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An extension of the Inverse Structural Filter (ISF) force reconstruction algorithm is 
presented that utilizes data from multiple time steps simultaneously to improve the 
accuracy and robustness of the ISF.  The ISF algorithm uses a discrete-time system 
model and the measured response to estimate the input forces acting on a structure.  The 
proposed algorithm, dubbed the Delayed, Multi-step ISF (DMISF), is compared with the 
original ISF and with the Sum of Weighted Accelerations Technique (SWAT) and the 
classical Frequency Domain Inverse (FD) method in terms of both accuracy and 
sensitivity to errors in the forward system model.  The SWAT and ISF algorithms are 
capable of estimating the forces acting on a structure in real time, or when time data is 
available over such a short duration that frequency domain methods cannot be applied 
effectively.  The new DMISF can be created from a forward system model identified by 
any standard modal analysis algorithm, so one can leverage expertise with a particular 
system identification methodology.  In contrast, the previously presented ISF was derived 
directly from experimental data.  The theory behind the algorithms is presented, after 
which their performance is demonstrated using laboratory test data.  The results of a 
Monte Carlo simulation are also presented, illustrating the nature of the sensitivity of the 
methods to errors in the modal parameters of the forward system.  The DMISF algorithm 
is shown to yield a stable inverse system for the structure of interest whereas the 
traditional ISF is unstable, and hence gives erroneous estimates of the input forces. 

Nomenclature 
{a} = vector of accelerations 
[Φ] = matrix of mode vectors 
[W] = weighting matrix for SWAT 
{xk} = discrete time state vector at the kth time instant 
{yk} = discrete time output vector at the kth time instant 
{uk} = discrete time input vector at the kth time instant 
[A],[B],[C],[D] = system matrices 

                                                           
* Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United 
States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. 
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ωr = modal natural frequency of the rth mode 
ζr = modal damping ratio of the rth mode 
λr = complex modal eigenvalue of the rth mode 
[Λ] = diagonal matrix of modal eigenvalues 
{ψ} = state space mode vector  
[Ψ] = matrix of state space mode vectors 
ω = frequency (rad/s) 
[H(ω)] = Frequency Response Function (FRF) matrix at frequency ω 
[A]r = modal residue matrix for the rth mode 
p = number of delays used in DMSIF 
 
 

1. Introduction 
There are countless applications in which it is difficult or impossible to directly measure the dynamic 

forces acting on a structure, yet knowledge of these forces is vital for analysis and design optimization.  In 

some of these applications it is possible to measure the response of the structure to the unknown forces.  

Numerous previous works have studied the feasibility of using a structure’s response to identify the forces 

acting on it, in effect, using the structure as its own force transducer [1].  This inverse problem is usually 

described as ill posed [1, 3].  Its solution can also be very sensitive to small inaccuracies in the data [4-6]; 

errors in the forward structural dynamic model that seem insignificant in other applications can result in 

large errors in the computed forces.  However, one should be careful and not admit defeat too easily; the 

forward and inverse problems are different and one should expect that different structural dynamic 

characteristics will be important in each. 

The most commonly used force reconstruction method is a frequency domain technique in which the 

discrete Fourier transform of the measured responses is multiplied by the inverse (or pseudo-inverse) of 

the FRF matrix, yielding an estimate of the forces acting on the system.  Frequency domain force 

reconstruction has been studied by a number of researchers [1, 4, 5, 7, 8]  The recent work by 

Hundhausen et al [3] provides a comprehensive review. 

It is necessary in some applications to have an algorithm capable of estimating the forces acting on a 

structure in real time.  For example, these forces may be required for system control purposes, or the 

available data may be of such short duration that leakage renders frequency domain processing 

inaccurate.  Also, the challenges in the inverse problem are manifested differently in the time domain, so 
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it is possible that more accurate or robust solutions could be found by formulating the problem in the time 

domain.  However, it appears that time domain force identification has not been studied as widely as has 

the frequency domain dual. 

A few time domain force reconstruction algorithms have been presented in the literature.  One 

approach is based on modal filtering [9], using multiple sensors on a structure to isolate the portion of a 

response due to a single mode.  This approach, dubbed the Sum of Weighted Accelerations Technique 

(SWAT), estimates the applied forces by isolating the rigid body modal accelerations [10-12].  It has been 

extended to estimate multiple forces simultaneously using elastic modes also by Genaro and Rade [2].  

Another approach for time domain force reconstruction is based on inverting the equations of motion of 

the system.  For example, the Inverse Structural Filter (ISF) method of Kammer and Steltzner [6, 13-15] 

inverts the discrete-time equations of motion.  The method of Law and Chan is also similar to the ISF 

although they do not refer explicitly to discrete-time system theory [16].  Others have sought to invert the 

continuous time equations of motion [17-20] [21].  The discrete time approach is preferred in many cases 

because it avoids the difficulty associated with integrating or differentiating the measured responses, 

although one should ensure that proper consideration is given to signal processing [22].  Whichever 

approach is employed, one can encounter difficulty because the inverse system may have unstable poles, 

and hence may result in unbounded estimates of the forces. 

The ISF presented by Kammer and Steltzner was found from the measured structural impulse response 

directly, using an approach similar to the Eigensystem Realization Algorithm (ERA) [23, 24], so there 

was no need to identify a model for the forward system dynamics.  On the other hand, as improved 

methods for identifying forward dynamic models evolved, these could not be easily used with the ISF.  In 

recent years a number of powerful system identification techniques have been developed, so there are 

now many ways in which a state space model for the forward dynamics of a system can be accurately 

derived.  This work expands upon that by Kammer and Steltzner by deriving a discrete time ISF from a 

state space model for the forward system, so one can use whatever modal parameter identification method 

one might prefer. 
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For the application of interest, the ISF derived from the forward system model was found to be 

unstable yielding highly erroneous estimates for the forces acting on the structure.  A variant is derived, 

dubbed the Delayed, Multi-step ISF (DMISF) that can produce a stable ISF when the standard method 

fails.  This method also reduces the residual ringing in the ISF estimated forces dramatically. These issues 

are demonstrated by applying the proposed DMISF to experimental data from a free-free beam and the 

sensitivity of the method is compared with that of the Frequency Domain inverse method (FD) and the 

SWAT method. 

The primary contributions of this work are the following.  First, it presents an extension to a prominent 

force reconstruction technique that makes it easier to apply and improves its performance.  Second, this 

work provides a comparison between the SWAT and ISF time domain techniques and the frequency 

domain inverse method.  This is especially valuable for the ISF algorithm, which has not previously been 

compared with any other techniques.  Finally, the robustness of all of the methods to errors in the modal 

parameters of the forward system is demonstrated using a Monte-Carlo simulation. 

The next section presents the theory behind the ISF and describes the enhancements mentioned 

previously.  The SWAT and FD algorithms are also briefly discussed.  In Section 3, all of the methods are 

applied to data from an aluminum beam and their characteristics and sensitivity to errors discussed.  Some 

conclusions are presented in Section 4. 

2. Force Identification Methods 
The following section presents the ISF method of Kammer and Steltzner and discusses the difficulties 

that can be encountered.  Section 2.2 presents an extension to the ISF that has been found to improve its 

performance.  Sections 2.3 and 2.4 briefly present the SWAT and FD methods, which will be compared to 

the proposed ISF in Section 3. 

2.1. Inverse Structural Filter (ISF) of Kammer & Steltzner 
An ISF can be derived by inverting the discrete time equations of motion, resulting in a dynamic 

system that takes a structure’s response as input and returns an estimate of the forces acting on the 
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structure as output [6, 13-15].  The filter is itself a dynamic system, so one can use traditional system 

analysis methods to evaluate its dynamic performance.  For example, one can examine the eigenvalues of 

the ISF’s characteristic equation to evaluate the stability of the ISF. 

To derive the basic ISF algorithm, we begin with the familiar linear, state-space, discrete time 

representation for a dynamic system: 
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where the state vector {x} is N x 1, the input vector {u} is Ni x 1, and the output vector {y} is No x 1.   

The index k refers to the kth time step for which tk = kTs where Ts is the time between successive time 

samples.  For structural dynamic systems, the forces acting on a structure at a set of points are typically 

the inputs, and the displacement, velocity, or acceleration measured at a set of points are considered the 

outputs.  Peeters [25] gives a good review of various forms of the state-space equations for continuous 

and discrete time dynamic systems, as well as their relationships to the familiar modal and second order 

(i.e. mass, stiffness and damping) representations.  The discrete time system reproduces the response of 

its continuous time dual at the sample instants exactly only if the input obeys the assumption used in 

deriving the discrete time model [26].  For example, the zero order hold (ZOH) assumption is typically 

used, which assumes that the input is constant between sample instants.  

Steltzner and Kammer noted that it is possible to invert the state space representation in eq. (1) as 

follows 
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where ()+ denotes the Moore-Penrose pseudo-inverse.  Equation (2) represents a discrete time dynamic 

system that takes the response {y} as input and returns an estimate of the forces {u} acting on the system 
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as output.  This can also be expressed as a discrete filter that acts on the sampled response measurements 

returning a sampled estimate of the forces.  Note that the system matrix Â⎡ ⎤
⎣ ⎦  of the ISF is different than 

that of the forward system, so the ISF can be unstable even when the forward system is stable. 

While Steltzner and Kammer derived the ISF as described above, they did not actually use this 

procedure to implement the ISF.  Instead, they presented an algorithm that computes the Markov 

parameters of the ISF directly from response data [15].  The Appendix discusses how to generate an 

inverse structural filter from modal parameters obtained in a standard modal test, using a modal 

representation of equation (2).  This approach was used in this work do derive an enhancement to the ISF. 

2.2. Delayed Multi-step ISF (DMISF) 
One important difficulty often encountered when implementing the Inverse Structural Filter method is 

that the ISF system can be unstable.  If any of the eigenvalues of the ISF system in eq. (2) are unstable, 

the estimated forces might tend towards infinity when the ISF is applied to the measured responses.  One 

can see in eq. (2) that the direct transmission matrix [D] contributes to the ISF’s eigenvalues.  The 

forward system can be decomposed into a diagonal matrix of eigenvalues [Λ] and a matrix of mode 

vectors [Ψ].  Equation (16) in the Appendix shows that the [D] matrix depends on the real part of the 

triple [Ψ][Λ][Ψ]T, which one can show to depend primarily on the real parts of both the eigenvalues and 

mode vectors.  However, the real parts of both tend to be small and difficult to accurately estimate for a 

lightly damped structure [23], so the accuracy of the real part of the triple [Ψ][Λ][Ψ]T in [D] in eq. (16) 

could also be brought into question.  The authors have found that better results are usually obtained if the 

output is stepped forward one sample and the direct transmission matrix [D] is neglected, resulting in the 

following delayed state space representation. 
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The ISF for this system, generated using eq. (2), estimates the derivative of the input at time tk from 

the response at the next time instant tk+1.  While this approach tends to improve the performance of the 

ISF significantly, it is often not sufficient to obtain a stable ISF.  For example, eq. (3) produced an 

unstable ISF for the system considered in the following section. 

Steltzner and Kammer [15] found that it was possible to create a non-causal ISF that was more stable 

and/or more accurate than the standard one.  (The non-causal ISF used future values of the response to 

estimate the forces at the present time.)  In that same spirit, if one can tolerate a delay before the forces 

are estimated, then one can modify the formulation of the ISF to reposition the poles of the ISF system.  

For example, the authors have found that the following method tends to increase the damping in the ISF’s 

poles, and have dubbed this new method the Delayed Multi-step ISF (DMISF) 

Consider forward state equation (3).  The following modified output equation results after stacking the 

input and output for various time instants. 
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The state equation must be modified slightly to accommodate the new definition of the output and 

input 
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The DMISF generated from this system representation estimates the input at time instants tk to tk+p-1 

from the output at time instants tk+1 to tk+p.  This is applied to the output at tk to tNt-p resulting in multiple 

estimates for each of the input forces.  The most important feature of this method is that it provides an 

avenue by which one can find a stable ISF system when that produced by eq. (2) or (3) is unstable.  The 
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matrix [D] on which the ISF’s stability depends has been replaced with [Ddm], which one can modify by 

increasing p until a stable ISF is obtained. 

Unfortunately, no simple method has materialized by which one prove that the DMISF produces a 

more heavily damped and hence a more stable inverse system than the original ISF in every case, 

although this has been observed empirically.  For example, the DMISF as presented here has been found 

to give excellent results relative to other force identification algorithms, as demonstrated in Section 3.  

The authors demonstrated in [10] that one could place the poles of the ISF arbitrarily simply by 

modifying the output equation, so long as the number of outputs was greater than the number of system 

poles.  Unfortunately, this is often not the case.  One could also resort to nonlinear optimization to attempt 

to place the system poles (see the Appendix in [10]).  Compared to these other methods, the DMISF gives 

a simple yet effective avenue to explore when seeking a stable ISF for a particular system, since only the 

delay p need be modified to improve its stability. 

2.3. Sum of Weighted Accelerations (SWAT) 
The Sum of Weighted Accelerations Technique (SWAT) was presented by Carne et al [12], although 

the method had been developed previously by Gregory, Priddy and Smallwood [27, 28].  It has been 

successfully applied to a number of systems [11, 29, 30].  The technique is based upon the concept of a 

modal filter.  The rigid body mode shapes, along with the mode shapes of the elastic modes in the 

frequency band of interest are used to construct a spatial filter that removes the flexible modes from the 

response, leaving only the rigid body accelerations.  This spatial filter is simply a weighting matrix that 

isolates the rigid body accelerations in the response.  If the mass properties of the structure are known, the 

rigid body accelerations can be multiplied by the mass properties to obtain an estimate of the sum of the 

forces and moments acting at the body’s center of gravity.  In some cases the free, unforced response, 

which is a linear combination of the elastic mode shapes, can be used to generate an adequate spatial filter 

(i.e. the SWAT-TEEM algorithm [12, 30]), eliminating the need for modal parameter identification.  The 

primary limitation of the SWAT algorithm is that it requires that the number of sensors be at least as great 
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as the number of rigid body modes plus the number of elastic modes and that the sensors are well placed 

so that the filtering problem is well conditioned. 

It is also important to note that the SWAT algorithm determines the equivalent forces and moments 

that, if applied at the center of mass, would cause the same acceleration of the center of mass, and does 

not identify the spatial distribution of the applied forces directly.  One would expect that this feature 

might make the SWAT algorithm more robust than the alternatives when the locations of the applied 

forces are unknown, because it is likely to be easier to estimate the sum of the forces rather than the 

individual forces themselves.  If the location at which the force is applied is accurately known and the 

number of applied forces is less than or equal to the number of rigid body modes, this may be sufficient to 

determine the individual forces.  Genaro and Rade [2] presented an extension of SWAT that also uses the 

elastic modes to identify the forces, so it can identify the forces at individual response points provided 

that the number of modes in the frequency band of interest exceeds the number of forces desired. 

The SWAT algorithm is derived in [11, 12, 29] and explained in the context of the modal filter.  An 

alternate derivation will be summarized here.  We begin by approximating the measured acceleration as a 

sum of modal contributions as follows 

 { } [ ]{ }a η= Φ  (6) 

where {a} is an N0 x 1 vector of accelerations at the measurement points,  {η} is an N x 1 vector of 

modal displacements, [Φ] is an N0 x N matrix of mode shapes and No and N are the number of 

measurement points and modes respectively.  Let NRB denote the number of rigid body modes.  An No x 

NRB weighting matrix [W] is sought that, when multiplied with the measured accelerations, extracts an 

NRB x 1 vector of rigid body accelerations {aRB}. 

 { } [ ] { }T
RBa W a=  (7) 

If the rigid body mode vectors are mass normalized and assigned to the leading columns of [Φ], then 

equation (6) can be rewritten as 
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where the matrices represent the rigid body and elastic modes respectively and {ηe} is the vector of 

elastic modal coordinates corresponding to the modes in [Φe].  Combining equations (8) and (7) and with 

the requirement that [W]T nullify the elastic modes while extracting the rigid body accelerations yields 
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where ()+ denotes the pseudo-inverse.  One would expect to be able to find a solution that nullifies the 

elastic modes (or extracts the pure rigid body accelerations) whenever the NRB vectors comprising [W] 

can be extracted from the null space of the transpose of the elastic mode matrix [Φe]T.  This will always 

be possible whenever No ≥ N+NRB.  One should recall that equation (6) is an approximation because any 

continuous system has, in reality, an infinite number of modes. 

The rigid body accelerations are multiplied by the rigid body mass properties yielding the sum of the 

forces applied to the body.  The interested reader may refer to the derivations in [11, 12, 29], which 

emphasize the importance of sensor selection by describing the algorithm in the context of a modal filter. 

2.4. Frequency Domain Inverse Method 
By far the most common inverse method used is the frequency domain inverse method.  This is based 

on the following relationship between force and response. 

 ( ){ } ( ) ( ){ }
1 1o io iN NN N

Y H Fω ω ω
× ××

⎡ ⎤= ⎣ ⎦  (10) 

The use of frequency domain data usually implies that the responses have been measured over a 

sufficiently long time that they can be transferred to the frequency domain via a Discrete Fourier 

Transform. 
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Typically, the number of output or response locations exceeds the number of force or input locations, 

so the inverse problem is over-determined.  The forces are obtained by multiplying both sides of the 

equation by the pseudo-inverse of [H(ω)]. 

 ( ){ } ( ) ( ){ }
1 1i oi oN NN N

F H Yω ω ω
+

× ××

⎡ ⎤= ⎣ ⎦  (11) 

The primary difficulty in applying this method stems from the fact that the FRF matrix tends to be 

dominated by a rank-one component corresponding to a single mode near the natural frequencies of a 

system.  As a result, the inverse of the FRF matrix can be ill conditioned near the natural frequencies of 

the system, thus amplifying the effect of measurement errors [5].  Also, away from resonance the FRFs 

may be well conditioned but they may be dominated by noise since the signal away from resonance is 

often weak. 

The FRF matrix in eq. (10) could consist of measured data, or could be reconstructed from a modal 

model for the system.  The latter approach was used in the results that follow so that all methods are 

constructed from identical data, the modal model for the forward system. 

3. Experimental Results 
This section applies the force reconstruction algorithms to data acquired from a 183 cm long 

aluminum beam, which is suspended by soft bungee cords to simulate free-free boundary conditions.  The 

beam cross section was 2.5 cm high by 3.8 cm wide.  Seven pairs of accelerometers were mounted along 

the length of the beam, spaced 30.5 cm apart.   Each pair contained one accelerometer mounted in the 

vertical direction and one in the axial direction.  Figure 1 shows a schematic of the measurement setup.  

The accelerometers are represented by cylinders and the location at which the force was applied is shown 

with an arrow. 
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Aluminum Beam 183 x 3.8 x 2.5 cm (L x H x W)

f(t) (impact hammer)
 

Figure 1:  Schematic of system under test. 

An instrumented hammer was used to excite the beam and record the force imparted.  The measured 

force and response spectra were used to estimate the frequency response functions of the beam, which 

were processed using the Algorithm of Mode Isolation (AMI) [31-33].  AMI returned a set of modal 

parameters describing the dynamics of the beam from 0 Hz to 1500 Hz.  System identification was not 

attempted beyond 1500 Hz because the excitation was relatively weak and so the FRFs were noisy at 

higher frequencies. 

A separate set of data was also taken in which the beam was excited once with an instrumented 

hammer and the response recorded, sampled at 8192 Hz.  The force reconstruction algorithms were then 

applied to the response data, as described subsequently, and in each case the reconstructed force was 

compared to the force measured by the hammer. 

3.1. Forward System Identification 
The Algorithm of Mode Isolation (AMI) [34] was used to find the modal parameters for the beam.  A 

complex modal model was fit to the data in a previous work [10], yet it was later determined that the 

apparent complexity in the modes was due to small imperfections in the signal processing hardware and 

that a real mode model was indeed more appropriate.  As a result, the real parts of the modal residues 

returned by AMI were discarded in all of the following, resulting in a classically damped, real mode 

model for the system.  Figure 2a compares the measured drive point FRF with that reconstructed from the 

real mode model.  Figure 2b displays composites of the measured FRFs, AMI’s reconstruction, and a 

composite of the difference between the two.  (A composite FRF is defined as the average of the 

magnitude of all of the FRFs.)  A low-frequency residual term was used when curve fitting the FRFs in 

order to describe the rigid body dynamics of the system and improve the fit near the zeros of the FRFs.  
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The primary motivation for including this low-frequency residual term when fitting complex modes to the 

FRFs was to assure that the dynamic model used to generate the ISF system contained a representation of 

the dynamics of the rigid body modes.  This was accomplished by assigning the real part of the low 

frequency residual term a very low frequency eigenvalue and including it in the state space representation 

in eq. (16).   (If this term was omitted, the forces identified by the ISF contained spurious low-frequency 

components of very high amplitude.)  Note that the zeros of the measured and reconstructed FRFs agree 

very well at the drive point.  The same was observed in the FRFs at other points.  The composite of the 

reconstructed FRFs also agrees quite well with the measured FRFs, although the difference plot in Figure 

2b shows large spikes at the natural frequencies, indicating that the agreement is not perfect at the natural 

frequencies.   
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Figure 2:  a.) Measured Drive Point FRF H1,1(ω) vs. AMI Reconstruction – Real 
Modes.  b.) Composites of Measured FRFs, AMI’s Reconstruction and of the 

difference between the two – Real Modes. 

3.1.1. Discussion 
The discussion of the system identification procedure was presented here in order to highlight some of 

the details that had to be considered to get a modal model that would be suitable for force reconstruction.  

Attention was given assure that the zeros of the reconstructed FRFs agreed well with the measurements.  
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The steps taken here to arrive at a good real mode model improved the identified forces dramatically.  

The authors are not aware of any analogous operations that can be performed using Kammer and 

Steltzner’s technique, which identifies the ISF directly from the measured data.  In fact, the authors have 

observed that many system identification techniques typically give poor results at the zeros of the FRFs in 

order to more fully minimize their least squares objective function. 

Differences are observed at the resonant peaks in Figure 2 between the data and the reconstructed 

FRF.  These differences were much smaller when a complex modal model was used, as shown in [10], yet 

this was an artifact due to phase distortions in the measurement system.  The model with complex mode 

vectors did not agree well at the zeros of the FRFs, and when the complex mode model was used in the 

force reconstruction algorithms it yielded less accurate forces than those that will be presented here.  This 

is an advantage of the DMISF method presented here.  The method of Kammer and Steltzner does not 

allow one to force real modes on the system model, so the spurious complexity in the mode vectors must 

be retained. 

3.2. Inverse Structural Filter 

3.2.1. Kammer & Steltzner’s Impulse Response based ISF 
As discussed previously, Steltzner and Kammer [15] derived a convolution representation for the ISF 

system directly from the measured impulse response (i.e. from the Markov parameters) rather than using 

eq. (2).  This method was implemented using the inverse FFT of the measured frequency response 

functions as primary data.  Steltzner and Kammer suggested trying various non-causal leads to improve 

the performance of the ISF system.  Experimentation revealed that the best results were obtained using a 

non-causal lead of 5 samples with 50 terms in the convolution equation.  Figure 3 compares the force 

identified by this ISF to the measured force.  During the first 22 milliseconds the ISF force tracks the 

measured force very well.  The ISF estimate becomes highly oscillatory after the force pulse has ceased.   

Various filter lengths and non-causal leads were investigated, although none resulted in better agreement 

between the measured and reconstructed forces than that shown in Fig. 3. 
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Figure 3:  Input force at Node 1 estimated by ISF compared to measured force. 

 

3.2.2. DMISF Derived from Experimental Modal Model 
A delayed, multi-step ISF (DMISF) was also constructed from the identified state space model, as 

described in Section 2.1.3, and then applied to the measured response data for the beam.  Six delays (p=6 

in eq. (4)) were used.  This was the smallest p that was stable for the real mode model presented in 

Section 3.1.  The method presented in eq. (3) worked for the complex modes, as shown in [10], but 

yielded an unstable ISF when real modes were used.  Figure 4 compares the force returned by the DMISF 

with the measured force.  The inverse FFT of the force obtained by the frequency domain inverse method 

(FD) is also shown.  Both methods agree well with the measured force, yet both methods show some 

residual ringing after the force had ceased.  However, the residual ringing in the FD and DMISF forces is 

considerably less than for the impulse-response derived ISF in Figure 3. 
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Figure 4: DMISF Force, FD Inverse Method Force, and Measured Force in the 

time domain.  The Nyquist Frequency was 3200 Hz and no filtering was applied to 
the signals. 

3.3. Sum of Weighted Accelerations Technique (SWAT) 
The SWAT algorithm was also applied to the data from the beam.  The real mode vectors found in 

Section 3.1 were used in conjunction with analytically derived rigid body mode shapes in eq. (9) to find 

the SWAT weights.  There are a number of analyses that one can perform prior to applying SWAT to a 

set of response data in order to predict how it will perform.  First, the SWAT algorithm can be applied to 

the measured FRFs, which were used to identify the mode vectors of the system, resulting in what has 

been called SWAT FRFs [11, 12].  This is done by multiplying the SWAT weights in eq. (9) with the 

measured FRF matrix.  The measured FRFs represent the response due to a flat, unit force (or unit 

impulse force), so the SWAT FRFs thus obtained should be constant for all frequencies.  Visual 

inspection of the SWAT FRFs typically gives a good indication of the ability of SWAT to isolate the rigid 

body accelerations of the structure using the given sensor set. 
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Figure 5 shows the SWAT FRFs for the two dominant rigid body modes present in the data, rigid body 

translation in the vertical direction and rigid body rotation.  The SWAT FRFs are essentially flat up to 

about 600 Hz, and decrease slowly between 600 and 1200 Hz, deviating wildly above 1500 Hz.  The 

decreasing trend between 600 and 1200 Hz, which is reminiscent of the effect of an out of band mode,  

was even more severe in [10].  This effect was reduced in this work by fitting a residual flexibility to the 

measured FRFs and including it as if it were another mode vector when computing the SWAT weights.  

(The residual flexibility has the form UR*ω2 where UR is a constant, see [23] or [35].)  The SWAT FRFs 

clearly indicate that one will not obtain accurate results using this sensor set without first low pass 

filtering the response data to minimize the frequency content to below about 1200 Hz. 
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Figure 5:  FRF for SWAT degrees of freedom, rigid body translation and rigid 

body rotation (or pitch.) including an upper residual term when deriving the SWAT 
weights. 

This can be explained by examining the linear independence of the mode vectors that were used to 

derive the SWAT weights (on the measurement point set).  Figure 6 shows a plot of the Modal Assurance 

Criterion Matrix or MAC Matrix [36] between these modes.  (The MAC between two vectors gives an 

indication of their linear independence.   A value of zero indicates perfect independence, or vectors that 

are orthogonal in a Euclidean sense, while a value of one indicates that the vectors are multiples of each 

other.)  The off-diagonal MAC values (i.e. the MACs between the different mode vectors) are above 0.5 

for a number of the mode vector pairs, suggesting that a larger number of measurement points are needed 

to fully distinguish them from one another. 
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Figure 6:  Plot of MAC matrix between modes identified by AMI – Real Modes. 

The SWAT FRFs indicate that the modal filter that SWAT uses to determine the forces is only reliable 

out to about 1000 Hz for this sensor set.  However, the measurement set is sufficient to get good results 

with the ISF and FD algorithms over the entire 0 to 1500 Hz band of interest and quite reasonable results 

are even obtained using the entire measured band (0 to 3200 Hz).  From this point forward the response 

data used by all methods will be low pass filtered using a high order Butterworth filter with a cutoff 

frequency of 1000 Hz in order to limit the forces to a subset of the system identification band, since this is 

the procedure that one should adopt in practice. 

3.3.1. Discussion 
It is interesting to note that the frequency at which the SWAT FRFs begin to deviate significantly from 

unity, 600 Hz, happens to be just above the natural frequency of the 5th elastic mode (500 Hz).  Most of 

the motion for this structure was in the vertical direction.  With seven accelerometers in this direction and 

two rigid body modes, one would expect to be able to eliminate only five elastic modes.  The off diagonal 

terms involving the sixth and higher modes suggest that the seven axial accelerometers do not provide 

sufficient additional information to distinguish the sixth and higher modes from the first five.  This seems 

to confirm the rule of thumb that states that one should have at least one measurement point per mode in 

the frequency band of interest to get accurate results with SWAT.  The previous discussions have also 

highlighted the great utility of the SWAT FRFs both in providing an a priori indication of the expected 

accuracy of the identified forces and as a diagnostic tool. 
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3.4. Comparison of All Methods and Discussion of Results 
Figure 7 compares the force time histories identified by all of the methods.  All have been filtered with 

a cutoff frequency of 1000 Hz to limit the data to a fraction of the frequency band in which system 

identification was performed.  The algorithms all show about the same level of residual ringing after the 

true force has ceased.  The inset shows an expanded view of the force at early times.  The SWAT 

algorithm underestimates the force by about 15% while the FD method overestimates it by about 20%.  

The DMISF computed force overlays the measured force.  The impulse response based ISF [6, 14, 15]was 

shown in Figure 3, yet is not repeated here because it showed excessive ringing after the force pulse had 

ceased.  As noted in Section 2.1 and 2.2, an ISF could have also been created using eq. (2), yet this 

resulted in an ISF with 17 poles outside of the unit circle, and hence gave unbounded forces, even when 

the non-causal approach in eq. (3) was used, so this approach will not be presented here. 
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Figure 7:  Comparison of time domain forces identified by all methods, all 

filtered with a cutoff frequency of 1000 Hz. 

Figure 8 compares the force spectra identified by each of the methods discussed in this paper.  

Markers are also displayed indicating the natural frequencies of the forward system (crosses) and the ISF 

system (circles).  Both the ISF and FD forces show spikes at many of the natural frequencies of the 
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forward system.  The ISF force also shows large, narrow band deviations from the measured force at 

many of its poles.  The largest of these deviations occur at 460 and 660 Hz.  These frequencies 

correspond to those of the two poles of the ISF system that were unstable for smaller delays (p < 6) and 

for the method in Section 2.1.  The spectrum identified by SWAT is the smoothest and is quite accurate 

below 500 Hz yet it deviates from the measured spectrum a fair amount above 500 Hz, underestimating 

the force by 75% at 900 Hz.  It was noted previously that the number of accelerometers used is suspected 

to be insufficient to obtain optimal results with SWAT above about 600 Hz.  A higher cutoff frequency 

was used in Figures 8 and 7 in order to facilitate comparison with the other methods and to demonstrate 

the magnitude of the error incurred by extending the frequency range of the SWAT algorithm slightly 

beyond the flat region of the SWAT FRFs.  The DMISF and FD methods track the force spectrum more 

closely above 500 Hz, yet they also show a number of spurious peaks. 
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Figure 8:  Comparison of force spectra identified by all methods. 

3.5. Sensitivity to Errors in Identified Model 
The sensitivity of all of the methods was studied using Monte Carlo simulation.  The modal natural 

frequencies, damping ratios and residues identified were each perturbed by independent, uniform random 

numbers to span ±0.5%, ±5% and ±5% respectively of their identified values.  These values are meant to 
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be typical of error bounds encountered in modal parameter identification [36, 37].  The forces acting on 

the beam were then computed using the DMISF, SWAT and FD methods using the perturbed modal 

parameters.  This was repeated for thirty different sets of random perturbations.  The range spanned by 

the identified forces as a function of time and frequency was then stored. 

Figure 9 shows the range of forces identified as a function of time for each of the methods.  Each color 

band represents the maximum and minimum force observed at each particular time for the ensemble of 

thirty responses.  Nine delays were used in the Monte Carlo simulation (p=9) because it was found that 

the DMISF with p=6 was sometimes unstable for some of the trials (i.e. for some combinations of the 

perturbed modal parameters).  The responses used as input data in this study were filtered with a cutoff 

frequency of 1000 Hz in order to limit the contribution of the response above the frequency band that was 

used in system identification.  Once again, each algorithm showed about the same level of residual 

ringing, so only the early time results are presented.  The Monte Carlo simulation shows that the time 

response estimated by the DMISF algorithm is no more sensitive to errors in the forward system model 

than that estimated by the FD or SWAT algorithms; all methods show about the same level of scatter as a 

function of time. 
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  Figure 9:  Range of forces found versus time for DMISF, Frequency Domain Inverse method and 

SWAT with errors in the forward system parameters. 
Interestingly, the FD and SWAT estimates do not encompass the measured force for the assumed 

uncertainty model.  This suggests either that the error model for the forward system is innacurate, or that 

the methods yield a significant bias in the presence of random errors.   On the other hand, the range of the 

DMISF forces includes the measured force over this time window, although the measured force is near 

the edge of the range during the force pulse. 

Figure 10 shows the range of the force amplitude spectra of the forces in Fig. 9.  Lines are shown 

representing the maximum and minimum forces identified by the DMISF, SWAT and FD methods.  The 

measured force is shown in each pane to aid in the comparison.  The SWAT algorithm shows somewhat 

more variability at high frequencies and the mean of the SWAT forces underestimates the true force 

spectrum significantly at higher frequencies.  The Frequency domain inverse method and the DMISF 

show similar levels of uncertainty, with the largest uncertainties at the structure’s natural frequencies.   

The DMISF algorithm also exhibits relatively large uncertainty at its poles (denoted by circles in Fig. 10). 



Pre-publication manuscript accepted by Mechanical Systems and Signal Processing, January 2008. 

 23

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
1

10
2

10
3

Fo
rc

e

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
1

10
2

10
3

Fo
rc

e

 

 

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
1

10
2

10
3

Frequency (Hz)

Fo
rc

e

Meas.

DMISF

SWAT
FD Inv

ISF pole

Forward f
n

 
 Figure 10:  Range of forces found versus frequency for DMISF (top), SWAT 

(middle) and Frequency Domain Inverse method (bottom). 

3.5.1. Discussion 
It is interesting to note that all of the methods are sensitive at the natural frequencies of the forward 

system.  While this is easily explained for the FD method based on the rank of the FRF matrix at 

resonance [5], it is perhaps surprising that the same is true for the ISF and SWAT methods, which are 

computed in a totally different way.  Yet the results show that all three methods have about the same level 

of scatter at the forward system natural frequencies.  This seems to indicate a conservation of difficulty 

for the inverse problem, regardless of the way in which it is computed.  On the other hand, the time 
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domain force pulse was computed most accurately with the DMISF method, where the other two methods 

seemed to exhibit bias errors due to errors in the forward system parameters. 

One drawback to the DMISF method, is that it also shows high sensitivity at its pole frequencies.  This 

sensitivity was even more severe when the number of delays used (p in eq. (4)) was less than nine.  In 

practice, the maximum number of delays used will be limited by available computing power.  Fortunately, 

there are other avenues that can be explored [10] to better place the poles of the ISF to limit its sensitivity. 

There are also implementation issues that one must consider.  For example, only the SWAT and 

DMISF algorithms are capable of estimating the forces in the time domain.  One should also note that the 

SWAT algorithm is much more computationally efficient than any of the other methods. 

4. Conclusions 
This work presented an enhancement to the Inverse Structural Filter (ISF) dubbed the Delayed, Multi-

step ISF (DMISF).  The performance of the DMISF was demonstrated using laboratory test data for a 

simple free beam.  The forces identified by the DMISF were compared with those identified by the Sum 

of Weighted Accelerations Technique (SWAT) and by the classical Frequency Domain (FD) inverse 

method.  The FD method was included as a reference because it is widely used and many researchers are 

familiar with it.  In the applications of interest real time estimates of the forces are needed, so one would 

have to choose between the time domain algorithms (SWAT, ISF and DMISF).  The ISF of Kammer and 

Steltzner was shown to accurately predict the force impulse applied to the structure, yet the forces that it 

predicted contained a spurious, large amplitude ringing after the force impulse had ceased.  Both the 

DMISF and the FD method more accurately predicted the force impulse with significantly less residual 

ringing.  For the DMISF, the residual ringing was found to be a function of the damping in the poles of 

the DMISF system.  The damping in these poles increased as the number of delays used in the filter was 

increased; the poles were unstable for small p, becoming stable for p > 8, and increasingly heavily 

damped for even larger p.  This ability to modify the stability of the filter is a key advantage of the 
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DMISF.  No such recourse exists for the standard ISF when a forward system model is used as initial 

data. 

One key advantage of the DMISF over the ISF stems from the way it is computed.  The original ISF 

presented by Kammer and Steltzner was derived directly from the measured impulse response, whereas 

this new DMISF was derived from a state space model of the forward dynamic system.  For the problem 

presented here, the forward dynamic system model was identified using the Algorithm of Mode Isolation, 

yet one is free to use any of a number of well developed system identification algorithms.  The discussion 

of the identification process that was performed demonstrated the care that must be taken to obtain an 

adequate forward system model.  This is far more likely to be achieved if one is free to use the tools or 

software packages that one is familiar with.  The original ISF did not provide this latitude. 

The sensitivity of the DMISF, SWAT and FD algorithms to errors in the forward system model was 

also investigated for the system of interest using a Monte Carlo Simulation (MCS).  All of the methods 

exhibited relatively little scatter over the duration of the force impulse, with the DMISF being the most 

accurate on average and the FD and SWAT methods over and under predicting the magnitude of the 

impulse.  A comparison of the force spectra revealed high scatter in the estimated forces at the natural 

frequencies of the forward system for all of the methods.   This seems to be a general limitation of this 

type of analysis.  Fortunately, the spectrum of a force that is of short duration will be smooth at 

frequencies that are much lower than the inverse of the force’s duration.  When this is the case the errors 

near the structure’s natural frequencies are more of a nuisance than a real problem because they can be 

ignored or corrected by smoothing or windowing.  On the other hand, a force spectrum that has 

significant narrowband components could be quite difficult to accurately identify using these methods. 

It is often emphasized that the inverse problem is highly sensitive to errors in the parametric model for 

a structure, and thus implied that one should abandon any hopes of obtaining reasonable results.  This 

work has demonstrated that it is more accurate to say that the inverse problem is sensitive to errors in 

quantities that are not important for some other applications.  Many applications of experimental modal 

analysis, such as FEA model validation, may be able to tolerate relatively large errors in the natural 
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frequencies and mode shapes of the system under test, leading to much less stringent system identification 

requirements.  On the other hand, the ISF and FD methods were found to be sensitive to the zeros of the 

forward system and there were nuisance issues associated with the effects of modes below the frequency 

band of interest, so attention had to be given to these issues.  Control system design and admittance 

modeling are two more examples of applications that can also be sensitive to errors in the zeros of a 

system.  These applications are certainly more difficult, yet one should not give up hope.  More than 

adequate results can be obtained in many cases, especially if the limitations and sensitivities of the 

methods are understood and accounted for. 

5. Appendix 

5.1. ISF from Modal Parameters 
One common approach for identifying a forward model for a linear time invariant system is to fit 

measured Frequency Response Functions (FRFs) H(ω) to a state-space modal model according to the 

following standard definition [38, 39] 
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where ()* denotes the complex conjugate, ω denotes the frequency, and λr is the modal eigenvalue of 

the rth mode of vibration.  The eigenvalue is related to the modal natural frequency ωr and modal 

damping ratio ζr by λr=-ζrωr+ωr(1-ζr
2)1/2.  The residue matrices [A]r are defined in terms of the 

displacement portion of the state space mode vector {ψ}r. The elements of the mode vector corresponding 

to the Ni drive locations {ψdrive}r and the No response locations {ψresp}r are used to define the residue 

matrix as follows (using the normalization described by Ginsberg [40]). 

 [ ] T
rdriverresprrA }{}{ ψψλ=  (13) 

If the forces are applied at a subset of the response locations, then the mode vector can be expressed as 
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where [Fin] is typically a No x Ni matrix of ones and zeros that selects the subset of the response 

locations at which forces are applied. 

 The experimentally derived modal model can be related to a state space model as in eq. (1) in a 

number of ways.  For example, one can use the Laplace domain representation of eq. (12) to show that the 

following continuous-time state space system generates the Frequency response function in eq. (12). 
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 (15) 

In the preceding equation, [Λ] is a diagonal matrix containing the eigenvalues in ascending order and 

the columns of [Ψ] contain the mode vectors {ψ}r in the same order as the eigenvalues.  The subscript ‘c’ 

denotes that these are the state space matrices for the continuous time representation, in contrast to the 

discrete time matrices in eq. (1). 

Before proceeding to the discrete time representation, we note that acceleration is most commonly 

measured, although eq. (15) relates displacement to the input force.  One can modify the representation in 

eq. (15) to arrive at a state space representation for acceleration measurements by taking two derivatives 

of the output equation and substituting the derivative of the state equation.  The following state space 

representation results. 
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The new state vector is the derivative of the state vector in eq. (15).  The input vector in eq. (16) is the 

derivative of the applied forces.  Once inverted, the system in eq. (16) will estimate the derivative of the 

input forces from the acceleration measurements.  These estimates must then be integrated numerically to 

obtain the input forces.  It is generally accepted that numerical integration is less sensitive to errors than 

differentiation, although difficulties might occur as discussed in [41].  When performing this integration, 

the initial force must be known.  (It is typically taken to be zero.) 

A discrete time dual to the system representation in eq. (16) must be obtained in order to generate a 

discrete time inverse structural filter using eq. (2).  The following discrete time representation will exactly 

reproduce the output of the continuous time system at the sample instants, if the input is constant between 

samples (zero-order-hold (ZOH) approximation) [26]. 
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Note that because [Ac] is generally diagonal (if the system is not defective), the matrix exponential of 

[Ac] is a diagonal matrix with the discrete time eigenvalues zr=exp(λrTs) along its diagonal. 
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