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ABSTRACT 
 
While numerous mature parametric identification methods are available for linear systems, there are only a few methods 
capable of identifying parametric models for multiple degree of freedom nonlinear systems.  In a previous work, the authors 
proposed a new identification routine for nonlinear systems based on harmonically forcing a system in a periodic orbit and 
then recording deviations from that orbit.  Under mild assumptions one can model the response about the periodic orbit using 
a linear time-periodic system model that is relatively easy to identify from the measurements using a variety of techniques.  
The method provides an estimate of the time periodic state coefficient matrix of the system which gives direct information on 
the order of the system and the nonlinear-parameters.  A prior work explored the method in detail for a single degree-of-
freedom system, but it has only been applied to an MDOF system with a limited set of excitation conditions.  This work 
explores a range of possible excitation signals using an analytical model of a cantilever beam with a cubic spring at its tip.  
Numerical continuation techniques are used to find the stable and unstable periodic responses of the beam and different 
excitation strategies are explored.  Additionally, the method is validated on the analytical model with a conventional 
approach for nonlinear system identification.  The most promising strategies are then applied to a real beam with a significant 
geometric nonlinearity. 

1. Introduction 

 
Most dynamical systems behave nonlinearly in the most general scenario.  This can be observed in various structural 
dynamic systems such as an airplane wing that flutters wildly near a stall point bifurcation [1], in rotor dynamic systems with 
bearing contact nonlinearities [2], in biomechanics systems such as the human body which has muscles that produce 
nonlinear forces that move joints through large angles [3-5], or in social science systems such as psychology [6] and 
economics [7].  While many techniques are available to extract linear time-invariant mathematical models from experimental 
measurements of these systems, the linear models cannot correctly characterize some of the complex nonlinear phenomena 
exhibited.  Therefore, nonlinear models are needed and nonlinear identification methods are required to extract the nonlinear 
models from measurements.   
 
A few methods for experimental identification are currently available.  Some notable time domain techniques have been 
successfully applied experimentally such as the restoring force surface method [8], the Hilbert and Huang-Hilbert transforms 
[9], and the NARMAX method [10].  The former three methods cannot be easily applied to higher order systems while the 
latter method requires one to assume a form for the nonlinearity in the system prior to the identification.  The notable 
frequency domain techniques consist of the Volterra and Weiner series techniques, the Conditioned Reverse Path method, 
and the Nonlinear Identification through Feedback of the Output method, all of which were reviewed in [10].  The Volterra 
and Weiner series techniques require very large amounts of data for even low order nonlinearities.  The other two methods 



require one to first assume a form of the nonlinearity.  A nonlinear normal-modal based technique has also been proposed 
and is currently being investigated [10, 11].  
 
The authors recently proposed an alternative to these approaches that may overcome some of these limitations.  It is a 
frequency domain technique [12] based on spectra that are similar to linear frequency response functions.  Because of this 
similarity, it allows many concepts from linear system identification to be applied to nonlinear systems and the analyst can 
distinguishthe features in the spectra that are due the nonlinear response rather than measurement noise.  The method 
provides direct information on the order of the system, the nonlinear parameters, and does not require an a priori assumption 
regarding the form of the nonlinearities.  The basic idea is to drive the nonlinear system so that it responds in a stable periodic 
orbit and then to perturb the system slightly from the periodic orbit.  If the nonlinearities are sufficiently smooth and the 
deviations from the periodic orbit are sufficiently small, the resulting response can be well approximated with a linear time-
periodic model.  A number of techniques are then available for identifying a linear time-periodic model for the system.  This 
work utilizes the Lifting and Fourier Series Expansion (FSE) methods, which were both proposed by Allen in [13].  These 
techniques are appealing because the linear time-periodic response can be shown to be mathematically equivalent to the 
response of an augmented linear time invariant system.  Therefore, a linear time-invariant parameter extraction method can 
be used to estimate the linear time-periodic system model, making this parameter estimation step quite convenient.  The 
linear time-periodic model is used to construct the state transition matrix and state coefficient matrix for each state along the 
original periodic orbit.  Finally, the constructed state coefficient matrix can be used to calculate an estimate of the nonlinear 
system parameters.   
 
The original work by the authors [14] verified the method on simulated measurements of a second order analytical Duffing 
oscillator, and some original efforts were made to apply the method to a fourth order analytical nonlinear cantilever beam 
[12].  This work more thoroughly explores the performance of the method for systems with multiple degrees of freedom, and 
also applies the method to real experimental measurements of a high order system.  The experimental system consists of a 
cantilever beam with a strip of spring steel connected between its free end and a fixture.  The spring steel provides a 
geometric stiffening nonlinearity.  The measurements are probed and found to contain clear evidence of time-periodic effects 
that are distinguishable from noise.  A few different harmonic forcing conditions are considered and the state coefficient 
matrix is estimated, revealing the level of accuracy that is required to obtain meaningful results.  Furthermore, in all of the 
preceding works the authors identified the periodic limit cycle but then used it only to define the state of the system.  
However, the limit cycle itself is strongly dependent on the nonlinear dynamic model for the system and could be used to 
perform nonlinear identification with a conventional algorithm.  This work explores this possibility, using a variant on the 
restoring force surface method to compute the net nonlinear restoring force on each mass.  That restoring force is then used to 
validate the results of the more detailed model that is found using the proposed linear time-periodic approximation.  The 
following section provides the background theory that supports the technique.  Then Section 3introduces the nonlinear beam 
for the experimental setup and the analytical model and applies the identification to simulated and experimental 
measurements of the beam.  The results are presented and discussed, and finally some conclusions are provided. 

2. Theory 

2.1 Linear Time-Periodic Approximations of Nonlinear Systems 

 
Generally, a forced nonlinear system can be represented in state space with the following equation 
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where f and h are functions that describe how the time-dependent state of the system, x(t), and the time-dependent inputs 
applied to the system, u(t), influence the dynamics of the system.  Assuming that the system has a periodic solution 
x (t+T)= x (t), then one can define a periodic orbit , which is a trajectory in the state space that contains the state x for every 
time t.  If a small input is applied to perturb the system from , then the state and input of the system can be described as 
small deviations from the periodic orbit, x x x    and u u u   .  If the nonlinearities are C1 (at least one time continuously 
differentiable), then eq. 1 can be expanded in a Taylor series, and if the perturbation is sufficiently small the higher order 
terms can be neglected to obtain the following. 
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The shorthand notation i jf x     is used for the partial derivative matrices meaning that the component in the ith-row and 

jth-column is the partial derivative of the ith component of f with respect to the jth component of x.  Generally, the these 
matrices may depend on both x and u and would need to be evaluated at both x  and u , but typical structural dynamic 
systems do not contain this type of cross coupling.  The approximate model given by the previous equation is that of a linear 

time-periodic state space system with ( ) i jA t f x     , ( ) i jB t f u     , ( ) i jC t h x     , and ( ) i jD t h u     .  The 

solution of such a system is governed by the state transition matrix 0( , )t t , which transfers the state of the system from an 

initial time t0 to time t.  For this work, the disturbance force is impulsive such that 0u   after the impulse.  Then, the solution 
to eq. (2) is given by the following equation. 
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2.2 Review of System Identification Methods for Linear Time-Periodic Systems 

 
When a system is well approximated as linear time-periodic without any degenerate modes, its state transition matrix can be 
represented using Floquet theory [13, 15-17] in summation form as  
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where n is the order of the system and [R(t)]r is the rth residue matrix corresponding to the rth Floquet exponent, r, and is 
composed of the product of the rth time-periodic right Floquet eigenvector {(t)}r and rth constant left Floquet eigenvector 
{(t0)}r of the state transition matrix.  Allen has suggested two techniques for extracting a model from such a system.  The 
first is called the Fourier Series Expansion technique and the second is called the Lifting technique, and both result in a 
representation of the response that is linear time-invariant.  The methods are summarized briefly here and are provided with 
further details in [13]. 

2.2.1 Fourier Series Expansion Technique 

 
The residue matrix [R(t)]r in the previous equation is periodic because of the periodicFloquet eigenvectors  {(t)}r and can 
therefore be expanded in a Fourier series.  After exchanging the order of summation and simplifying terms, the result is 
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where [Bm]r is the mth Fourier coefficient matrix of the rth mode and T=2/T is the period frequency.  To be exact, the 
Fourier expansion must include an infinite number of terms, but in practice a finite number of Fourier terms, m=-NB,…,NB, 
will sufficiently approximate the expansion [12, 13].  The Fourier Series Expansion representation of the response is 
equivalent to a linear modal model with n*(2*NB+1) eigenvalues r+imT. 

2.2.2 Lifting technique 

 
If the measured response of a time-periodic system is resampled at an integer number of points per period T, then an analysis 
can be performed based on “lifting” augmented signals from the full linear time-periodic response.  Suppose that the response 
y(t) has been sampled M times per period for an integer Nc cycles of the fundamental period.  The lifted response y l

m is the 

vector such that  
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where yk for k=0,..,M-1  is the response vector at tj with j=k+mM and m ranges from 0 to Nc-1 [13].  In the absence of an input 
force the lifted response can be arranged as 
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where {Rld}r is the residue vector of size M times the number of outputs of the response.  One should note that {Rld}r must 
account for the delay between the initial time and the kth time instant as discussed in [13].  The advantage of this approach is 
that the lifted response retains the order of the original linear time-periodic system.  The eigenvalues may be aliased, but the 
aliased eigenvalues still provide a valid representation for the linear time-periodic system. 
 

2.2.3 Constructing the System Model from Experimental Measurements 

 
In [13], Allen discusses how the state transition matrix can be constructed from either of the models above assuming that one 
has measured the displacement of the system.  The state vector of such a system consists of the measured displacement states 
as well as the corresponding velocity states, but the velocities are not typically measured, so Allen differentiated the Fourier 
Series Expansion model of the system to find the velocity states needed to form the state vector of the system.  In this work, 
acceleration measurements are considered.  When this is the case, the Fourier series expansion model for the free acceleration 
response is written as 
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where N is the number of degrees of freedom and {Bm}r is the residue vector.  In order to create a full state vector that 
consists of N position states xd and N velocity states xv, one can integrate the previous equation two times successively to 
calculate the velocity and position states. 
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Then, the state transition matrix and state coefficient matrix can be calculated as in [13]. 
 

2.2.4 Calculating the equation of motion from A(t) 

In eq. (2), the original nonlinear system model was differentiated to obtain the time-varying coefficient matrices of the linear 
time-periodic model, which resulted in a total derivative form for the system. 
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In this work, only the linearized model ( ) i jA t f x     has been identified, so a model for the first term in the previous 

equation can be used to estimate that terms contribution to the nonlinear equations of motion.   It was assumed that the 

coefficient matrix i jf x     depended only on x and i jf u    only on u.  Using this assumption, the periodic orbit state 

vector and input components, which are known, can be used to integrate the linear time-periodic system and define the 
following, 
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where ai,j(xj) is the integral of the component in the ith row and jth column of A(t) and is taken with respect to the jth 
component of the state vector for all the states within the original periodic orbits.  The terms in the first N rows of the [ai,j] 
matrix define the identity relationships of the state vector components, but those in the lower N rows define the force 
relationship of the ith degree of freedom with respect to the jth state vector component.  So this method allows these dynamic 
forces to be individually calculated from the identified time-periodic model.  The total dynamic force that acts on a degree of 
freedom of the system is then equal to the sum of a single row of the matrix [aij], and is a function of the position and velocity 
states of the system. 
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In the previous equation, aj is the jth column of the matrix, [aij].  This function is directly related to the total restoring force of 
the system, since the following equation 
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Fully defines the reconstructed nonlinear equations of motion.   

2.2.5 Modified Restoring Force Surface Method for Periodic Response 

 
In this section a method is developed based on the restoring force surface approach [8] for solving for the net restoring forces 
over the periodic orbit from the measured periodic response.  The restoring force surface method is based on the following 
equation of motion, which is valid for a broad range of structural systems. 

  , ( )a RF d vMx g x x F t   (14) 

Assuming that the acceleration of each of the nodes of the system has been measured as well as the applied force F(t), the 
restoring forces can be found as follows if one has an estimate for the mass matrix M. 

  , ( )RF d v ag x x F t Mx   (15) 

The restoring forces are functions of the displacement and velocity, and since xa is known, xd and xv can be found by 
integrating xa.  Since xa is the periodic response, it can be readily described by a Fourier series.  As long as the constant term 
in the series is zero, then the Fourier series model can be integrated as in eq. (9) and then the restoring force can be plotted 
versus xd and xv or versus time over the periodic orbit.  

3. Nonlinear cantilever beam system 

 
The proposed identification method was evaluated by applying it to measurements from a nonlinear beam.  Figure 1 below 
shows a top view photograph of the actual experimental setup.  An aluminum 6061 beam is bolted to a steel mounting block, 
shown on the left side of the image.  A small strip of spring steel is bolted to the free end of the cantilever and clamped to 
another steel mounting block.  Both of the mounting blocks are bolted to a massive steel tube.  The steel tube and mounting 
blocks approximate the fixed support of an ideal cantilever.  The whole setup rests on a foam pad on a massive table top.  The 
beam is oriented such that the bending axis is parallel to the plane of the table top.  Figure 2 shows a close top and front view 
of the spring steel between the tip of the beam and the right hand side support.  Table 1 below provides the physical 
dimensions of the beam and the spring steel in millimeters.  
 



 
Fig. 1 Top view of the experimental nonlinear beam setup 

 

 
(a) 

 
(b) 

Fig. 2  Top view (a) and front view (b) of the spring steel connected to free end of the cantilever beam 
 

Table 1 Aluminum 6061 beam and blue-finished and polished 1095 spring steel dimensions in millimeters 

Dimension Al 6061 Beam 1095 Spring Steel 

Length 1016 53.2 

Width 25.4 25.4 

Thickness 9.5 0.0762 
 

 
The spring steel on the tip of the beam adds stiffness at that point that is geometrically nonlinear.  This setup was originally 
proposed in [18] and other researchers have studied similar beam setups [10, 19, 20]. 
 
Figure 3 below shows a schematic of the system, which is modeled as a uniform, prismatic cantilever beam with material 
density , elastic modulus E, cross sectional area Ab, bending area moment of inertia I, and length L.  The position along the 
length of the beam is given by the variable ‘x’.  The deflection of the beam is designated with the variable y.  The beam has a 
nonlinear tip spring with stiffness knl that is assumed to be a function of the tip displacement. 
 

 
 

Fig. 3  Schematic of the nonlinear beam 

knl 

x 

Fd 

, E, Ab, I, L 

y 



3.1 Ritz-Galerkin Discrete Model 

A Galerkin approach was used to create a finite-order model for the beam that exhibits similar properties of the experimental 
system.  Assuming that the beam behaves linear-elastically, mode shapes corresponding to transverse bending motion were 
used as shape functions to construct the Ritz-Galerkin representation [21].  The displacement of the beam at a position x was 
approximated as 
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where r(x) is the rth Euler-Bernoulli beam mode shape for a cantilever, qr(t) is the rth generalized coordinate, and Nm is the 
number of modes used.  The system’s undamped equations of motion are provided in Eq. (17), where the coordinates are the 
amplitudes of the basis functions.   
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Modal damping was added to the equation by performing an eigenvector analysis on the linear system and then using,  
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where [b] is a matrix containing the eigenvectors in the columns, r is the rth circular natural frequency, and r is the rth 
desired damping ratio.  The generalized force vector Q is a sum of the product between all external forces and the value of 
the shape functions at the point where the force is applied, xf.  Therefore, Q includes Ritz series formulated contributions 
from Fd in Figure 3 as well as the restoring force due to the spring [21]  The beam provides linear stiffness at the tip due to its 
flexural rigidity, so the spring stiffness was chosen to be purely nonlinear as given below. 

 2
3 ( )nlk k y L  (19) 

The physical restoring force due to the spring is then equal to  

 3
3 ( )spf k y L . (20) 

The generalized force vector then has components corresponding to the nonlinear spring {Qsp} located at x=L and the 
externally applied force {Qext} located at x=xf. 
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The external force is given by the following. 
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where A is the amplitude and f is the frequency of the periodic forcing term, and Aimpulse is the amplitude of the impulsive 
forcing term, which is used to perturb the system from the periodic orbit.  The impulsive force has duration  and is initiated 
at tp. 
 
After using the Ritz-Galerkin method to form the discrete beam model and to account for the nonlinear applied force of the 
spring, the equations of motion were transformed back into physical coordinates using the relationship in eq. (16).  The 
differential equations of motion can then be arranged in state space format. 
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The matrix   has the numerical values of the mode vectors for specific position coordinates on the beam.  Since this matrix 

must be square in order to form an inverse, it is convenient to choose the number of degrees of freedom in the system to be 
equal to the number of modes used in the Galerkin expansion.  Then,   can contain shape functions evaluated at the nodal 

degrees of freedom on the beam.  In this study the number of mode shapes used in the expansion and the number of degrees 
of freedom used to model the beam was Nm=N=2.  The degrees of freedom were located at the center and tip of the beam.   
 
In order to mimic the experimental system, the following parameters were used in the model, which are based on the nominal 
properties of the experimental hardware: =2700 kg/m3, E=68e9 N/m2,  Ab=3.23e-4 m2, I = 4.34e-9 m4, L = 1.016 m.  Using 
these properties with the Ritz-Galerkin method, the two linear natural frequencies of the system are 1/(2)= 9.97 Hz and 
2/(2)=62.51 Hz.  The transverse stiffness contribution of the spring steel on the experimental beam is approximated in the 
model as k3=1.4764e9 N/m3.  A derivation of this approximation can be found in the appendix. 

3.2 Simulated Measurements 

In order to apply the proposed nonlinear identification, the nonlinear beam must first be driven to respond in a periodic orbit. 
However, there are many possible periodic orbits that this system may be driven in so it is desirable to consider all of the 
possible periodic orbits for different forcing configurations.  In a companion paper [22], the authors used a numerical 
continuation technique to calculate the periodic solutions of the beam model for forcing amplitude of A=1 Newton and for 
forcing frequencies in the band 6-70 Hz.  The results of the computation are shown in Figure 4.  In (a) and (b), the response 
curve near the first linear natural frequency is plotted.  The red and blue curves in (a) correspond to the displacement initial 
conditions of the first and second degree of freedom, respectively.  The green and black curves in (b) are the analogous 
velocity initial conditions.  This color format is repeated in (c) and (d) for the frequency band near the second linear natural 
frequency.  The curves quantify the resonant responses of the first and second modes of the nonlinear beam (referenced to 
zero phase of the force), but they also provide the initial state vector for a specific frequency that one can integrate in time to 
achieve a periodic orbit.  A detailed discussion of the dynamics of the frequency response curves is provided in [22].  The 
important implications of these nonlinear frequency response curves is that the resonance peaks tend to bend towards higher 
frequencies for this system, which causes regions where multiple periodic orbits are possible for a single forcing frequency, 
and for this system one of those possible solutions is unstable (unstable solutions are designated in the plots with the dashed 
lines).  The forcing configuration needs to be carefully selected in order to achieve a successful identification of the nonlinear 
parameters.  Guidelines for selecting forcing configurations for the system identification method used here are discussed in 
detail in [14] for a single degree of freedom system, and those guidelines apply equally well here.   
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Fig. 4 Initial conditions that result in periodic responses for A=1 plotted versus forcing frequency 

 
The nonlinear frequency response curves were used to understand what types of periodic orbits were possible, and a few of 
the different alternatives were selected for study.  It is desirable to drive the system in a stable periodic orbit that is 
sufficiently nonlinear and isolated from other nearby stable periodic orbits.  Sracic and Allen [14] showed that periodic orbits 
on the larger amplitude branch of the bent resonance peak tend to provide suitable periodic orbit conditions to use for the 
identification procedure for a hardening resonance such as that of the peak in Figure 4(a).   Therefore, a forcing frequency of 
f1=15.4 Hz was chosen on the first resonance peak of Figure 4(a).  Since the beam model has two modes that produce 
resonance responses, a second forcing frequency of f3=60.9 Hz, which is just below the second resonance peak of Figure 4(c), 



was chosen to explore the results of the identification when the periodic orbits from different modes are used.  For each case, 
the procedure that was employed in [14]  is also used here to simulate the response and perform the identification.  First, the 
acceleration periodic and periodic plus perturbation responses are simulated using MATLAB’s 4-5th order Runge-Kutta 
integrator function ‘ode45’.  (Although the discrete system is derived for a state vector consisting of all the displacement and 
velocity states, ‘ode45’ allows one to extract the acceleration states of the system from the calculation as well.)  For each 
response, the amplitude of the harmonic forcing was A=1 N and the amplitude, duration, and time of initiation of the 
impulsive force were Aimpulse=10 N,  = 0.02 seconds, and tp=0 seconds (the impulsive force was set to zero when computing 
the periodic response).  The response was calculated for a time history that was long enough for the perturbation to decay 
such that only the underlying periodic orbit response remained.  
  
Case 1:  
The responses were calculated from initial conditions [ ]y y =[-3.517e-5; -1.223e-4; 3.639e-2; 0.1160], which define the 

periodic orbit at 15.4 Hz relative to zero phase on the forcing function, and the solution was sampled at a 616.4 Hz, which 
gave 40 samples per period of the periodic orbit.  Figure 5 shows the time history of the tip degree of freedom both early (a) 
and late (b) in the response.  The periodic response is plotted with the dashed blue curve and the periodic plus perturbed 
response is plotted with the solid red line.  The difference between the periodic and perturbation responses is plotted in (c) 
with the solid black line, and this plot shows that the perturbation is small compared to the periodic response and that it 
eventually decays to approximately zero, meaning the response has returned to the periodic orbit.  The responses of the beam 
midpoint degree of freedom are not shown, but they were in phase with the tip responses shown here and have similar 
characteristics but smaller extreme amplitudes. 
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Fig. 5 Tip responses of the beam model for forcing frequency f1=15.4 Hz 

 
The spectra of the perturbed responses and those of the difference between the perturbed and the periodic response were 
calculated with the Fast Fourier Transform (FFT) algorithm in MATLAB and are plotted in Figure 6(a) and (b) for the 
midspan and tip degrees of freedom, respectively.  The perturbed responses are plotted with the solid red lines and the 
perturbed minus the periodic responses are plotted with the dashed black curves.  The red curves contain a number of sharp 
peaks at the frequencies 15.4, 46.2, 77, 107.8, and 138.6, and the magnitudes of these peaks diminish with increasing 
frequency.  These frequencies correspond to the forcing frequency and a few of its odd harmonics (e.g. 3*15.4 Hz = 46.2 
Hz).  The spectra of the red and black curves also contain a number of broad peaks near 12.6, 18.2, 43.4, 49, 65.8, 74.2, 79.8, 
96.6, 110.6, and 127.4 Hz in both degrees of freedom, at 35 Hz in the first degree of freedom, and at 105 Hz in the second 
degree of freedom.  
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Fig. 6 Response spectra of the nonlinear beam simulation for forcing frequency f1=15.4 Hz 

 
The response of the beam is strongly nonlinear, since a single harmonic input was applied at 15.4 Hz, and the system 
responded at that frequency as well as at a number of its harmonics.  The broad peaks in the response all seem to have the 
characteristics of linear mode peaks; Eqs. (5) and (8) can be used to understand that many of these peaks are due to time-
periodic effects of the perturbation about the periodic orbit.  For example, the peaks at 12.6 and 18.2 Hz have similar 
characteristics to the peaks at 43.4 and 49, and the two peak clusters are separated by 30.8 Hz, which is twice the 
fundamental frequency of the periodic orbit.  These two peak cluster seems to be repeated at intervals of 30.8 Hz, although 
the magnitudes of the peaks change.  The peaks at 35, 65.8, and 96.6, and 127.4 Hz are also increasing in frequency by 30.8 
Hz and have similar characteristics albeit different magnitudes.  The fact that many of these peaks seem to be related and 
occur at frequencies that can be linked by the fundamental periodic orbit frequency is strong evidence that the system is 
behaving time-periodically about the orbit.  Noise or some other artifact in the response is not likely to have the characteristic 
shape of a mode nor to occur at frequencies that are related by the periodic orbit frequency.   
 
In order to fit a time-periodic model to the perturbed minus the periodic responses, the lifting technique [13] was used to 
resample the responses into a set of ‘lifted responses’ that are exemplary of the responses exhibited by a lower-order linear 
time-invariant system.  The composite spectra (or average) of the lifted responses is plotted in Figure 7 with the solid black 
line, and it contains one prominent peak near 2.8 Hz and a much weaker, broader peak near 4.2 Hz.  The Algorithm of Mode 
Isolation (AMI) [23] identified two modes in the composite response spectra.  A reconstruction of the two mode fit is plotted 
in the figure with the dashed line.  The difference between the response curve and the fit is plotted with the dashed-dot gray 
curve, and it shows that the two-mode fit approximates the response very well.  AMI identified two eigenvalues 1= -0.7310 
+17.6158i and 2= -3.9901 +26.2590i, natural frequencies |1|/(2)=2.806 Hz and |2|/(2)=4.227 Hz, and damping ratios 
0.0415 and 0.1502, respectively. 
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Fig. 7 Composite spectrum and AMI fit of the lifted responses forr forcing frequency f1=15.4 Hz 

 
The lifting technique is advantageous because any peaks in a response that are due to time-periodic mode effects are collected 
to a single peak, so the underlying order of the system is more easily determined; even though the spectra in Figure 6 contain 
many peaks, the composite spectrum of the lifted responses shows clearly that the system has only two dominant modes.  The 
modal fit obtained by AMI provides the time-periodic mode shapes of the system for one full period of the underlying 
periodic orbit.  The next step towards constructing the state transition matrix and state coefficient matrix of the linear time-
periodic system is to expand the identified mode shapes in a Fourier series and to determine which Fourier coefficients 
contribute meaningful information to the response.  This process is clearer if the identified time periodic modes are first 
unaliased (a discussion of aliasing due to lifting can be found in [13, 24]). 
 
After the identified modes were unaliased, they were expanded in a Fourier series.  Figure 8 shows a plot of the amplitudes of 
each of the coefficients in the Fourier series expansion of Mode 1 (a) and Mode 2 (b).  The open blue circles designate all of 
the coefficients calculated in the expansion.  The red dots designate the Fourier coefficients that will be retained in the linear 
time-periodic model when computing A(t).   
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Fig. 8 Fourier series expansions of the identified modes for forcing frequency f1=15.4 Hz 

 
For the first mode, the dominant coefficients were easily determined because of their large amplitude relative to the others.  
One can verify that these coefficients are important to the response by interrogating the spectra in Figure 6(a) and (b) for the 
corresponding peaks.  It was determined that the unaliased Floquet exponent was attributed to the peak at 18.2 Hz, so this is 
the m=0 harmonic in the Fourier series expansion.  The peaks at 49, 79.8, and 110.6 Hz can be attributed to the m = +2, +4, 
and +6 harmonics (i.e. 18.2+2*15.4= 49, 18.2+4*15.4 = 79.8, and etc.).  The peaks at 12.6, 43.4, 74.2, 105 Hz can be 
attributed to the m=-2, -4, and -6 harmonics since for example, 18.2-2*15.4= -12.6 and negative frequencies reflect back to 
positive frequencies.  The Fourier series expansion in Figure 8 reveals that the harmonics m=-4,-2,0,+2,and +4, have larger 
amplitude than the baseline noise, so only those are retained when forming A(t).   



 
The dominant coefficients of the second mode (b) are more ambiguous.  One might presume from Figure 8(b) that only the 
m=0 term is significant.  However, the spectra from Figure 6(a) and (b) show that there are significant time-periodic peaks at 
35, 96.6, and 127.4 Hz that can be resolved from the noise.  Since the Floquet exponent of this mode is 65.8 Hz, these peaks 
correspond to the m=-2, +2, and +4 harmonics of the expansion, and because the peaks in the spectra can be resolved from 
noise they are physically meaningful and should be retained in the Fourier series expansion of the mode. 
 
After the Fourier series models of the identified modes have been formed, they were integrated twice according to Eq. (9) in 
order to obtain a description of the modes in terms of displacement.  Then, the state transition matrix and state coefficient 
matrix were constructed based on the method in [13].  An analytical model for the state coefficient matrix was also 
constructed using the same method as in [14].  The system is fourth order, so the state coefficient matrix is a 4x4 time 
dependent matrix.  The lower left 2x2 block corresponds to scaled stiffness components of the model.  The (3, 2) and (4, 2) 
components of the state coefficient matrix, which are the stiffness coefficients that multiply the beam tip degree of freedom 
are plotted versus time in Figure 9.  The components that were estimated using the proposed identification method are plotted 
with open circles, and the analytical coefficient values are plotted with a solid line. The analytical (3, 2) component of the 
matrix (black line) varies over the periodic orbit by approximately 30% of its initial value of 3.46e4 [N/(kg-m)], and the 
analytical  (4, 2) component varies by approximately 51% of its initial value of -5.26e-4 [N/(kg-m)], so the system is quite 
time periodic based on the analytical model.  The estimated coefficients for the (3, 2) and (4, 2) terms of the state coefficient 
matrix agree fairly well with the analytical values.  The (3, 2) term differs from the analytical term by at most about 8.5% and 
the (4, 2) term differs by at most about 12.5%.  
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Fig. 9 Time-periodic state coefficient matrix components for forcing frequency f1=15.4 Hz 

 
The (3, 1) and (4, 1) terms of the state coefficient matrix are also related to the stiffness of the system, but for brevity they are 
not shown.  The analytical (3, 1) and (4, 1) terms are constant, but their estimates showed between 8% and 14% variation 
with time, although they were relatively accurate in an average sense.   
 
Because the damping in the system is linear, the lower right 2x2 block of the true analytical state coefficient matrix is also 
composed of terms that are constant with time.  The estimates of these damping terms from the identification method vary 
significantly with time.  Each of the four terms varies by an amount that is at least an order of magnitude larger than the 
constant value predicted by the analytical model, and they did not tend to agree very well in an average sense either.  
However, the identified STM matched the decay of the actual response well, so the error seems to arise when estimating A(t) 
from the STM. 
 
The identified state coefficient matrix can now be used to calculate its force contributions to the equations of motion of the 
nonlinear system according to eq. (11).  This was done using MATLAB’s ‘cumtrapz’ function, which is an approximation of 
the cumulative integral using the trapezoidal method.  The lower left-2x2 block of the matrix in eq. (11) is plotted in Figure 
10 versus the corresponding displacement term.  Since these terms were integrated with respect to the displacement 
components of the state vector, they are the scaled force-displacement functions of the system.  The top row of plots relates 



to the first degree of freedom (DOF) and the bottom row the second DOF.  The identified scaled force-displacement curves 
are plotted with the open blue circles.  The analytical state coefficient matrix was also integrated according to eq. (11).  The 
scaled force-displacement curves for the analytical system are plotted with the blue lines.  The underlying periodic orbit 
defines the displacement of the DOFs, and the first DOF displaces between about 0.5mm ( (a) and (c) ), while the second 
DOF displaces farther, between about 1.2mm ((b) and (d)).  The restoring force on the first DOF (a1,1) has a negative 
correlation with y1 displacement.  This is also seen for the a2,2 versus y2 relationship, while both the cross terms (a1,2 and a2,1) 
are positively correlated.  The magnitudes of the [a1,1, a1,2] and [a2,1, a2,2] force components oscillate between about 50 N/kg 
and 90 N/kg, respectively.  All the force-displacement curves are predominantly linear, except for the a2,2 component in (d).  
The identified force-displacement relationships agree exceptionally well with the analytical relationships. 
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Fig. 10 Scaled force-displacement relationships acting on the beam DOFs for forcing frequency f1=15.4 Hz 
 
The forced-displacement curves can be directly linked to the dynamics of the system and how the DOFs interact.  These 
functions completely characterize the nonlinear equation of motion of the system.  According to these results, only the beam 
tip is subjected to nonlinearity, and this is consistent with the location of the nonlinear spring.  It is significant that these 
results were obtained without any a priori assumption regarding the shape of the force-displacement relationships. 
 
The force displacement relationships that have been identified for the system can be validated to some degree by using them 
to compute the total restoring force in the system at each point within the periodic limit cycle.  This sum of the restoring 
forces can also be computed using the method described in Section 2.2.5, and the two can be compared to validate the results.  
To do this, each block of terms must be premultiplied by the analytical mass matrix to achieve the same scaling.  This puts 
the terms into units of force rather than units of acceleration.  The restoring forces have components due to the stiffness of the 
beam and due to the dissipative effects of damping.  The total restoring force acting on a degree of freedom is the sum of 
these, but it has already been noted that the damping estimates are questionable, so the restoring forces were computed both 
with and without the damping terms.  Figure 10 shows the restoring forces versus time for one cycle of the periodic orbit.  
The total restoring force estimate (RFLTP Total) is plotted with the open blue circles.  The estimate that excludes the velocity 
related forces is labeled (RFLTP Disp.) and plotted with open black squares.  The total restoring forces computed using the 
RFS method outlined in Section 2.2.5 are also shown with the solid blue line.  In the first half of the orbit, the restoring force 
on the beam tip leads the restoring force on the beam center, which initially remains near zero, but both forces are in phase 
and increase to a maximum near 0.017 seconds.  The maximum value of the analytical restoring force is near 5 N for the 
beam center and 2 Newton for the beam tip.  After the maximum, both restoring forces decrease towards zero, and the force 
on the beam center reaches the near zero around 0.03 seconds, while the force of the beam tip goes through zero near the half 
period time of 0.033 seconds.  The restoring forces during the second half of the period are antisymmetric to the first half.  In 



general, the estimated total restoring force that acts on the beam center agrees very well with the force computed using the 
RFS method.  However the estimate at the beam tip shows significant discrepancies when the damping terms are included.  
This reveals that the damping in the linear time-periodic model has not been accurately identified, but the actual damping is 
small so we can verify that the displacement dependent terms have been properly identified.    
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Fig. 11 Time-periodic restoring forces acting on the beam degrees of freedom for forcing frequency f1=15.4 Hz 

 
Discussion 
 
Using the proposed identification method, a functional form of the force-displacement and force-velocity (not shown) 
relationships was directly calculated.  Each term of the state coefficient matrix that was directly related to a parameter of the 
system was integrated individually to produce a force relationship.  This approach also allows one to separate the effects of 
stiffness and damping, thereby using only the trustworthy identified parameters.  For example, the components of the 
estimated state coefficient matrix that related to damping contained a measurable amount of error, so those terms could be 
approximated with some other method to achieve a more trustworthy model.  Additionally, this method allows one to 
evaluate how errors in each identified state coefficient component are transferred to the force relationships.  Even though the 
estimated (4,2) term of A(t) was different than the analytical term by up to 12.5%, the estimated a2,2 force-displacement curve 
compares remarkable well to the analytical model.  Finally, the method provides important information on the interaction of 
the multiple-degrees of freedom.  The a2,2 curve provided evidence that DOF y2 was subjected nonlinear effects, and it could 
be used to extract the functional form of the nonlinearity.   
 
 
Case 2:  
 
The system may also be driven in a periodic orbit near the second resonance condition, which will also produce a large 
amplitude response that maps a large portion of the state space.  In order to assess the results of the identification when using 
different resonance conditions, a second simulation case was considered with forcing at f2=60.9 Hz.  The system was 
simulated from initial conditions [ ]y y =[-8.631e-5; 1.217e-4; 9.103e-2; -1.345e-1], and the same procedure as Case 1 was 

used to calculated the periodic and perturbed responses for the same harmonic forcing amplitude and impulsive forcing 
configuration.  The time histories in this case were similar to those shown for the previous case, only now the two 
measurement points are out of phase since the second mode dominates the response.   
 
The spectra of the perturbed responses and those of the difference between the perturbed and the periodic response responses 
were calculated with the FFT function, and those curves are plotted in Figure 12(a) and (b).  The periodic response at the 
drive frequency 60.9 Hz and at the third harmonic of the drive frequency, 187.2 Hz, are both clearly visible, as well as several 
peaks due to the time-periodic effects caused by the nonlinearity.  The lifting technique was applied as before, and the 



composite spectrum of the lifted responses is plotted in Figure 12(c) with the solid black line. The lifting technique again 
results in a much simpler spectrum, and there are two prominent peaks at 1.85 Hz and 11.6 Hz and a very weak peak at 23.2 
Hz in the composite of the lifted responses.  There also seems to be some high amplitude response near the zero frequency 
line.  AMI identified two modes in the responses with eigenvalues 1= -3.9850 +11.5712i and 2= -0.6290 +72.8480i, natural 
frequencies |1|/(2)= 1.9478 Hz and |2|/(2)=11.5945 Hz, and damping ratios 0.3256 and 0.0086, respectively, and a 
composite of the reconstruction of the responses from the two mode fit is plotted with the dashed red curve.   The subtraction 
residual is substantially reduced by the two mode fit, but some artifacts remain near the zero frequency line and near 23.1 Hz. 
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Fig. 12  Response spectra for forcing frequency f2=60.9 Hz 

 
The spectra from the perturbed response contain far fewer peaks than with the Case 1 forcing.  The peak near 11.6 Hz in (a) 
and (b) directly corresponds to the 11.6 Hz peak in the composite of the lifted responses, so AMI identified an unaliased 
eigenvalue for this mode in this case.  The peaks at 110.2 and 133.4 Hz in (a) and (b) can be attributed to the m=-2 and +2 
harmonics of the time periodic mode at 11.6 Hz, since 11.6-2*60.9 Hz = -110.2 Hz, which reflects back to a positive value, 
and 11.6+2*60.9 Hz = 133.4 Hz.  The broad peak at 62.8 Hz becomes aliased in the composite spectrum of the lifted 
responses and corresponds to the peak at 1.85 Hz in (c).  This eigenvalue can be unaliased by adding 2*60.9 rad/s to the 
imaginary part of the eigenvalue for this peak, which results in the natural frequency |-3.985 +394.4i |/(2) = 62.77 Hz that 
matches the peak in (a) and (b).  The other notable peaks at 37.8 Hz in (b) and 84 Hz in (a) and (b) cannot be attributed to 
time-periodic effects of the identified modes.  These peaks differ from the drive frequency by -23.1 Hz and +23.1 Hz for the 
37.8 and 84 Hz peaks, respectively, so they both alias to 23.1 Hz in the composite of the lifted responses. Those peaks may 
be [14] caused by the domain of attraction [25] of a nearby (in state space), strong, and stable periodic orbit (e.g. the 
perturbation about the limit cycle may not be sufficiently small).  The cause of such artifacts and their quantitative effect on 
the identification results will be a focus of future works. 
 
The responses for this forcing case contain fewer time periodic effects than in the previous case, and thus the Fourier series 
expansion models of the mode shapes are quite straightforward to construct.  The Fourier series were formed for each mode 
shape, and the m=-2, 0, and +2 terms were retained for the 11.6 Hz mode (2 from AMI) and only the m=0 term was retained 
for the 62.8 Hz mode (1 from AMI before unaliasing).  Then, the Fourier series expansions of the modes were integrated 
twice to get displacement models and used to construct the state transition matrix and state coefficient matrix of the time-
periodic model.  The estimated values of the (3, 2) and (4, 2) terms of the identified state coefficient matrix are plotted in 
Figure 13 with the open circles.  The analytical state coefficient model was also calculated for this forcing case, and the 
values of the analytical coefficients are plotted with solid lines.  The analytical (3, 2) coefficient varies throughout the period 
by about 3% of its minimum magnitude, and the analytical (4, 2) coefficient varies by about 11%, so this model is not as 
strongly time-periodic as the model from forcing Case 1.  The terms from the estimated state coefficient matrix agree well 
with the analytical model, differing by about 2% and 7% over the course of the periodic orbit, respectively.  The (3, 1) and (4, 
1) terms from the estimated state coefficient matrix vary by relatively small amounts over the course of the period, but their 
mean values over time agree very well with the constant analytical values for those matrix terms.  Like forcing Case 1, the 
estimates for the state coefficient terms that are related to damping (in the lower right 2x2 block) tend to vary over the course 
of the period with large errors.  However, fluctuations in these terms are not as large as those of forcing Case 1.   
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Fig. 13  Time-periodic state coefficient matrix components for forcing frequency f2=60.9 Hz 

 
The estimated state coefficient matrix was used to calculate the restoring forces using the same method as for forcing Case 1.  
The left-2x2 block of the resulting function g is plotted in Fig. 14 for the estimated and analytical force-displacement 
relationships using open black squares and solid black lines, respectively.  The force-displacement results from the Case 1 
identification are also shown with open blue circles and solid blue lines for the estimated and analytical results.  The 
displacements of the DOFs for this periodic orbit are much smaller than the previous case, and correspondingly the 
magnitudes of the restoring forces are also smaller.  The force-displacement curves for Case 2 have the same correlation with 
the DOFs as Case 1, with the diagonal terms that are plotted correlated negatively and the off diagonal terms correlated 
positively.  Although the Case 2 estimated force-displacement values agree very well with the Case 2 analytical values, there 
appears to be some offset between curves from Case 1 and Case 2.  However, the slopes of the curves between the 
displacements that are shared for both cases agree very well 
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Fig. 14 Time-periodic restoring forces acting on the beam degrees of freedom for forcing frequency f2=60.9 Hz  (the Case 1 

results are shown for comparison) 



 
Discussion 
When the system was excited with a frequency near the second nonlinear resonance, a very different periodic orbit was 
produced.  The DOF responses were out of phase, and the magnitudes of the displacements were smaller.  Despite the 
differences of the periodic orbit and interaction of the DOF, the procedure was still very straightforward to apply, and a 
trustworthy time-periodic model was identified.  Due to the smaller amplitudes of the DOFs, the model contained less time-
periodic effects, and the force-displacement relationships that were constructed were only weakly nonlinear.  Nevertheless, 
these curves did match the linear slope of the Case 1 force displacement model providing good evidence that the two models 
are in agreement.  It is clear from the results that the Case 1 forcing configuration provides better opportunity to identify a 
nonlinear model of the system.  The higher frequency can be used, but the system must then be forced at higher amplitude in 
order to better excite the nonlinearity. 

3.3 Experimental Measurements 

 
The identification method was next applied to the experimental system.  Harmonic excitation was applied to the beam with a 
model 2100E11-100 lb Modal Shaker from The Modal Shop, Inc.  The beam was approximated as a having a fixed support, 
so the shaker was freely hung from a lateral excitation stand, as recommended in [26] for shaker excitation.  A thin steel 
stinger was used to transmit the excitation from the shaker to the beam.  One end of the stinger was clamped inside the shaker 
armature and the other end was fixed to a force transducer, model 208C04 from PCB Piezotronics, Inc. (PCB), which was 
bolted to the beam at a location x = 508 mm from the fixed end of the beam.  Harmonic forcing was provided by a Textronix 
model 3022 arbitrary function generator, amplified by a model 2050E05 power amplifier from The Modal Shop, Inc., and 
input to the modal shaker.  The amplitude and frequency of the excitation were varied to find forcing conditions that drove 
the beam to respond in a desirable stable periodic orbit.  A modally tuned impulse hammer, model 086C01 from PCB was 
used to impact the beam at various locations to disturb the response from its periodic orbit.  The response was measured with 
an Endevco model 66A12 triaxial accelerometer (z-channel was used) located at x = 508 mm (beam center) and with an 
Edevco model 256-100 isotron accelerometer located near the free end of the beam at x = 984mm (beam tip).  All the 
accelerometers were secured to the beam with wax.  The measurements were acquired using a Photon II portable dynamic 
signal analyzer by LDS Dactron.  This system was also used to apply sine-sweep forcing signals. 
 
An initial sine sweep test was performed to evaluate the frequency response of the beam from 1-150 Hz.  The Photon II 
output voltage was set to 0.2 Volts for this test (the gain on the amplifier was held at a constant level for all tests).  The 
frequency was swept from 1-150Hz in a period of 699 seconds, and the acceleration responses of the beam and the applied 
force response were measured during this sweep.  The Hilbert Transform was applied to these signals to determine the 
instantaneous amplitude and frequency for all time instants during the sweep.  Then, a moving average with a ten sample 
bandwidth was applied to the results of the transformed signals and the ratio of the response to the force was calculated at 
each frequency line.  Figure 15 shows the nonlinear frequency response computed in this way, with the beam center degree of 
freedom plotted with the blue curve and the beam tip plotted with the red curve.  There are a number of peaks in the spectra 
below 150 Hz, including two broad peaks near 17 and 43 Hz, two very weak peaks near 30 and 60 Hz, and a prominent sharp 
peak near 120 Hz.  Both of the broad peaks are very noisy despite the smoothing that was applied to the signals.  The lowest 
frequency peak in particular is very irregular below 17 Hz in both degrees of freedom.  Near 37 Hz, there appears to be a 
large discrete jump in the amplitude of degree of freedom one and a small jump in the amplitude of the tip.   
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Fig. 15 Nonlinear frequency response of the experimental nonlinear beam for DOF 1(midspan) and DOF 2(tip) 

 
The peaks in the nonlinear frequency response can be deciphered using knowledge of the underlying linear system.  The third 
linear bending mode of a cantilever will tend to have significant tip response but minimal beam center response (due to a 
nearby node), so the peak near 120 Hz could be related to the third linear bending mode and appears to be predominantly 
linear.  The peaks at 17 and 43 Hz could then be related to the first and second linear bending modes, respectively.  All the 
remaining artifacts in the responses must be attributed either to noise or the nonlinearity of the system.  The jump in the 
amplitude of the responses is a typical characteristic of nonlinear systems, so it can be assumed that the system responds 
nonlinearly when forced near these frequencies.  The jaggedness of the curve below 17 Hz seems to be caused both by super 
harmonic resonances in that region and by limitations of the shaker and setup at these low frequencies.  Therefore, a forcing 
frequency of 20 Hz was selected to drive the system and apply the proposed identification, since it is near the 17 Hz peak and 
both degrees of freedom are adequately excited at this frequency. 
 
The function generator was used to drive the system at 20 Hz with amplitude of 0.2 Volts.  The impact hammer was used 
apply an impulsive force at the free end of the beam (at x= 990 mm), and the force transducer signal and two accelerometer 
signals were sampled at a frequency of 2.56 kHz over a window of approximately 12.8 seconds.  The sampling frequency 
provided measurements at 128 samples per cycle of the periodic orbit, and the time window allowed enough time for the 
perturbed response to decay until only the underlying periodic orbit remained.  In order to determine the underlying periodic 
orbit and match its phase to that of the perturbed responses, the second half of the time histories, which consisted of only the 
periodic orbit, were used to find the true frequency of the periodic orbit based on a minimization search with MATLAB’s  
‘fminsearch’ function.  This frequency was found to be 20.0000 Hz, and it was used to fit a multi-harmonic sinusoid to the 
periodic orbit (i.e. over the second half of the time histories).  This fit can be used to recreate the periodic orbit over the entire 
time series (assuming that it is stationary).  This process produces the underlying periodic orbit and assures that its phase is 
aligned with that of the underlying periodic orbit.  The reconstructed periodic orbit, the perturbed response, and the difference 
between the two are plotted for the tip degree of freedom in Figure 16 with the same format that was used previously.  The 
perturbation about the periodic orbit can clearly be seen in the early time response, since its relative magnitude is somewhat 
large compared to the periodic orbit magnitude.  At late times the perturbed signal is almost indistinguishable from the 
periodic orbit.  Note also that the periodic orbit is far from a pure sinusoid (as one would expect for a linear system).  Several 
high frequency oscillations are present.  
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Fig. 16 Tip responses of the experimental beam for forcing frequency fexp=20 Hz 

 
The FFTs of the perturbed response and the perturbed minus the periodic responses were calculated, and those spectra are 
plotted in Figure 17 using the same format that was used previously.  A number of sharp peaks occur in the perturbed 
response at 20 Hz and all of the harmonics of that frequency (i.e. 40, 60, 80 Hz, etc.) that are shown in the plots.  Although 
the 20 Hz peak is the largest, the remaining peaks do not appear to diminish with increasing frequency.  Since a single 20 Hz 
frequency sinusoid was used to force the system, this suggests that the system is highly nonlinear.  There are many other 
artifacts that occur in the spectra, but a few coherent peaks can be seen at 28.2 and 188.2 Hz in (a) and (b) as well as 48.2 and 
68.2 Hz in (b).  A prominent peak occurs in both plots at 122.1 Hz, and two peaks of similar characteristics but much smaller 
magnitudes occur at 102.1 Hz and 162.2 Hz in plot (b).  In each group of peaks previously listed, the peaks are separated by 
integer multiples of the scan frequency, and therefore are likely due to time-periodic effects. 
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Fig. 17 Response spectra of the nonlinear beam measurements for forcing frequency fexp=20 Hz 

 
The peaks at 28.2 Hz and 122.2 Hz can be attributed to the m=0 harmonics of the two time-periodic modes of this system.  
The peaks at 48.2, 68.2, and 188.2 Hz can be attributed to m= +1, +2, and +8 harmonics of the former, and the peaks at 102.2 
and 162.2 Hz can be seen as the m= -1 and +2 harmonics of the latter.  The lifting method was applied to the perturbed minus 
periodic responses, and the FFT of the lifted responses was calculated.  The composite spectrum of the lifted responses is 
plotted in Figure 18 with the solid black line.  AMI identified two modes in the responses with eigenvalues 1= -2.777 
+13.491i and 2= -6.966 +51.553i, natural frequencies |1|/(2)= 2.192 Hz and |2|/(2)=8.280 Hz, and damping ratios 0.2016 
and 0.1339, respectively.  The plot also shows the reconstruction of the composite spectrum based on the fit and the 
subtraction residual, which is significantly reduced by the two mode fit.  This reveals that a linear-time periodic model fits 
the response of this highly nonlinear system very well about the limit cycle. 
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Fig. 18 Composite spectrum of lifted responses and AMI fit of the lifted responses for the nonlinear beam simulation for 

forcing frequency forcing frequency fexp=20 Hz 
 
The first eigenvalue can be deciphered to be an aliased version of the mode at 122.1, since 2.192 +6*20 = 122.192, and the 
second eigenvalue is the aliased version of the mode at 28.2 Hz, since 8.280+1*20 = 28.280.  The time-periodic modes that 



AMI extracted from the measurements were very noisy, so when they were expanded in a Fourier series, the previous 
information was used to retain only those harmonics that were clearly represented in the measurements.  Different time 
varying state matrices would be obtained depending on which terms were retained in the model for the state transition matrix.  
To illustrate this, the state transition matrix and state coefficient matrix were constructed based on using one, two, and three 
Fourier terms for this system.  The Fourier coefficients that were used to construct these models are defined in the legend for 
modes 1 (denoted m1) and 2 (denoted m2).  The (3, 2) and (4, 2) coefficients of the resulting estimated state coefficient 
matrices are plotted in Figure 19.  The estimated models with a single m=0 Fourier term have linear time-invariant 
coefficients, and as more terms are included in the expansion, the coefficients show increasing variation with time.  With the 
three Fourier term model, the (3, 2) term of the state coefficient matrix varies by 85% of its minimum magnitude and the (4, 
2) term varies by 30%. 
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Fig. 19  Estimated time-periodic state coefficient matrix components for forcing frequency fexp=20 Hz 

 
The proposed identification method assumes that the system is oscillating in a stable periodic limit cycle.  As mentioned 
previously, the limit cycle is measured by capturing the response of the system after the perturbation has decayed.  The 
Fourier coefficients of the periodic limit cycle are then obtained and used in the analysis.  Those Fourier coefficients are used 
to calculate the restoring forces using eq. (13), and also to compute the total restoring forces using eq. (15) as part of the 
validation step described in Section 2.2.5.  The two measured acceleration signals and the measured force signal are plotted 
with blue dots in Figure 20.  Each cycle of the assumed periodic response is overlaid, so the the time window shown 
corresponds to only one period of the steady state force and response.  The Fourier series fit to each signal is also plotted with 
a solid red line.  The acceleration of the beam’s midspan (Accel 1) and tip (Accel 2) DOFs ranges between about 10m/s2 
and 40m/s2, respectively.  The input force ranges between about 5 N.  There is significant uncertainty due to noise in all 
three signals, yet each signal also seems to contain some high frequency fluctuations that are quite repeatable as well.    These 
fluctuations are responsible for the high frequency harmonics seen in Figure 17.  The harmonics describing the periodic orbit 
do not seem to diminish substantially in magnitude as frequency increases.  Although it is not shown, these peaks are present 
at the integer multiples of the forcing frequency for the entire sampling bandwidth. 
 
 
 
 

 



 
Fig. 20  Measured periodic signals and harmonic fits plotted period and overlaid for fexp=20 Hz 

 
 
Discussion 
 
The signals plotted in the figure seem to indicate that the accelerations in this system fluctuate wildly over the limit cycle, 
especially at the midspan of the beam.  Hence, many harmonics are needed to define the periodic limit cycle, and so one 
would expect that the linear time-periodic model of the system about this limit cycle must also contain many harmonic terms.  
Although linear time-periodic behavior was clearly visible in the experimental measurements, only a few harmonics were 
discernible from the noise, so a trustworthy estimate of the A(t) matrix could not be obtained.  In any event, the accuracy with 
which the limit cycle is known seems questionable, so any measure of the dynamics about that limit cycle would have limited 
value.  It seems that more care must be taken to obtain a valid limit cycle before the proposed system identification technique 
can be applied to this system.  It would also be preferable to have a limit cycle that is described by a smaller number of 
harmonics.  Furthermore, i this work we have proposed to validate the nonlinear model identified by linear time-periodic 
identification using the restoring force surface method, but that method was also found to give meaningless results due to the 
fluctuations in the measured accelerations and input force.  Future works will seek to refine the test methodology to produce 
more reliable measurements in order to address these issues.  Even then, it is also interesting to note that very clear linear 
time-periodic behavior was visible in this system’s response (e.g. Figures 17 and 18), even though the measurements were 
not of sufficient quality to allow that behavior to be related to the system’s nonlinear equation of motion. 

4. Conclusions 

This work explores a new system identification strategy for nonlinear systems that is based on approximating the system’s 
dynamics as linear time-periodic about a stable limit cycle.  A variant of the restoring force surface method was proposed that 
estimates the total restoring forces in the system over the periodic orbit, which can be helpful in validating the nonlinear 
model found by the linear time-periodic identification approach.  The approach was applied to simulated measurements from 
a two DOF cantilever beam and found to be capable of identifying the force-displacement relationships in the system from 
simulated measurements.  However, the damping forces were not accurately estimated and the method was sensitive to the 
number of terms used in the state transition matrix of the linear time-periodic model.  Even then, it is significant that the 
method identifies the nonlinear force displacement relationships in the system without any a priori assumption regarding the 
form of the nonlinearity or the order of the system.  Two different excitation strategies were explored, which illustrated that it 
is important to choose an excitation that strongly activates the nonlinear parameters over a large range of motion in order to 
observe the nonlinearity.  Additionally, the simulations revealed that it was important to assure that the perturbation from the 
underlying periodic orbit was small enough so that it could be modeled as linear time-periodic. 
 



The methods were also applied to experimental measurements from a nonlinear beam with a geometric nonlinearity at its tip.  
Measurements from this system showed clear signs of time-periodic behavior.  However, the system was found to deviate 
significantly from the periodic limit cycle and that cycle itself was not very repeatable, so neither the proposed linear time-
periodic identification method nor the restoring force surface method gave reasonable results.  The authors are presently 
studying this issue and mapping the periodic orbits that are possible (see [22]) to better understand how to best apply the 
proposed identification methodology to experimental measurements from high order systems. 
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 Appendix 
 
The spring steel on the tip of the beam acts as a tension on element, and transfers force by its line of action which is assumed 
to always be straight.  When the beam tip is deflected by a small amount , then so is the spring steel element, and it forms a 
small angle with the right support, .  A diagram of this geometry is shown in Figure 21.   The spring steel which had original 
length ls is assumed to strain by an amount ls due the tension force F in the element.  By the force displacement relationship 
of a tensile element, ls=Fls/(EsAs) where Es is the elastic modulus of the spring steel and As is the cross section area of the 
strip.  Therefore, the tensile force is F = EsAs/ls*ls.  Next,the strain can be related to the geometry of the tip deflection.   
 

 
Fig. 21 Geometry for beam tip deflection and interaction of the strip of spring steel 

 
The tip of the beam has a deflection of , which can be used to write the strain in the spring steel as a function of the 
undeformed length. 
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The vertical contribution of the tensile force is Fv=Fsin(), or using the geometry of the figure and the previous relationship, 
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In order approximate the vertical force displacement relationship about small tip deflections of the beam, the previous 
equation was expanded in a Taylor series about =0 for terms to O(3), and the higher order terms were neglected.  This 
results in the following expression for the vertical force contribution of the spring steel. 
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The nonlinear spring constant can therefore be approximated as k3=EsAs/(2ls

3). 
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