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Abstract

The Algorithm of Mode Isolation (AMI) employs a strategy in which modes are sequentially identified and
subtracted from a set of FRFs. Their natural frequencies, damping ratios and mode vectors are then refined
through an iterative procedure. This contrasts conventional multi-degree-of-freedom (MDOF) identification
algorithms, most of which attempt to identify all of the modes of a system simultaneously. A mulit-input-
multi-output (MIMO) implementation of AMI was presented in a companion paper, and validated using noise-
contaminated analytical data. This paper presents the application of MIMO-AMI to experimentally obtained
data from MIMO, shaker excited tests of the Z24 highway bridge, demonstrating the algorithm’s performance
on a data set typical of many EMA applications. Considerations for determining the number of modes active
in the frequency band of interest are addressed, and the results obtained are compared to those found by other

researchers.
Nomenclature
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Ar rth eigenvalue N, Number of outputs

Wy rth natural frequency N; Number of inputs

¢, rth modal damping ratio @ Peak selection parameter

1 Introduction

In the early days of experimental modal analysis (EMA), modal parameter estimation was typically performed using
single-degree-of-freedom (SDOF) methods, such as peak-picking or circle-fitting. SDOF methods gave fairly accurate
results, provided that the data was not too noisy and the natural frequencies of the system under test were well
separated. However, when modes with close natural frequencies were encountered the methods became inaccurate
or failed. As a result, the modal analysis community began to seek simultaneous, multi-degree of freedom (MDOF)
approaches. Most MDOF algorithms ignore the frequency-domain decoupling of modes upon which legacy SDOF
algorithms depended. Processing all data simultaneously using the MDOF approach often requires the use of high
order polynomials, introducing numerical ill-conditioning, as well as increasing the computational effort. In most
cases non-physical or computational modes are identified together with the true modes of the system. In order to
obtain meaningful results a user must first distinguish the true or physical modes from the spurious ones. This is
typically done with the aid of a stabilization diagram, which requires applying the MDOF algorithm at a number
of model orders and then searching for those modes that are consistently identified from one model order to the
next. Once stable modes are identified, one must also decide which model order yields the most accurate estimates
of their modal parameters. This is especially important in condition monitoring or other applications that require
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highly accurate estimates of the modal parameters. Furthermore, computationally efficient practices for creating a
stabilization diagram can mask inaccuracies in the modal parameters, as shown in [1].

The hybrid, MIMO Algorithm of Mode Isolation (AMI) [2] blends the SDOF and MDOF approaches to provide
an alternative to conventional SDOF or MDOF methods. In a companion paper [2], MIMO-AMI was presented
and tested on noise contaminated analytical data from two vibratory systems. MIMO-AMI is an MDOF method,
in that it accounts for the overlap of all modal contributions, but it identifies a system using SDOF or low order
MDOF parameter fitting, exploiting the uncoupling of modal contributions in the frequency domain. MIMO-AMI
works by considering each peak in a composite FRF of the MIMO data set in order of dominance, applying either an
SDOF fit if a single mode is present, or an MDOF fit if multiple close modes are indicated. In accord with the basic
AMI concept, the identified mode(s) are subtracted from the data as they are identified and the procedure continues
until the data is reduced to noise. The modes are then isolated in a second stage to account for overlapping modal
contributions. This is done by subtracting contributions of all of the modes of the system except for one (or one
group of modes associated with a single peak) from the FRF. This leaves only the contribution of either a single
mode or a small group of heavily coupled modes, which are re-fit using data around the FRF peak in focus, in order
to obtain more accurate estimates of their modal parameters. These updated modal parameters are stored, and the
algorithm proceeds through all groups of modes until convergence criteria on the natural frequencies, damping ratios
and residues is met.

This simple approach is numerically efficient, so many input and output sensors can be processed simultaneously.
Comparisons of AMI with other simultaneous MDOF algorithms [1], [2], [3], [4], such as the data-driven stochastic
subspace algorithm (SSI), the poly-reference Least Squares Complex Frequency Domain (pLSCF) algorithm and
the Rational Fraction Polynomial algorithm (RFP or Orthogonal Polynomial algorithm OP,) applied to noise-
contaminated data have shown that AMI performs favorably. Because AMI is based on a pole-residue representation
of the transfer function, there is no theoretical upper limit to the number of modes that can exist in the data set
being processed. On the other hand, many frequency domain algorithms are based on a rational polynomial model
that is ill conditioned at high model order.

The present work demonstrates the application of the MIMO-AMI algorithm to experimentally derived data,
specifically, the data obtained in shaker tests of the Z24 highway bridge in Switzerland. A large quantity of
data was taken from this bridge as part of a proof of concept test investigating the feasibility of condition monitoring
of civil structures. Data from one of these tests was supplied to various researchers, most of which presented their
results at the 19th IMAC conference (1999) [5], [6], [7] and [8]. The following section presents a brief description of
MIMO-AMI. In Section 3 the algorithm is applied to FRFs created from the Z24 bridge vibration data. Section 4
offers some conclusions.

2 Hybrid, MIMO Implementation of AMI

The primary concepts of MIMO-AMI will be described here. A more detailed description can be found in [2],
wherein the application of the algorithm to analytical test problems was also presented. AMI finds a pole-residue
model of the FRF matrix [H (w)] described by

H @)y, = zNj(.[AT] " V‘ﬂ*) 1)

Ww—Ar  w— AL

r=1

[AT'} = {11[}1”} LLP1,7’ LPNi,T'J (2)

where w is the frequency, and A, and [A,] are respectively the eigenvalue and residue matrix of the state-space
pole-residue model. The eigenvalue is related to the “undamped” natural frequency w, and damping ratio ¢, by:

Ar = —(wy £ iw, (1 — 43)1/2 The complex residue matrices returned by AMI have dimensions N, x N;, where
N, and Nj respectively denote the number of outputs (or measurement points) and the number of inputs (or drive
points.) The residue matrices identified by AMI are rank-one, so they can be decomposed into a mode shape {t,.}
and modal participation factors LL P L Py, ,TJ as shown in eq. (2), where P ... Py, denote the indices of the input
or drive points.

A composite FRF, defined as the average of the magnitude of all N,N; FRFs, is used for monitoring of the AMI
algorithm and display of the data. AMI begins by considering the highest peak in the composite FRF. A user-set
parameter selects which data around each peak should be used for parameter identification [2]. This peak data
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is processed by a common-denominator, SDOF algorithm which returns the eigenvalue and residue matrix for the
mode identified. Use of a common-denominator algorithm results in the identification of a residue matrix which can
have a rank greater than one, but no larger than min (N;, N,,). This residue matrix is decomposed via singular value
decomposition, revealing the rank of the matrix as the number of singular values of magnitude comparable to the
first. The relative magnitude of each singular value is described numerically by its singular value ratio SRy, defined
as

SRy, = Si/S1 (3)

where Sj denotes the kth singular value of the residue matrix. When SR, < 1 for £ > 1, indicating that a
single mode is present, the residue matrix returned by the common denominator algorithm is reduced to rank one
by retaining only the part of the SVD which corresponds to the first singular value. The measured FRF is then
compared to an FRF model for the mode, constructed using this rank-one residue and the identified eigenvalue in
eq. (1). If the agreement is deemed acceptable, the mode is retained and its FRF model is subtracted from the FRF
data forming a set of “subtraction residual” FRF data. The mode subtraction procedure is repeated on the resulting
subtraction residual until a composite FRF of the subtraction residual shows no evidence of additional modes, at
which point the algorithm proceeds to the isolation stage, described subsequently.

When the peak data contains the response of more than one mode, the number of singular value ratios SR near one
reveals the number of modes active at the peak. An MDOF fit of the indicated model order is then performed using
a MIMO-MDOF algorithm, which returns the eigenvalues and rank-one residue matrices of the identified modes.
(The algorithm used for these MDOF fits is the Frequency-Domain Subspace Algorithm described in [9].) The
modal parameters identified by the MIMO-MDOF algorithm are used to create an FRF model for these modes only,
which is compared to the residual FRF data. The modal parameters found at the peak in focus are stored and
their contributions to the FRFs, found using eq. (1), are subtracted from the residual FRF data, bringing the next
highest peak in the composite FRF into dominance. If inadequate agreement is obtained using both SDOF and
MDOF methods, the estimated modal parameters are discarded and the subtraction phase either ceases or proceeds
to a different peak in the composite FRF.

Two difficulties can arise during this subtraction process. First, the composite FRF of the subtraction residual
might show a peak in the frequency interval of a previously identified mode. (Due, for example, to systematic errors
in the data, inaccuracy of the modal parameters, or narrow-band noise.) As modes are removed from the data set,
this peak may come into dominance again, so that one might erroneously identify additional modes in this frequency
band. To avoid this scenario the data within the frequency interval fit by AMI is not included in subsequent searches
for additional modes. One can verify that the appropriate number of modes has been identified at each peak after
the mode isolation phase, as described subsequently. The second difficulty that can arise is a situation in which all
of the singular value ratios SRy are significant. In this case one does not definitively know the number of modes
present at the peak under consideration. The only recourse is to try fitting an increasing number of modes comparing
the residual FRF data with reconstructed FRFs for the identified modes at each model order, and then choose the
lowest order that results in adequate agreement. This will be demonstrated when processing the Z24 data in the
following section.

The steps described in the preceding use a composite FRF to select frequency intervals to be searched for modes.
Composite FRFs also are used to compare the subtraction residual FRFs to the FRFs reconstructed from the
parameters of the mode(s) under consideration. The use of composite FRFs expedites the assessment because
visually examining plots of each individual FRF would be quite tedious. Two types of composites are examined.
The magnitude composite, defined previously, is a standard way of displaying FRF data, and provides the first
means for comparison. It is also helpful to have a comparison that includes the phase of the responses, such as a
Nyquist plot. In [2] the authors proposed a definition for a composite Nyquist FRF, in which the actual FRF data is
condensed using the residue matrix [(As¢),] of the mode under consideration. The condensed FRF data or “Nyquist
composite FRF” (H.y,), (w) is constructed according to

(Hen), (@) = tr (1(450),]" = [X (@)]) (4)

where ¢r () is the trace operator and [X (w)] is the FRF data being condensed. Clearly the Nyquist composite FRF
is dependent on the residue matrix used in forming it, and hence is only truly meaningful for a single mode. When
multiple modes are identified at a single peak, a composite Nyquist FRF is created for each individual mode. The
motive is to evaluate how well the FRF's reconstructed using the parameters of each mode match the measured FRF's.
Towards this end, an identified or “fit” FRF model is constructed for each mode using the associated term in eq. (1)
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and condensed using eq. (4) resulting in a “fit” Nyquist composite FRF. This is compared to a Nyquist composite
FRF of the isolation residual [(Hiso1 (w)),] for the same mode, defined as follows

[(Hisol (W))s] = [Humeas (w)] — Z ( — + = ) ?

w— A tw— A\

vs
where s is the index of the mode being isolated and [Hyeas (w)] is the measured set of FRFs. The summation extends
over all modes identified. Examples of the comparison between the Nyquist composite of the “fit” FRF and the
isolation residual may be seen by considering the figures discussed later, which describe the processing of the Z24
FRF data. For example, the righthand pane in Figure 3 shows Nyquist Composite FRF's of the reconstructed FRF's
(dash-dot) and isolation residual (lines) for each of the two modes identified at the peak under consideration. These
comparisons are valuable in determining the number of modes contributing at each peak and in deciding when to
terminate the subtraction phase, as discussed in the next section.

The modal parameters identified in the subtraction phase do not account for the presence of other modes.
Overlapping modal contributions are accounted for by successively isolating each mode or group of modes, and
then re-fitting them in the mode isolation stage. The process begins with the dominant peak in the composite FRF.
The contributions to each FRF of all modes except for those identified at this peak are subtracted from the original
FRF data, forming an isolation residual. This is similar to the isolation residual in eq. (5), although in this case
the summation excludes all modes identified at the peak under consideration. This residual then predominantly
contains the contributions of the modes in focus. Processing it with the same parameter identification scheme used
in the subtraction phase yields better estimates of the mode or modes in focus. Specifically, if the isolation residual
contains the contribution of a single mode, the common-denominator SDOF algorithm is used and the resulting
residue is reduced to rank-one using the SVD as described previously. When multiple modes are present, the
MIMO-MDOF algorithm is used. A cycle through all groups of modes constitutes one iteration. Mode isolation
stops when convergence criteria for the eigenvalues and residues have been met.

3 Application to Z24 Bridge Data:

Vibration data from the Z24 bridge in Switzerland shall be used to evaluate the performance of MIMO-AMI. This
data is available for download from the Katholieke Universiteit Leuven web-site [14]. A number of researchers
analyzed the data and presented their results at the 19th International Modal Analysis Conference, see [5], [6], [7],
[10] and [11]. In his thesis [8], Peeters presents a detailed description of the bridge and data sets, as well as a good
bibliography of other published results regarding the Z24 bridge. The Z24 bridge was excited by two shakers, one at
the mid-span of the bridge and another at a side-span. Because of the size of the bridge, the response was measured
in nine setups of up to 15 sensors each, with three response sensors and the two force sensors common to all setups.
In each setup, 65,536 samples were collected for each channel with a sampling frequency of 100 Hz. The shakers
were driven with uncorrellated random noise, band-limited to 3-30 Hz.

The time histories of the force inputs and acceleration responses for each setup were provided by researchers from
KU Leuven. It was necessary to process these time histories in order to estimate MIMO FRFs for the bridge, which
could then be processed by AMI. Towards this end, the H; estimator was applied to time histories [12] [13]. The
data for each setup was divided into 20 blocks of length 4096 samples to which a Hanning window was applied. This
resulted in an estimate of the cross spectrum matrix (between the response channels included in the setup and the
two force channels) and the auto spectrum matrix (for the force channels), each at 2049 frequency lines. The number
of averages used resulted in each record overlapping the previous by approximately 21%. Conforming to standard
practice, the H1 estimate of the FRF was then found by post multiplying the cross spectrum matrix with the inverse
of the auto spectrum matrix at each frequency line. The same procedure, as well as the windowing and averaging
parameters, were used by Schwarz and Richardson [7]. Because three sensors were common to all measurement
setups, nine estimates of the FRF's for these sensors were available. These were averaged resulting in an FRF data
set with 75 total outputs and two inputs that was processed globally by AMI.

3.1 Subtraction Phase

Figure 1 describes the first subtraction step for the Hybrid MIMO-AMI algorithm. The pane on the left shows the
composite magnitude FRF of the Z24 data and a composite magnitude FRF of the fit to the mode found by the
SDOF, common-denominator algorithm in the first subtraction step. The frequency points around the peak selected
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for the fit using the criteria described in [2] are marked with circles (red). A zoom view is also included in the
lower-right corner of the pane highlighting the peak data. The pane on the right displays composite Nyquist FRFs
of the data and SDOF fit, both of which were created using the rank-one residue matrix, found by SVD processing
the residue matrix returned by the SDOF algorithm.

Figure 1 shows imperfect agreement between the FRF data and the fit, suggesting that a higher order fit might be
warranted. However, the second singular value ratio of the residue matrix returned by the common-denominator
algorithm corresponds to SRs = 0.0058. This suggests that a second mode is not present at this peak, so an MDOF
fit is not warranted. Experience has shown that it usually is good practice to proceed to identify modes in other
frequency intervals when one encounters an uncertain situation such as this. In many cases the discrepancies between
the data and the reconstructed FRF are reduced or eliminated after mode isolation. If the discrepancies persist,
one can return to the uncertain frequency interval and search for additional modes after mode isolation. For these
reasons, a single mode was accepted and subtracted from the FRF data in this step. After removing the fit mode, the
data within the frequency band used for finding this mode’s parameters was disregarded in all subsequent subtraction
steps (assigned a value of zero) to avoid returning to this location until completion of the mode subtraction phase.
Note that the disregarded data is not plotted in Figures 2 through 8. After mode isolation, a search for additional
modes using the full data set was performed, as described subsequently.

After the single mode found in the first step was removed, the highest peak in the composite magnitude FRF was
near 10 Hz. The peak data and resulting SDOF, common-denominator fit are shown in Figure 2. Visual inspection
of the composite magnitude plot clearly indicates the presence of at least two modes in this frequency band, which
is confirmed by the second singular value ratio being SRy = 0.51. The result of attempting a two-DOF fit using the
MDOF, frequency domain, SSI algorithm is illustrated in Figure 3. In analogy to Figures 1 and 2, the pane on the
left shows composite magnitude FRFs of the residual data and the FRF reconstructed using both modes returned
by the MDOF algorithm. On the right, two composite Nyquist plots are shown describing the quality of fit of each
of the two modes identified in this step. The two modes identified in this peak data set were sorted by ascending
natural frequency and have been designated mode 1 and mode 2 in this figure. The mode numbering in each of
these figures refers solely to the modes associated with that particular subtraction step. A Nyquist composite of
the residual FRF data is compared to a Nyquist composite of the FRF reconstructed for each mode, where the
composite for each modal comparison is obtained using the rank-one residue matrix for that mode. Note that the
Nyquist composite of the fit FRF and the isolation residual for the second mode where both multiplied by —1 prior
to plotting in order to distinguish them visually from those for the first mode. When multiple modes were identified
in any of the subsequent subtraction steps, the Nyquist composites for even numbered modes were multiplied by
—1 for plotting purposes only. Both the magnitude composite and Nyquist composite plots in Figure 3 show good
overall agreement between the data and the fit modes. However, the presence of an additional mode is suggested
by the poor agreement between the two peaks in the magnitude composite plot and the irregularity of the Nyquist
composite for mode 2. Only two drive points were used in collecting the FRF data, so a third singular value ratio is
not available to use as an aide in determining the mode multiplicity in this frequency band. The recourse is to either
disregard the differences between the data and fit, or try a three-DOF fit. The result of attempting a three-DOF
fit in the frequency band is shown in Figure 4. Modes 1 and 2 fit the residual FRF more poorly than in Figure 3.
The third identified mode has a very small damping ratio and residue matrix, and does not contribute noticeably to
the composite magnitude FRF. Also, this mode is not visible in the composite Nyquist plot in Figure 4 because the
norm of its residue matrix is much smaller than those for modes 1 and 2, though a zoom view reveals poor agreement
with the data. For these reasons, the results of attempting to fit three modes to the peak were disregarded, and the
two modes found using a 2-DOF fit were retained and subtracted from the data.

The third subtraction step focused on the double peak near 18 Hz. As was the case in the previous step, it was
clear that at least two modes were present at this peak. The SDOF fit, for which the second singular value ratio
is SRy = 0.52, is shown in Figure 5. A 2-DOF fit was attempted as shown in Figure 6. Composite Nyquist plots
for the two resulting modes agree fairly well with the data, althought the composite magnitude FRF shows that the
second mode underestimates the data uniformly. This suggests that the second peak might be due to more than one
mode. Furthermore, subtracting the fit 2-DOF FRF from the FRF data shows a residual of considerable magnitude
in this region (not shown). For these reasons, three modes were fit to the peak data as shown in Figure 7. Two
modes were identified near 19 Hz, both showing good agreement between the Nyquist composite of the data and
their reconstructed FRFs. The composite magnitude FRF of the reconstruction using these three modes also shows
good agreement with the data, so a higher order fit is not warranted.



The remaining peaks were processed using logic similar to that described for the first three subtraction steps. In
steps four and five, two modes were identified at each of the peaks near 12 and 25 Hz, indicated by singular value
ratios of SRy = 0.085 and 0.31 respectively. Despite the relatively small singular value ratio for the pair of modes
near 12 Hz, visual inspection of the composite plots provided motivation for searching for an additional mode at this
location. The sixth subtraction step is shown in Figure 8, in which an SDOF fit to the data near 5 Hz resulted in
a good fit with a singular value ratio SRy = 0.030. Consequently, this mode was accepted and subtracted from the
FRF data, resulting in a total of eleven modes identified. The composite magnitude FRF of the residual, formed
by subtracting the contributions of these eleven modes, exhibited no peaks other than those to which previously
identified modes have been fit, so the subtraction phase ended with eleven identified modes.

3.2 Isolation Phase

Mode isolation halted after four iterations, at which point the maximum change in any eigenvalue or any element of
the residue matrices was less than 0.001%. The composite residual FRF, formed by subtracting the contributions
of all identified modes, is shown in Figure 9. The maximum amplitude of the composite of the residual is almost
an order of magnitude less than the composite of the original data. Small peaks remain in the vicinity of 4, 5, 10,
and 18 Hz, each corresponding to a frequency region already processed by AMI. In general, data remaining above
the noise floor in the vicinity of a previously identified modes suggests the presence of either additional modes in
the frequency band or systematic errors in the data. In order to verify that no more modes could be extracted in
each of these frequency bands, each was searched for additional modes by restoring the contributions of the modes
previously identified in the band and then augmenting the order of the fit. An example of this is shown in Figure 10
where four modes are fit to the peak near 18 Hz, at which three modes had been previously identified. The fourth
identified mode contributes negligibly to the response, suggesting that only three modes are active in this frequency
band. These three modes were retained, and the other peaks were then searched for more modes.  Attempting
a 2-DOF fit at the peak near 4 Hz even though the singular value ratio was small resulted in no better agreement
than that shown in Figure 1, so the single mode identified in this region was retained. No additional modes were
identifiable at any of the remaining peaks, so the identification process terminated with eleven modes identified.

Figure 11 shows composite Nyquist FRFs for modes 7-9 after mode isolation. Composite Nyquist plots for these
modes before mode isolation were shown in the right pane of Figure 7. Comparison of Figures 11 and 7 illustrates
the improvement in the agreement obtained as a result of mode isolation. The agreement in Figure 11 was typical
of all of the identified modes except mode 11. Mode 11 was identified concurrently with mode 10 in the frequency
band near 25 Hz. Figure 12 shows composite Nyquist plots for modes 10 and 11 after mode isolation and refinement.
The scale of the plots illustrates the relative amplitude of the two modes. The contribution of mode 11 is about 20
times smaller than that of mode 10. This is also evidenced by the fact that mode 11 has a smaller residue vector and
larger damping ratio than mode 10. The relative unimportance of mode 11 to the response leads one to question
the validity of this mode, though there were a number of reasons for retaining it. The singular value ratio at this
peak was SRy = 0.32, suggesting that a second mode was present. (This information should be interpreted with
caution, because the upward trend in the composite magnitude plot in this region suggests that out of band modes
might be contributing to the rank of the FRF matrix at this location.) Also, the composite magnitude FRF of
the subtraction residual showed a coherent peak in this frequency band when only one mode was subtracted. This
peak was completely obliterated when two modes were accepted in the frequency band. This observation provided
the primary motivation for retaining two modes in this frequency band. In an alternate trial not reported here,
MIMO-AMI was applied to the Z24 data for frequencies from 3 to 45 Hz. Because the excitation to the bridge
was band limited to 3-30 Hz, it was difficult to extract modes from the FRFs above 30 Hz, although mode 11 was
identified once again. Furthermore, even better agreement was found between the fit and reconstructed FRF for
mode 11 once the contributions of some of the modes above 30 Hz were removed from the data set.

Figure 13 shows a composite FRF of the Z24 bridge data, a composite of AMI’s reconstructed FRFs and a composite
of the difference between the two. The fit agrees well with the data, with the most notable discrepancies in the
previously mentioned frequency bands. The natural frequencies found by AMI after mode isolation are shown in
Tables 1 and 2. The natural frequencies and damping ratios reported by Marchesiello et al [5], Luscher et al [6] and
Schwarz and Richardson [7] are also presented in Tables 1 and 2. Some of the aforementioned researchers presented
the results of analyzing other data sets taken from the bridge, though only the results for the shaker-excited data
sets are shown here. Marchesiello et al [5] processed the bridge data using a covariance driven SSI algorithm,
processing the data globally setup by setup, so that no more than 15 responses were processed simultaneously. This
approach yields nine estimates for each eigenvalue. The natural frequencies and damping ratios shown in Tables 1
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Natural Frequency: Hz, (¢ Hz)

Marchesiello Luscher et al Schwarz &
Mode = MIMO-AMI et al [5] FDD2 [6] Richardson [7]

1 3.8726 3.85 (0.01) 3.85 3.872
2 4.8246 4.83 (0.02) 4.81 4.821
3 9.7715 9.74 (0.02) 9.72 9.795
4 10.488 10.46 (0.05) - 10.489
5 12.416 12.31 (0.07) 12.62 12.403
6 13.204 13.31 (0.17) - 13.086
7 17.344 17.25 (0.18) - 17.259
8 19.273 19.24 (0.12) - 19.207
9 19.542 20.24 (0.16) 19.56 -

10 26.656 26.46 (0.07) 26.65 26.665
11 28.122 - - -

Table 1: Natural frequencies for Z24 bridge drop test data from various researchers. Standard Deviations are shown
in parenthesis for non-global methods.

Damping Ratio: %, (¢ %)

Marchesiello Luscher et al
Mode MIMO-AMI et al [5] FDD2 [6]
1 0.95936 1.15 (0.23) 1.08
2 1.7152 1.70 (0.17) 2.19
3 1.5145 1.70 (0.13) 2.13
4 2.1135 1.79 (0.23) -
5 3.0787 2.75 (0.89) 5.60
6 4.015 3.61 (1.25) -
7 4.6173 3.26 (2.48) -
8 2.6387 2.32 (0.30) -
9 5.7951 1.97 (1.24) 4.67
10 3.1221 2.57 (0.44) 5.15
11 6.7616 - -

Table 2: Damping Ratios for Z24 bridge drop test data from various researchers. Standard deviation reported in
parenthesis for non-global methods.

and 2 for Marchesiello et al are apparently the average of those obtained in nine trials. The associated standard
deviation is shown in parenthesis. Luscher et al used the Frequency Domain Decomposition (FDD) algorithm and
the Eigensystem Realization Algorithm (ERA) to process the shaker data. They reported that better results were
obtained by the FDD algorithm. The results presented in Tables 4 and 5 for Luscher et al are the result of the FDD
algorithm applied globally to the data from all setups, denoted the ‘FDD2’ results in [6]. Schwarz and Richardson
used a ‘peak cursor’ to find the natural frequencies and mode shapes from the drop-test data, processing each setup
independently. They did not present damping ratios.

The results for most of the modes are comparable between the algorithms. Most of AMI’s natural frequencies and
damping ratios fall within a 95% confidence interval of the values presented by Marchesiello et al. Marchesiello et
al found an additional mode at 7.9 Hz when processing the shaker data set. However, they attributed it to coloring
of the input spectrum, so it was not included in Tables 1 and 2. Luscher et al failed to identify a number of modes
found by the other researchers. Only AMI has identified the 11th mode, which is near the high frequency limit of
the excitation spectrum.



The mode shapes are displayed in Figure 14. Complex mode vectors were obtained from AMI in accord with the
state space description in eq. (1). In order to plot the mode shapes, the real displacement response in each mode
was found at the instant when it is an overall maximum. This was accomplished by multiplying each mode shape
{4} by €, with 6 found to maximize the realness of the the product {1} !, and then plotting the real part of
{¢p} €. The imaginary part of {1} e’ was generally much smaller, indicating that most of the modes had good
modal phase collinearity [12]. Modes 7, 9 and 11 were an exception, having fair to poor modal phase collinearity.
Modes 1, 5, 6, 9 and 11 consist primarily of bending of the bridge in the vertical direction. The motion of the
piers and the number of half-sines along the length of the bridge both increase with mode number. Modes 3 and
4 primarily exhibit bending in the side span with torsion and bending in the main span. These modes are very
similar, the primary difference being that the two side spans move out of phase in Mode 3, while they move in phase
in Mode 4. Mode 2 shows coupled torsion and side-to-side sway. Modes 7, 8, and 10 are primarily torsional modes
having respectively four, five and six nodes along the length of the bridge.

4 Conclusions

Data from the Z24 highway bridge was processed using a hybrid, MIMO implementation of the Algorithm of Mode
Isolation (AMI). AMI found the lowest eleven modes of the bridge without the use of a stabilization diagram.
Instead modes were successively identified and subtracted from the experimental data until no additional regions
were found in which a reasonable fit could be obtained. Particular attention was devoted to identifying modes whose
natural frequencies differ by much less than their bandwidths. A metric reflecting the rank of the FRF matrix in a
frequency band around a resonance peak provides a guide-line for the user regarding the number of modes needed
to fit that peak. In some cases, fits of increasing order were attempted, and the agreement between the data and
reconstructed FRFs for the modes fit was evaluated, in order to determine the number of modes that resulted in the
best results without including modes of dubious validity. The composite magnitude FRF and the composite Nyquist
FRF, defined herein, were found to be extremely helpful in comparing the experimental FRFs with reconstructed
FRFs for the identified modes.

In the subtraction phase of the AMI algorithm, two regions were encountered in which two peaks were clearly
visible in the composite magnitude FRF. In each case the algorithm that automatically selects the frequency band
surrounding each peak in the composite FRF (described in [2],) selected a band encompassing two close peaks. As
a result, the modes in each of these frequency bands were identified simultaneously using the MDOF algorithm.
The modes identified at these peaks were separated by more than their average half-power bandwidths, and hence
could have been treated individually. This would have been preferred because it lessens the order of the parameter
identification used in each frequency band. In an alternate trial not presented here, these modes were treated
individually resulting in somewhat better agreement between the measured and reconstructed FRF's in the vicinity
of modes 7 through 9, though the identified modal parameters were similar.

The natural frequencies and mode shapes of the Z24 bridge that were identified by AMI were found to be comparable
to those presented by other researchers. Several of these researchers [8], [5], [11] processed individual patches of the
experimental data independently in order to limit the computational burden, resulting in an analysis that was not
truly global. The AMI algorithm was capable of globally processing all of the FRFs of the system without requiring
excessive computer resources. Furthermore, the AMI algorithm resulted in the identification of an eleventh mode at
the upper frequency limit of the FRF data. Though weakly excited, a composite Nyquist plot for this mode showed
fair agreement. Furthermore, this mode’s shape is similar to what might be expected for the next highest bending
mode of the bridge based on simple theory.
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Figure 1: AMI Subtraction Step #1 (single mode fit) for Z24 data. LEFT: Composite Magnitude plots of the
residual FRF data (solid) with the peak data highlighted (red dots) and the SDOF fit to the peak (dash-dot).
RIGHT: Composite Nyquist plots of the residual (solid) and fit (dash-dot).



Composite Magnitude FRF Composite Nyquist FRF

-3
10
/
_ / g
= |' , I_f
. Q £
-4 T~ \
10 — Residual 11
® Peak \~
/ - — Fit N k4
' e
/ ~ - .- .
5 10 15 20 25 30 Re(H_ («)

Frequency (Hz)
Figure 2: AMI Subtraction Step #2a (single mode fit) for Z24 data. LEFT: Composite Magnitude plots of the

residual FRF data (solid) with the peak data highlighted (red dots) and the SDOF fit to the peak (dash-dot).
RIGHT: Composite Nyquist plots of the residual (solid) and fit (dash-dot).
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Figure 3: AMI Subtraction Step #2b (two mode fit) for Z24 data. LEFT: Composite Magnitude plots of the
residual FRF data (solid) with the peak data highlighted (red dots) and the MDOF fit to the peak (dash-dot).
RIGHT: Composite Nyquist plots of the isolation residual (solid) and reconstructed FRF (dash-dot) for each mode.
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Figure 4: AMI Subtraction Step #2c (three mode fit) for Z24 data. LEFT: Composite Magnitude plots of the
residual FRF data (solid) with the peak data highlighted (red dots) and the MDOF fit to the peak (dash-dot).
RIGHT: Composite Nyquist plots of the isolation residual (solid) and reconstructed FRF (dash-dot) for each mode.
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Figure 5: AMI Subtraction Step #3a (single mode fit) for Z24 data. LEFT: Composite Magnitude plots of the
residual FRF data (solid) with the peak data highlighted (red dots) and the SDOF fit to the peak (dash-dot).
RIGHT: Composite Nyquist plots of the residual (solid) and fit (dash-dot).
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Figure 6: AMI Subtraction Step #3b (two mode fit) for Z24 data. LEFT: Composite Magnitude plots of the
residual FRF data (solid) with the peak data highlighted (red dots) and the MDOF fit to the peak (dash-dot).
RIGHT: Composite Nyquist plots of the isolation residual (solid) and reconstructed FRF (dash-dot) for each mode.
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Figure 7: AMI Subtraction Step #3c (three mode fit) for Z24 data. LEFT: Composite Magnitude plots of the
residual FRF data (solid) with the peak data highlighted (red dots) and the MDOF fit to the peak (dash-dot).
RIGHT: Composite Nyquist plots of the isolation residual (solid) and reconstructed FRF (dash-dot) for each mode.
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Figure 8: AMI Subtraction Step #6 (single mode fit) for Z24 data. LEFT: Composite Magnitude plots of the
residual FRF data (solid) with the peak data highlighted (red dots) and the SDOF fit to the peak (dash-dot).
RIGHT: Composite Nyquist plots of the residual (solid) and fit (dash-dot).
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Figure 9: Magnitude composite of the residual FRF data after mode isolation.
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Figure 10: AMI Subtraction Step #7b (four mode fit) for Z24 data. LEFT: Composite Magnitude plots of the

residual FRF data (solid) with the peak data highlighted (red dots) and the MDOF fit to the peak (dash-dot).
RIGHT: Composite Nyquist plots of the isolation residual (solid) and reconstructed FRF (dash-dot) for each mode.
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Figure 11: Composite Nyquist plots of the isolated FRFs and the reconstructed FRFs for modes 7-9 after mode
isolation and refinement. Fach composite Nyquist plot pair was created using the residue matrix for the mode in

focus.
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Figure 12: Composite Nyquist plots of the isolated FRF's and the reconstructed FRFs for modes 10 and 11 after
mode isolation and refinement. Each composite Nyquist plot pair was created using the residue matrix for the mode

in focus.
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Figure 13: Magnitude composite FRFs of the Z24 data, AMI’s recontstruction and the difference between the two.
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Figure 14: Mode shapes for Z24 from MIMO-AMI. Dotted lines show the undisplaced bridge.
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