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Abstract

Nonlinear reduced order models (ROMs) have demonstrated to be an effective approach to the modeling of structures
undergoing geometrically nonlinear response. These models allow for the nonlinear response of large finite element (FE)
models to be approximated at a significantly lower computational cost. A popular approach to creating a ROM is the Implicit
Condensation and Expansion (ICE) method which identifies nonlinear modal model parameters using regression of static force-
displacement data from FE model simulations. A drawback of these models is that the number of coefficients to identify
increases cubically with the number of modes in the ROM, posing a key challenge for identification of critical ROM parameters
which is required for model updating. This work utilizes the method of least absolute shrinkage and selection (LASSO) to
identify sparse solutions of ROM coefficients during the ICE regression step. It will be shown that the number of nonlinear
coefficients of a ROM can be drastically reduced while maintaining accurate response predictions.
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1 Introduction

High fidelity finite element (FE) models are often used to simulate the complex response of nonlinear dynamical systems.
Numerical integration comes at a high computational cost making it infeasible for large systems, especially when the response
is of interest over a long time duration as in the case of random loads. An alternative is to create a reduced order model (ROM),
which can be dramatically cheaper to integrate. ROMs express the nonlinear dynamical system in a reduced (modal) subspace.
The ROM can be integrated at a significantly lower computational cost because the dimension of the system is typically much
less than the full order system and it may admit a larger timestep. ROMs can be generated from FE element models using a
variety of approaches, one popular approach is Implicit Condensation (IC) [1,2], in which the nonlinearities of the FE model
are represented as quadratic and cubic polynomials.

The Implicit Condensation method uses static force-displacement data from the full order FE model to identify the parameters
in a nonlinear modal model using polynomial regression. The conventional approach is to use least squares (LS) regression to
find these parameters. A drawback of IC and LS regression is that the number of parameters increases cubically with the number
of modes in the ROM. However, it is often the case that only a small subset of the parameters contribute significantly to the
nonlinear response of the system. If one could identify and eliminate the parameters that are are unimportant, the computational
efficiency and simplicity of the ROM could be improved significantly.

This work makes use of the Least Absolute Selection and Shrinkage Operator (LASSO) to simultaneously identify the ROM
coefficients and select those that are most important. Originally developed by Tibshirani [3], LASSO is a popular tool in
machine learning and data analytics for generating sparse predictor models. LASSO produces sparse solutions by penalizing
the one-norm, i.e. sum of absolute values, of the coefficient vector. As the penalization term is increased the regression solution
becomes more sparse such that the nonzero terms correspond to the most important parameters. A brief overview of the theory
of nonlinear modal parameter identification and lasso will be presented followed by a short numerical evaluation of the method.

2 Theory

The geometrically nonlinear elastic FE equations of motion for an n DOF system can be written as

M + Cx + Kx + fy,(x) = f(t) (1)



where M, C, and K are the (n X n) mass, damping, and linear stiffness matrices respectively. The nonlinear restoring force
fnr(x) is a function of the displacement only. The full FE equations of motion can be projected onto a modal subspace using
the modal coordinate transformation x(¢) = ®,,,q(#) in which the " nonlinear modal equation becomes
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The nonlinear restoring force 6,. is a function of the modal displacements as 6,.(q) = @2 fx1.(®mq), which for a linear elastic
system with only geometric nonlinearities can be accurately approximated as
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where A, and B, are the quadratic and cubic nonlinear stiffness terms respectively. These are estimated by applying a series
of static forces in the shapes of the modes to the full FE model. Each static load case is the response to a loading in the shape of
up to three linear modes, although the nonlinearity causes other modes to also be excited. The displacement is then projected
onto the reduced linear modal basis as g, = ¢ Mx where the training data for the regression problem can be collected and
written in the following matrix form
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where [-] represents the load case number. The regression problem to identify the parameters for the * mode can be formulated
in the following form, GO, = b,., where b,. is the nonlinear modal force and ©,. are the vector of unknown nonlinear stiffness
coefficients A, and B,.. For a given system the number of nonlinear coefficients, Ng, is a function of the number of modes m
in the reduced linear basis set given by Ng = %(2m3 +3m?2 +4m). Clearly, the number of nonlinear terms that must be found
scales as O(m?). For large basis sets the number of terms becomes extremely large with many possibly unimportant terms.

2.1 Estimating the Nonlinear Stiffness Terms

The conventional approach to the nonlinear stiffness parameter identification is to use least squares (LS) regression to solve for
the parameters by minimizing the mean squared error or Ly norm.
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The nonlinear stiffness terms in Eq (3) are found from LS regression using the pseudo inverse of the data matrix Gt =
(GTG)‘lG, and so ©,. = Gtb,. Similar to LS regression, LASSO determines the solution that minimizes the mean squared
error on the Ly norm of Eq (5) as well as the L1 norm of the coefficient vector.
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where )\ is the LASSO penalty term that regularizes the regression. This is no longer a single step solution and requires an
optimization routine to be solved, however it remains a convex optimization problem so a unique and global solution is obtained.

2.2 Numerical Case Study - Flat Beam

The first numerical study is a flat clamped-clamped beam that exhibits geometric nonlinearity. This beam has been used in
previous studies for evaluating ROM building procedures. A FEM was created for a 228.6 mm (9 in.) long beam using the
material properties for steel with a cross section of 12.7 mm (0.5 in.) wide by 0.787 mm (0.031 in.) thick. Then a two-mode
ROM including modes 1 and 3 of the flat beam was used to demonstrate the method. First, the traditional least squares method
was used to create a ROM. Then LASSO was used for various values of A, each value resulting in a different size model
(different number of ROM coefficients retained). The nonlinear stiffness coefficients obtained for the first modal equation are
shown in Fig. 1(a) as a function of the penalization term, A. Each coefficient is normalized with respect to the coefficients
estimated using LS. The ROM becomes more sparse as the regularization term is increased. In subplot (b) the mean squared
error (MSE) of each model on a set of cross-validation data is plotted, this MSE was also normalized with respect to the MSE
of the least squares ROM on the cross-validation data set. The A value that provides a minimum MSE is marked, corresponding
to a ROM with 4 terms, additionally the A value that provides a MSE of one standard deviation larger than the minimum is also
identified. Interestingly, the ROM with the minimum MSE is not the least squares solution (A approaching zero), but a ROM



with only 4 coefficients, all cubic, in the first modal equation. The MSE values between the LS estimate and optimal ROM
estimate remains nearly constant with a difference of less than 0.03% between them. As the penalization term is increased past
the one-standard deviation MSE, there is a significant increase in error. This occurs as the number of coefficients in the first
modal equation drops below 3.
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Figure 1: Results of the LASSO procedure; (a) The nonlinear stiffness coefficients of the 1st modal equation estimated, nor-
malized to the least squares estimate, versus penalization term. (b) The MSE of the 1st modal equation versus penalization term
normalized to the LS MSE. (c) 1st NNM of select ROMs estimated using LASSO. (d) 2nd NNM of select ROMs estimated
using LASSO.

To quantify the accuracy of the ROMs found by LASSO, the nonlinear normal modes were computed for a ROM generated
using conventional LS regression and each of the ROMs generated using LASSO. The LS results, which were shown to be
nearly identical to the true NNMs of the full FEM, are used for reference. Subplots (c) and (d) of Figure 1 contain the NNMs
that originate at the first two modes of the system. The legend indicates the total number of terms retained in the ROM. For
the first NNM, the LASSO solutions provide near identical predictions for ROMs with as few as 6 parameters. The 2nd NNMs
show that the results start to deviate when fewer than 8 parameters are retained. Hence, using LASSO it was possible to obtain a
ROM that retains high accuracy for both NNMs but is 8/14=57% as large. Note that as the MSE seen in the regression analysis
increases, the deviation from the nominal NNMs also occurs.

In the IMAC presentation a more detailed comparison of the MSE during cross-validation and ROM accuracy will be presented.
Additionally, the procedure will be demonstrated on two additional structures in which much larger ROMs are needed: a curved
beam and a multi-bay panel.
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