat clamped-clamped beam and a curved axi-
symmetric plate. The structural response was measured at each appropriated force amplitude once 
steady-state was achieved. Figure 6 shows the resulting FEP for the flat clamped-clamped beam 
with the energy of the system represented by the maximum velocity of the beam measured 12mm 
left of center and plotted against the fundamental frequency of vibration. Similar to the 
numerically calculated FEP, a large spring hardening characteristic is observed as the beam 
response approaches a beam thickness. The experimental results show a 36Hz change (or a 50% 
shift in frequency) when the response amplitude approaches the beam thickness. For comparison, 



the numerical results show a 22Hz change. However, no effort was made to tune the boundary 
conditions in the numerical model to match those in the experiment, so some disagreement is to 
be expected. Though measured and predicted backbones vary significantly, it is interesting that 
both show a 5:1 modal interaction, which is visible in the measured FEP as a collection of points 
near 82Hz. Figure 6b and c show the deformation shapes at the selected points on the 
experimental FEP in Figure 6a, found using CSLDV. The deformation at the point marked 
Deformation 1 in Figure 6b shows that, at low energy, the response resembles the first linear 
mode. At the point marked Deformation 2, which is near the bottom of the internal resonance 
branch, there is a visible change in shape near the root. If measurements were taken further up 
this modal interaction one would presumably see mode 3 begin to dominate the overall 
deformation shape of the beam as was predicted by the analytical model, but this was not pursued 
further here. 
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Figure 6: Experimental NNM 1 for flat clamped-clamped beam- a) Frequency-velocity 
plot, b) Deformation 1 shape, c) Deformation 2 shape 

 
 The conclusion that the jump in the data near 82Hz is a modal interaction can be verified 
by an examination of the spectral content. The amplitude of the fast-Fourier transform (FFT) 
coefficients of the first seven harmonics is shown in Figure 7a. The evolution of the amplitudes of 
the higher harmonics show where the 5:1 modal interaction occurs at a 30% change of frequency 
in the measured NNM. The presence of the modal interaction is predominant in the third, fifth, 
and seventh harmonics of the response. In these harmonics, larger amplitudes are observed when 
the response is in the region of the modal interaction, and the amplitude decreases once the 
response has passed the modal interaction where the 5th and 3rd harmonic show more 



dominance. Since single-point mono-harmonic force appropriation is used, an examination of the 
phase of the harmonics of the response with the input force is important to determine the quality 
of appropriation. Figure 7b shows how the phase of the first seven harmonics evolve throughout 
the test, where a phase of -180 degrees would be perfect appropriation since force and velocity 
are examined. As expected, the first harmonic shows good appropriation throughout 
measurements except when the response is near the modal interaction and near the initial linear 
region of the test. Since the modal interaction includes a greater contribution of higher harmonics 
in the global response of the beam, difficulty of appropriation might be expected in this region. 
Difficulty of appropriation at lower amplitudes could be due to noise contamination of the 
velocity measurements at low response amplitudes. The remaining harmonics show a large 
variability of appropriation due to the use of mono-harmonic force appropriation, but could 
presumably be improved if higher-harmonic inputs were added to the forcing signal. Indeed, in 
the simulation study in [17] Kuether found that it was necessary to include higher harmonics to 
isolate an NNM if the energy was sufficiently high. At even higher energies it also became 
important to apply a multi-point force. 
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Figure 7: NNM results for the flat clamped-clamped beam - a) FFT amplitude of harmonics in the 
response and b) Phase results of harmonics in the response 

 
 A useful examination of how the deformation of the beam evolves at each harmonic 
along the backbone curve can be made with the use of full field measurements. Figure 8a-h shows 
a selection of normalized deformation patterns along the beam for selected harmonics. These 
shapes could be decomposed into the modes of the structure in order to determine how modal 
interactions change along the backbone. Figure 8a-g describe how the first seven harmonics of 
the response change with increasing frequency. The second plotted line (green) shows the 
harmonic response at the modal interactions previously discussed. Figure 8a shows how the first 
harmonic evolves from the lowest energy on the backbone curve to the highest with minimal 
variation from mode 1 of the beam. The line corresponding to the modal interaction is not shown 
here since the harmonic deformation changes little. Figure 8b shows how the second harmonic 
transitions from a predominantly mode 1 deformation to a mode 2 deformation where a large 
skew of mode 1 is observed at the modal interaction. Figure 8c shows a similar result for the third 
harmonic, where the deformation transitions from a mode 1 deformation to a higher mode of 
deformation. For the higher harmonics, shown in Figure 8e-g, the dominant response has the 
shape of mode 3, which continues to higher odd harmonics (9th and 11th), shown in Figure 8h. 
Figure 8h also shows shapes for the 8th and 10th harmonics at their maximum values which 
correlate to higher order mode shapes of a beam.  
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(c) 3rd Harmonic 
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(d) 4th Harmonic 
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(e) 5th Harmonic 
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(f) 6th Harmonic 
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(g) 7th Harmonic 
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(h) Harmonics 8-11 at the point of maximum 

deformation. 
Figure 8: Deformation pattern for each harmonic in the response of the beam at three points along 

backbone curve. The legend shows the frequency from which these harmonics were extracted and the peak 
velocity amplitude in each shape. The peak velocities can be compared with those of the 1st harmonic to 

assess the relative importance of each shape to the overall deformation. 
 



 The results presented above provide a wealth of information regarding the frequency-
energy behavior of the structure and the way in which the deformation evolves with increasing 
energy. This information can be critical when seeking to develop a model to correctly simulate 
the response of the structure. 
 
4.2 Circular Plate 
 Figure 9 shows the experimentally measured NNM of the curved axi-symmetric plate 
with the velocity response measured at the LDV point located at the [x,y] coordinates of [0.01,-
0.03]. Similar to the numerically calculated NNM in Figure 9b, the experimentally measured 
NNM shows the characteristic spring softening to hardening effect or a decrease of the 
fundamental frequency of vibration which begins to increase at a specific input force level. 
Unfortunately, limited data was gathered on the structure in the linear region of response due to 
inadequate capabilities of the shaker to obtain lower forcing amplitudes. Also, the plate cracked 
when a higher input force amplitude was attempted, so further testing at low amplitudes was 
impossible. Failure initially occurred at the [x,y] coordinates of [-0.01,-0.01] which can be 
identified in Figure 9c & d. With the use of high speed 3D-digital image correlation, maximum 
deformation shapes of the plate at low and higher energy are shown in Figure 9b-e. Figure 9b & c 
show the deformation shape at the low energy point marked “deformation 1” in Figure 9a. The 
deformation at this frequency-energy point resemble mode 1 of a flat plate as expected in linear 
results. Figure 9d & e show the deformation shape at the high energy point, or deformation 2 also 
shown in Figure 9a. 
 To obtain further insights, the measured response is decomposed into its harmonics in 
Figure 10a. Interestingly, this shows that while the fundamental harmonic is dominant at low 
amplitude, as the response begins to turn from softening to hardening the harmonics become 
large, the third harmonic in particular being equal to the first. Hence, while no internal resonances 
are present the response of this NNM is multi-modal along the backbone. Unfortunately, the 
phase of the harmonics, shown in Figure 10b reveal that the higher harmonics for the plate are not 
in quadrature and so one cannot be sure that the NNM has been isolated. The first harmonic stays 
near 180 degrees phase, but it is less accurate in the spring hardening regime. This is most likely 
due to the increase of modal interaction at this point. The phase is worse than expected for all 
harmonics, but the reason is not fully understood at this time. 
 The full field deformation shapes were again computed for each harmonic to better 
understand the evolution of the response along the backbone, and are shown in Figure 11. It is 
particularly interesting to note that the response near the 3rd harmonic takes on a shape similar to 
the 6th linear mode of the plate. In [24] a finite element model of a similar plate (but with no 
initial curvature) was studied and linear Modes 1 and 6 were both found to be important to 
describe the response along the NNM backbone. At the highest level on the FEP, the 
measurements show that the magnitude of this shape is on the same order of the fundamental 
harmonic. It is also interesting to note the broadening of the deformation shape around the first 
harmonic of deformation 1 and deformation 2 , shown in Figure 11a & b. The 5th harmonic, 
which becomes important only at the last point computed on the NNM. The shapes of the 4th and 
5th harmonics suggests that a complicated response occurs in this regime with the inclusion of 
multiple higher order mode shapes, and this may have been a factor contributing to the failure of 
the plate. 
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Figure 9: Experimental NNM 1 for axi-symmetric plate- a) Frequency-velocity plot, b) Deformation 1 shape, 

c) Deformation 2 shape 
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Figure 10: NNM results for the axi-symmetric plate - a) FFT amplitude of harmonics in the 
response and b) Phase results of harmonics in the response 
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(a) Def 1, 1st harmonic 
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(b) Def. 2, 1st harmonic 
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(c) Def. 2, 2nd harmonic 
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(d) Def. 2, 3rd harmonic 
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(e) Def. 2, 4th harmonic 
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 (f) Def. 2, 5th harmonic 
Figure 11: Deformation patterns of plate at various harmonics for two points along the backbone curve:  
a) 1st harmonic of deformation 1, b-f) 1st harmonic, 2nd harmonic, 3rd harmonic, 4th harmonic, and 5th 

harmonics respectively of deformation 2 
 
 
5 Conclusion 
 The results shown here demonstrate the capability of mono-harmonic force appropriation 
in two structures exhibiting rich dynamics. The measured response of the flat beam shows the 
ability to achieve a quality dynamic response in the neighborhood of the beam's first NNM with 
only mono-harmonic force. In addition to capturing the expected frequency-energy relationship, a 
modal interaction between the first and third mode of the beam was identified, though not 
isolated. The measured response of the curved axi-symmetric plate also showed the ability to 
achieve a dynamic response in the neighborhood of the first NNM of a more complex structure. 
The quality of the appropriated response for the plate was not on the same level of the beam when 
looking at the phase of the input and response possibly demonstrating a limitation of a mono-
harmonic force to appropriate the response in the neighborhood of the expected NNM. 
 More work is needed to extend this method of force appropriation for complex structures 
possibly incorporating multi-harmonic and/or multi-point inputs. As the method of appropriation 
becomes more complex, higher harmonic amplitude and phase relationships would need to be 
distinguished in-situ to tune the appropriation. However, even with the relatively simplistic 
appropriation methodology demonstrated here, results show an adequate identification of the 
frequency-energy relationship of a structure and insight to modal interactions. So, small 
improvements in the force appropriation could greatly increase the ability to measure higher 
energy responses and isolation of modal interactions. 
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