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ABSTRACT 
Measurements are presented from a two-beam structure 

with several bolted interfaces in order to characterize the 
nonlinear damping introduced by the joints.  The measurements 
(at force levels below macro-slip) reveal that each underlying 
mode of the structure is well approximated by a single degree-
of-freedom system with a nonlinear mechanical joint.  At low 
enough force levels the measurements show dissipation that 
scales as the second power of the applied force, agreeing with 
theory for a linear viscously damped system.  This is attributed 
to linear viscous behavior of the material and/or damping 
provided by the support structure, which simulates free-free 
boundary conditions.  At larger force levels the damping is 
observed to behave nonlinearly, suggesting that damping from 
the mechanical joints is dominant.  A model is presented that 
captures these effects, consisting of a spring and viscous 
damping element in parallel with a 4-Parameter Iwan model. 
The parameters of this model are identified for each mode of 
the structure and comparisons suggest that the model captures 
the linear and nonlinear damping accurately over a range of 
forcing levels. 

INTRODUCTION 
Mechanical joints are known to be a major source of 

damping in assembled structures.  However, the amplitude 
dependence of damping in mechanical joints has proven to be 
quite difficult to predict.  For many systems, linear damping 
models seem to capture the response of a structure near the 
calibrated force level, but the damping may increase by an 
order of magnitude or more as the response level increases, 
leading to over-conservative designs.  On the other hand, many 
of these structures still seem to exhibit the same uncoupled 
linear modes that were evident at low amplitudes.  This work 
seeks to develop a model that is valid over a range of force 
levels and captures this variation in damping, while preserving 
much of the simplicity of the linear model. 

Mechanical joints are said to be undergoing micro-slip 
when the joint as a whole remains intact but small slip 
displacements occur at the outskirts of the contact patch 
causing frictional energy loss in the system [1].  When this is 
the case the overall response of the structure is often well 
approximated with a linear since the stiffness and mass are not 
significantly changed, yet the damping may change 
significantly. The 4-Parameter Iwan model developed by 
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Segalman [2] captures these effects and has been shown to 
reproduce the behavior of real lap joints as observed in an 
extensive testing and modeling campaign [1], including the 
power law energy dissipation seen in the micro-slip region.  In 
the past decade, the 4-Parameter Iwan model has been 
implemented to predict the vibration of structures with a few 
discrete joints [3, 4].  However, when modeling individual 
joints, each joint may require a unique set of parameters, which 
means that one must deduce hundreds or even thousands of 
joint parameters to describe a system of interest.  On the other 
hand, when a small number of modes are active in a response, 
recent measurements have suggested that a simpler model may 
be adequate.  Segalman et al. recently applied the 4-Parameter 
Iwan model in a modal framework to describe both discrete 
joint simulations and experimental data from structures with 
bolted joints [5, 6]. 

This work extends the modal Iwan framework adding 
some features that are necessary to approximate real 
experimental data.  The 4-Parameter Iwan model only accounts 
for the energy dissipation associated with the mechanical joints 
of the system, which dominate at large force levels.  However, 
at low force levels, the damping of the system is dominated by 
material damping of the structure and damping from the 
suspension support conditions of the experimental set-up. 
These linear sources of damping must be accounted for when 
fitting experimental data.  In this work, the linear modal 
damping will be accounted for using a viscous damper in 
parallel with the 4-Parameter Iwan modal model.  Experimental 
measurements are presented and are found to be well 
represented by this model. 

The following sections review the Modal Iwan Modeling 
framework proposed by Segalman and discuss an experimental 
approach that can be used to deduce the modal Iwan parameters 
from measurements.  These ideas are then applied to an 
assembly of two beams that are joined by four lap joints and 
found to reproduce the behavior of the first several modes quite 
adequately. 

NOMENCLATURE 

q0 Modal amplitude of displacement 
FVD Force in the viscous damper 
C Modal viscous damping coefficient 
FLE Force in the linear elastic spring 
K∞ Linear elastic stiffness of the system  
FIwan Force in the Iwan joint 
R,   Coefficient and exponent in the Iwan  

distribution function 
FS Force necessary to cause macro-slip of joint 
KT Stiffness of the Iwan joint 
β Iwan parameter related to level of energy  

dissipation and shape of energy dissipation  
curve 

DModel Energy dissipated by the model 
KModel Stiffness of the model 

V(t) Analytic signal 
KE Kinetic Energy 
DExp Energy dissipated by experimental data 
KExp Stiffness of the experimental data 
f Total optimization objective function 
fD Energy dissipation objective function 
fK Stiffness objective function 

MODAL MODEL 
Segalman proposed that nonlinear energy dissipation due 

to bolted joints could be applied on a mode-by-mode basis, 
using a 4-parameter Iwan constitutive model for each mode [5]. 
In general, the nonlinearity that joints introduce can couple the 
modes of a system so that modes in the traditional linear sense 
can not be defined.  However, damping is often a relatively 
weak effect and experiments have often shown that the modes 
of structures with joints are typically quite linear and 
uncoupled.  This suggests that one might be able to model the 
structure as a collection of uncoupled linear modes, each with 
nonlinear damping characteristics [6], and this is precisely the 
approach adopted in this work. 

Under these assumptions, each modal degree-of-freedom is 
modeled by a single degree-of-freedom oscillator, as shown in 
Fig. 1, with a 4-parameter Iwan model in parallel with a 
viscous damper and an elastic spring.  Note that the 
displacement of the mass is not a physical displacement but the 
modal displacement or modal amplitude, q, of the mode of 
interest.  The mode vectors are assumed mass normalized so 
the mass is taken to be unity.  

Fig. 1  Schematic of the model for each modal degree of 
freedom.  Each mode has a unique set of Iwan parameters 
that characterize its nonlinear damping and a viscous 
damper that captures the linear component of the damping.  

The 4-parameter Iwan model has parameters {FS, KT,  χ, β} 
where FS is the joint force necessary to initiate macro-slip, KT is 
the stiffness of the joint, χ is directly related to the slope of the 
log energy dissipation versus log modal force in the micro-slip 
regime, and β relates to the level of energy dissipation and the 
shape of the energy dissipation curve as the macro-slip force is 
approached.  Finally, the viscous damper has a coefficient, C, 

M = 1 , , ,S TF K  

C

K∞

q
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and the linear elastic spring stiffness is K∞.  Note that all of the 
parameters are defined in modal and not physical space. 

ENERGY DISSIPATION AND STIFFNESS 

Model 
 The energy dissipation for the modal model seen in Fig. 1 

can be solved for and used to fit experimental data.  Assuming 
a harmonic load is applied to the mass and the system is at 
steady-state, the mass will oscillate as 

0 sin( )q q t     (1) 

where q0 is the modal displacement amplitude and ω is the 
response frequency.  The force in the viscous damper can be 
written as 

VDF Cq      (2) 

where C is the viscous damping coefficient.  The force in the 
linear elastic spring takes the form 

LEF K q     (3) 

where K∞ is the spring stiffness.  The force in the Iwan joint is 
given in [2].  Assuming that the amplitude of motion is small, 

0 maxq   or in other words the Iwan joint is undergoing 

micro-slip, the force in the Iwan model can be approximated as 

2

2Iwan

Rq
F










    (4) 

where R is a coefficient that describes the population 
distribution of the parallel-series Iwan system [2].  These forces 

can be added, Total VD LE IwanF F F F   , multiplied by the 

modal velocity and integrated over one period as follows, 

2

0
 Model TotalD F q dt


          (5) 

to obtain the energy dissipation per cycle, DModel. 
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  (6) 

Notice that the energy dissipation depends on the maximum 
modal amplitude q0 and that the linear elastic spring does not  
contribute to the energy dissipated as one would expect. 

From [2], the secant stiffness of the Iwan joint at large 
amplitudes of oscillation can be approximated as: 

1

1
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Note that both DModel and KModel as presented above are 
approximations to the actual dissipation and stiffness, and are 
valid in the micro-slip regime only. In order to obtain the actual 
dissipation and stiffness, the Iwan model can be integrated in 
time and then the actual dissipation and stiffness can be 
deduced.  However, as discussed in later sections, these simple 
expressions for DModel and KModel are used to decrease 
computational time when solving an optimization problem to 
find the modal Iwan parameters that best fit the data.  

Processing Experimental Measurements 
The energy dissipation for each mode of a system can be 

computed from measurements of its free response.  The 
procedure for processing measurements was presented in [6] 
and will be reviewed briefly below. 

First, a filter is used to isolate an individual modal 
response.  The authors have used both modal filters [7] and 
standard, infinite impulse response band-pass filters [8] for this 
purpose and other possibilities certainly exist.  The Hilbert 
Transform [9] is then used to compute the instantaneous 
damping and frequency of the system.  This process requires 
some care since the basic Hilbert transform performs very 
poorly in the presence of noise.  This work uses a variant  [10] 
where a polynomial is fit to smooth the instantaneous 
amplitude and phase found by a standard Hilbert transform and 
then the curve fit model can be differentiated to estimate the 
instantaneous frequency, as explained below. 

One obtains an analytic representation of the modal 
response, denoted ( )V t , by adding the Hilbert transform of the 

modal velocity, ( )v t , to the measured modal velocity of the 

mode of interest, ( ) ( )rv t q t   as follows 

( ) ( ) ( )V t v t iv t                                (9) 

The magnitude of the analytic signal is the decay envelope of 
the response and is approximated by 

( )
0( ) eP tV t V                             (10) 

where V0 is the initial amplitude. To maintain similarity with a 
linear system, the product of the natural frequency, ωn(t), and 
the coefficient of critical damping, ζ(t), is defined to be the time 
derivative of P(t).  

( )
( ) ( ) ( )n

dP t
t t t

dt
                    (11) 

The instantaneous phase is the complex angle of the analytic 
signal, which can be obtained using the following (provided 
that a four-quadrant arctangent formula is used). 
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( ) tan
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v t
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v t
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 


                      (12) 

The measured phase and the natural logarithm of the decay 
envelope are then smoothed by fitting a polynomial to the data.  
In addition, before the data is fit, the beginning and end of the 
data are deleted since they tend to be contaminated by end 
effects in the Hilbert Transform.  The time-derivative of the 
phase then gives the instantaneous damped natural frequency.  

( )
( )d

d t
t

dt

                            (13) 

The time varying natural frequency is then found using the 
following equation: 

   2 2
( ) ( ) ( )n dt t t    

             
(14) 

Now the energy dissipation per cycle can be calculated 
from the change in kinetic energy over one cycle.  The 
amplitude of the kinetic energy can be written as, 

21
( )

2
KE M V t                        (15) 

and the change in the kinetic energy is found by taking the 
derivative of this expression.  Since the kinetic energy and its 
derivative are quite smooth, the energy dissipated per cycle, 
DExp, can be approximated by simply multiplying dKE/dt by the 
period (2/n(t)) (e.g. using a trapezoid rule to integrate the 
power dissipated as a function of time). 

   
22 2 ( )

( )Exp
d d

dKE dP t
D V t

dt dt

 
 

        (16) 

Finally, the experimental modal stiffness is simply the 
square of the time varying natural frequency. 

2( )Exp nK t                        (17) 

The parameters, {FS, KT, K∞, χ, β}, of the modal Iwan 
model can be found using a graphical approach as described in 
[6].  First, the experimental energy dissipated per cycle, DExp, 
and stiffness, KExp, are obtained using a Hilbert transform as 
described in [11].  The energy dissipation per cycle and 
stiffness can then be plotted versus the modal acceleration q , 
and since the mode shapes are mass normalized this is equal to 
the modal force.  The χ parameter is found by fitting a line to 
the data for the log of energy dissipation versus log of the 
modal force at low force levels.  Then the χ parameter for each 
mode r is given by: 

Slope 3r r                              (18) 

In order to deduce the modal Iwan stiffness, KT, the natural 
frequencies of each mode are plotted versus modal joint force.  

A softening of the system, characterized by a drop in frequency, 
illustrates the amount of modal stiffness associated with all the 
relevant joints of the system. The equation for modal joint 
stiffness for each mode becomes 

2 2
, 0, , 0, ,T r r r r rK K K                    (19) 

where ω0 is the natural frequency corresponding to the case 
when all the joints in the structure exhibit no slipping, and ω∞ 
is the natural frequency when all of the joints are slipping. 
However, macro-slip was not clearly observed at the force 
levels tested so ω∞ values were simply assumed to be slightly 
lower than the lowest observed natural frequency. 

The modal joint slip force, FS, can be estimated from the 
modal force level at which the stiffness or frequency begins to 
drop.  To find the last parameter, β, all of the previous 
parameters found are needed along with the y-intercept, Ar, of 
the line that was fit in order to find χr.  Then, the following 
equation from [2] can be used to solve for r  numerically. 
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(20) 

EXPERIMENTS ON TWO-BEAM STRUCTURE 
The proposed damping model was assessed using 

experimental measurements on a structure comprised of two 
beams bolted together.  The structure is tested in free-free 
conditions, and care was taken to design the experimental setup 
to minimize the effect of damping associated with the boundary 
conditions.  Free boundary conditions were used because any 
other choice, e.g. clamped, would add even more damping to 
the system. 

Test Structure 
In this work, the structure consisted of two beams bolted 

together with four bolts as shown in Fig. 2.  The two beams, 
each with dimensions 0.508m  0.051m  0.006m (20"  2"  
0.25") were fastened together with 1/4"-28 fine-threaded bolts 
and all components were made of AISI 304 stainless steel.  The 
bolts were tightened to three different torque levels in these 
tests: 1.13, 3.39, 5.65 N-m (10, 30, and 50 in-lbs).  For 
reference, the Society of Automotive Engineers (SAE) provides 
the general torque specification for this type of bolt to be 
approximately 8.5 N-m (75.0 in-lbs) [12] which results in bolt 
preload force of approximately 6700 N (1500 lbf).  The largest 
torque used here was somewhat lower than this specification, 
but, as will be shown, this structure became quite linear for the 
range of excitation forces that were practical with this setup, so 
the bolts were kept somewhat loose to accentuate the 
nonlinearity.  Future works will explore methods of exciting the 
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structure with higher force levels (closer to what might be seen 
in the applications of interest) so that more realistic torques can 
be used. 
 

 
Fig. 2  Photograph of the two beam test 

structure. 

Experimental Setup 
The dynamic response of the two beam structure was 

captured using a scanning laser Doppler vibrometer (Polytec 
PSV-400), which measured the response at 70 points on the 
structure.  In addition, a single point laser vibrometer (Polytec 
OFV-534) was used to measure at a reference point to verify 
that the hammer hits were consistent.  The reference laser was 
positioned close to the impact force location as seen in Fig. 2. 

 

 
Fig. 3  Photograph of the suspension setup for 

the two beam test structure. 

The structure is suspended by 2 strings that support the 
weight of the structure and 8 bungee cords which prevent 
excessive rigid-body motion. The bungees and strings were 
connected to the beam at locations where the odd bending 

modes have little motion in order to minimize the damping 
added to the system.  

An Alta Solutions automated impact hammer with a nylon 
hammer tip was used to supply the impact force, which is 
measured by a force gauge attached between the hammer and 
the hammer tip.  Additional measurements were taken at higher 
force levels using a modal hammer; however, the supplied 
impact force was not as consistent.  The mean and standard 
deviation of the maximum impact force for all of the torque 
levels and force levels that were used in this study are shown in 
Table 1. 

 
Table 1:  Mean and standard deviation of the 

maximum impact force for all 70 measurements. 
Torque 
(N-m) 

Hammer Level Mean 
Impact 

Force (N) 

Standard 
Deviation of 

Impact Force (N) 
1.13 1 (lowest) 20.24 0.80 
1.13 2 32.77 0.27 
1.13 3 86.44 0.68 
1.13 4 (highest) 288.57 6.10 
3.39 1 (lowest) 24.1 0.38 
3.39 2 30.9 0.51 
3.39 3 52.8 3.84 
3.39 4 (highest) 180.1 58.24 
3.39 Modal Hammer 1444.5 139.34 
5.65 1 (lowest) 20.8 0.44 
5.65 2 36.5 0.28 
5.65 3 60.3 0.61 
5.65 4 (highest) 238.6 15.30 
5.65 Modal Hammer 1392.1 172.48 

The automatic hammer provides a range of force levels 
between approximately 20 and 300 N.  However, the force 
level is dependent upon the distance between the hammer tip 
and the beam and the voltage supplied to the automatic 
hammer.  For these reasons, the lowest and highest force varies 
for each measurement.  For the automatic hammer, the standard 
deviation tends to increase as the force level is increased.  At 
the highest force level, the automatic hammer has a large 
spread for all the torque levels especially the 3.39 N-m torque.  
The modal hammer is able to reach much higher force levels 
(approximately 1400 N); however, the standard deviations are 
much larger when compared to the automatic hammer. 
   

Lab Setup Challenges 
The damping ratios of a freely supported structure are 

sensitive to the support conditions, as was explored in detail by 
Carne, Griffith, and Casias in [13].  Therefore, special attention 
must be given to the support conditions to assure that the 
damping that they add does not contaminate the results. 
Initially, the two beam structures were suspended by two 
strings that act as pendulum supports as was done in [13].  
These support conditions contributed very little damping to the 
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system; however, several obstacles were encountered with that 
setup.. 

Specifically, the velocity of the beam was measured with a 
scanning laser Doppler vibrometer in order to eliminate any 
damping associated with the cables that must be added if 
accelerometers were used.  Hence, if the beam swings 
significantly in its pendulum mode, the point which the laser is 
measuring may change significantly during the measurement.  
Also, an automated hammer was used to excite the beam, but 
the hammer only retracts about 2.5 centimeters (1 inch) after 
impact.  As a result, the pendulum motion of the beam caused 
almost unavoidable double hits when the bungee cords were 
not present.  Finally, in the processing described subsequently, 
it is important for the automatic hammer to apply a highly 
consistent impact force.  Any ambient swinging of the beam 
caused the impact forces to vary from test to test.  When the 
bungee cords were not present, it was extremely difficult and 
time consuming to try to manually eliminate the ambient 
swinging.  For these reasons, eight soft bungee cords were 
added to the setup to suppress the rigid body motion of the 
beam while attempting to add as little stiffness and damping as 
possible to the system.  The final set up was similar to that used 
in [14] and was shown in Fig. 3.  This setup was used for all of 
the measurements shown in this paper. 

A comparison was done to ensure that the addition of 
bungee cords did not add significant damping to the system.  A 
monolithic structure, without interfaces and bolts, was chosen 
to ensure that the measured damping was only due to the 
structure itself and the support conditions.  A single beam was 
suspended with two strings with and without the bungees cords 
and the damping ratios for the first three modes were found 
using the Algorithm of Mode Isolation (AMI) [15, 16] and are 
presented in Table 2. 

 
Table 2:  Modal Damping Ratios for a single beam 

with and without bungees. 
Elastic 
Mode # 

ζ without bungees 
(%) 

ζ with bungees (%) 

1 0.010 0.016 
2 0.025 0.057 
3 0.020 0.044 

 
The damping of all of the modes is very light, as one 

would expect for a monolithic structure.  When the bungees 
were added to the setup, the damping ratios for all modes 
increased by about a factor of two.  The bungees and strings 
were connected to the beam at locations where the motion of 
the symmetric or odd bending modes is minimum, to minimize 
the damping that is added to those modes, but these locations 
are expected to add some damping to the second mode.  
However, the results show that the supports added some 
damping to the first and third modes as well.  These damping 
ratios are an average of the damping ratios found at a range of 
force levels; the structure is linear so the force level did not 
have a significant impact on the damping. 

 
Table 3:  Averaged Modal Damping Ratios for the two 

beam test structure. 
Elastic 
Mode # 

1.13 N-m 
Torque, ζ 

(%) 

3.39 N-m 
Torque, ζ (%) 

5.65 N-m 
Torque, ζ 

(%)  
1 1.2 0.29 0.16 
2 0.57 0.48 0.26 
3 0.31 0.16 0.11 

 
For comparison, the two beam structure was curve fit to 

estimate the best fit linear modal damping ratios at each of the 
three torque levels and the results are presented in Table 3.  
Due to the nonlinearity introduced by the joints in the two 
beam structure, the damping ratios seem to change with the 
amount of excitation applied.  The damping ratios presented in 
Table 3 are an average over all of the data from a range of force 
levels, and hence they represent a linear fit to a structure which 
is known to be nonlinear and this probably does introduce 
some distortion.  For each mode, the damping is observed to 
decrease as the bolt torque increases.  This was expected since 
increasing the bolt torque inhibits micro-slip and hence should 
decrease the measured damping, although occasionally the 
opposite has been observed for certain modes [11].  However, 
even at the tightest bolt torque (5.65 N-m) the modal damping 
ratios are significantly larger than those in Table 2 for the 
single beam, by factors of 10, 4.5, and 2.5 for the first three 
modes respectively.   Therefore, it seems that a significant 
portion of the measured damping is due to the joints in the 
structure.  (The damping in the single beam presumably comes 
from material damping and the damping provided by the 
support conditions.) 

Lab Data Processing 
Two approaches were explored to extract modal velocity 

ring-downs from the laboratory data.  First, mass normalized 
mode shapes were found by fitting a linear modal model with 
the Algorithm of Mode Isolation (AMI) [15, 16].  Then the 
mode shapes were used in a modal filter. 

x = q                                    (21) 

However, when using a modal filter the modal responses 
showed clear evidence of frequency content due to other 
modes, which would contaminate the Hilbert transform 
analysis.  Since this system’s modes are well separated, the 
modes were instead isolated by creating a band pass filter to 
pass only a single mode, as was done in [11], using a fourth 
order Butterworth filter.  The filtered responses were then 
divided by the corresponding mass normalized mode shape at 
each point, j, to estimate the modal displacement as, 

/r j jrq x   . There were 70 measurement points which were 

then averaged to estimate a single modal velocity for each 
mode.  Some measurement points were excluded from 
averaging process if the mode was excited too heavily or not 
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sufficiently.  A trimmed mean was used to determine which 
measurements to keep.  The trimmed mean procedure excluded 
8 high and low outliers from the set of 70 measurements points.  
All measurement points whose maximum velocity was within 
50 percent of the trimmed mean were kept.  The resulting 
statistics on the filtered impact hammer data are presented in 
Table 4. 
 

Table 4:  Mean and standard deviation of the 
maximum impact force for the set of measurements 

that was used. 
Torque 
(N-m) 

Hammer Level Mean 
Impact 

Force (N) 

Standard 
Deviation of 

Impact Force (N) 
1.13 1 (lowest) 20.0 0.088 
1.13 2 32.8 0.025 
1.13 3 86.5 0.041 
1.13 4 (highest) 289.3 0.213 
3.39 1 (lowest) 24.2 0.013 
3.39 2 30.8 0.019 
3.39 3 52.7 0.125 
3.39 4 (highest) 191.3 1.585 
3.39 Modal Hammer 1475.7 3.081 
5.65 1 (lowest) 20.9 0.009 
5.65 2 36.5 0.005 
5.65 3 60.3 0.011 
5.65 4 (highest) 237.2 0.310 
5.65 Modal Hammer 1400.4 3.225 

 
All of the filtered standard deviations in Table 4 are 

smaller than the initial standard deviations shown in Table 1. 
Again, for the automatic hammer, the standard deviation tends 
to increase as the force level is increased. Yet, at the highest 
force level, the automatic hammer has a much more reasonable 
maximum standard deviation of 1.6 N or 0.83%.  The modal 
hammer standard deviations are also improved with a value of 
approximately 3 N. 

In order to compute the model's energy dissipation, a 
displacement ring-down is needed from the experiment.  This 
was obtained by integrating the measured velocity signal with 
respect to time using a trapezoidal numerical integration.  The 
displacement ring-down was used to compare the dissipation 
model (Eq. 6) to the measured experimental data (Eq. 16), as 
will be shown in Figure 5. 

OPTIMIZING MODEL PARAMETERS 
The damping parameters {FS, KT, K∞, χ, β, C} of the modal 

model, seen in Fig. 1, were fit to experimental data using 
several different optimization routines.  The objective function 
is posed as: 

Min D Kf f f                           (22) 

where 

 

2

max
Experiment Model

D

Experiment Model

D D
f

D D

 
 
  

          (23) 

and 

 

2

max
Experiment Model

K

Experiment Model

K K
f

K K

 
 
  

          (24) 

Note that the dissipation and stiffness objective functions, fD 
and fK respectively, are scaled so that their values are on the 
order of 1.  

The nonlinear objective function, Eq. (22), can be 
optimized using either local or global optimization.  Both 
techniques were explored by the authors in this work; however, 
when multiple local minima exist, local optimization 
algorithms tended to be highly dependent on the starting guess.  
Therefore, a global optimization algorithm (the DIRECT 
algorithm developed by Jones et al. [17]) was used to provide a 
more robust approach to optimizing the parameters. In addition, 
local optimization routines were used in MATLAB 
(fminsearch, fmincon, lsqnonlin [18]) to fine tune the solution 
and ensure convergence.  Even with the global optimization 
algorithm, it was important to have a reasonable starting guess.  
For this work, starting guesses for the {FS, KT, K∞, χ, β} 
parameters were found using the graphical approach described 
previously.  The initial guess for the modal viscous damping 
parameter, C, was obtained using the modal damping ratios 
presented in Table 3 with C = 2mζω0. 

RESULTS 
The measurements from the beam were band-pass filtered 

and averaged as described previously to isolate the first 
bending mode of the beam, with the bolts tightened to 3.39 N-
m.  The optimization procedure was then used to find the 
modal parameters that best fit the data both with and without 
the additional viscous damping term.  The model without the 
viscous damper relies entirely on the Iwan joint to dissipate 
energy.  The parameters of the optimized models are shown in 
Table 5. 

    
Table 5: Optimized parameters of the first bending mode of 
vibration at a bolt torque of 3.39 N-m, for the modal models 
with and without the viscous damper. 

Parameter Iwan Model Iwan & Viscous 
Damper Model 

FS 6.23 2.33 
KT 2.61·105 1.37·105 
K∞ 3.19·105 4.41·105 
χ -0.272 -0.178 
β 0.836 0.0316 
C N/A 3.96 
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Fig. 4  Comparison between measured natural 

frequency vs. force and two models. 

Fig. 4 shows the natural frequency of the modal Iwan 
model versus the total modal force for the two modal models, 
reconstructed using Eq. (7).  The measurements show that the 
natural frequency of this mode changes approximately 20 Hz 
over the range of forces that were applied.  Both models seem 
to be capable of capturing the change in natural frequency over 
this range.  Unfortunately, the natural frequency is not observed 
to level off at a frequency ω∞ as predicted by theory.  This 
suggests that the system never completely reaches macro-slip  
or that macro-slip is over before the Hilbert transform 
algorithm is able to capture the macro-slip frequency, making it 
difficult to estimate the parameters (FS, KT, K∞). 
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Fig. 5  Energy dissipation comparison of two 

optimized modal models to experimental data 
over a range of forces. 

Fig. 5 shows the modal energy dissipation versus total 
modal force for the two modal models and the experimental 
data at five different excitation levels.  The Iwan model without 
a viscous damper in parallel fails to fit the measurements at low 
amplitude, while the model with only a viscous damper does 
not capture the increase in damping at high forces.  (Because of 
the logarithmic scale, the difference at high force levels may 
appear to be small yet the damping in the linear model is 
actually in error by an order of magnitude at high energy.)  In 
contrast, the modal Iwan model with a viscous damper in 
parallel provides an excellent approximation to the measured 
energy dissipation. It should also be noted that the 
disagreement between the Iwan model (without a viscous 
damper) and the measurement at low force levels is not simply 
due to the choice of parameters.  Considerable effort was spent 
to optimize that model's parameters to better match the 
measurements, yet the fit could not be improved without 
decreasing the agreement of the natural frequency versus force 
plot in Fig. 4.  This difficulty disappeared when a viscous 
damper was added to the model. 

The differences between these models is more easily 
visualized by comparing the slope of the energy dissipation 
versus force curve.  As mentioned previously, a single Iwan 
joint exhibits a slope of 3+ on a log dissipation versus log 
force plot.  Fig. 6 compares the slope of the two optimized 
modal models with the experimentally measured slope.  A fifth 
order polynomial was fit to the laboratory data in order to 
compute its slope.  Without an additional viscous damper, the 
modal Iwan model has a much larger slope than the laboratory 
data at low force levels.  On the other hand, when a viscous 
damper is added in parallel with the Iwan joint, the slope 
follows the laboratory data more closely over the entire range 
of force levels. 
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Note that the optimized models have identified a value for 
the slip force, FS, that is in the range of the measured forces. 
Thus, at the highest measured force levels macro-slip has been 
initiated in both models.  Unfortunately, the exciter that was 
used was not capable of even higher forces so macro-slip could 
not be fully characterized. 
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Fig. 6  Slope of energy dissipation versus 

modal force for modal Iwan models and a 
polynomial fit to the experimental measurements. 

This same procedure was repeated for the first three elastic 
modes at three different bolt torques and the identified modal 
Iwan parameters are shown in Table 6.  Only the first three 
elastic modes were analyzed in this work due to the lack of 
response from the higher frequency modes.  The last two rows 
of each section of Table 6 give the natural frequency and modal 
damping ratio, which can be readily computed from the other 
parameters. 

 
Table 6: Optimized parameters for a modal Iwan model 
with a viscous damper.  First three elastic modes each at 
varying bolt torques. 

Bolt Torque 
N-m (in-lbf) 

1.13 (10) 3.39 (30) 5.65 (50) 

1st Elastic Mode 
FS 0.562 2.33 3.08 
KT 1.16·105 1.37·105 1.35·105 
K∞ 5.03·105 4.41·105 4.44·105 
χ -0.0237 -0.178 -0.0102 
β 0.0237 0.0316 1.19 
C 1.89 3.96 1.12 

f0 (Hz) 125.2 121.0 121.1 
  (%) 0.120 0.099 0.074 

2nd Elastic Mode 
FS 1.10 27.0 27.34 

KT 1.61·105 5.10·105 4.08·105 
K∞ 1.80·106 1.31·106 1.40·106 
χ -0.195 -0.310 -0.303 
β 0.000458 0.523 3.80 
C 5.62 15.11 5.69 

f0 (Hz) 222.9 214.7 214.0 
  (%) 0.201 0.560 0.216 

3rd Elastic Mode 
FS 6.77 5.26 23.04 
KT 1.45·106 1.36·106 2.79·106 
K∞ 7.15·106 7.50·106 6.39·106 
χ -0.112 -0.228 -0.0196 
β 1.46 5.94 13.68 
C 11.8 2.96 4.18 

f0 (Hz) 466.7 473.7 482.2 
  (%) 0.201 0.050 0.069 
 
The results above show that the slip force parameter, FS, 

tends to increases when the bolts are tightened for all modes 
considered.  This is as expected since, ass the bolts are 
tightened, the preload in the bolts increases so larger forces are 
required to initiate macro-slip.  As the bolts are tightened, one 
would expect that the K∞ parameter for each mode would stay 
relatively constant while the joint stiffness, KT, would increase. 
However, the optimized stiffness parameters, KT and K∞, seem 
not to follow much of a trend for this system.  This probably 
indicates that the measured data is not adequate to reliably 
estimate K∞, as might be expected since the excitation force 
was not sufficient to bring the system well into macro-slip.    
The joint parameter, , can be observed to decrease as the bolt 
torques are increased from 1.13 to 3.39 N-m.  This is to be 
expected, since the energy dissipation resembles a linear 
system at high bolt torques.  However, from 3.39 to 5.65 N-m 
the  parameter increases.  This means the energy dissipation of 
the Iwan model has become more nonlinear to account for the 
slip region that contains a great deal of energy dissipation close 
to the macro-slip region.  Finally, the viscous damping 
parameter, C, seems to remain in a similar range for each mode 
considered.  The equivalent low-amplitude damping ratio is 
also shown and these damping ratios are comparable to those in 
Table 3 and hence they seem to be plausible lower bounds for 
the damping in the system, due the supports and material 
damping. 

Validating the Modal Model 
The optimized modal model from Table 6 was next 

validated by comparing the response of the nonlinear model 
with an experimentally measured response.  The response at the 
midpoint of the 2 beam set up was selected for the location of 
interest.  The bolts of the 2 beam structure were tightened to 
3.39 N-m and an impact force with a maximum value of 
approximately 53 N (or the 3rd force level from Table 1 and 
Table 4) was applied to the structure using the automatic 
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hammer. The experimentally measured impact force was used 
as an input and the modal equations of motion for each of the 
modes (using the parameters in Table 6) were integrated in time 
with a Newmark-Beta time integration routing with a Newton-
Raphson iteration loop for the nonlinear force in the Iwan 
model.  The response at the midpoint of the beam was then 
found by adding the contribution of each mode and using the 
mass normalized mode shapes. 

The responses were first compared in the frequency 
domain where it was easy to ignore the effect of the rigid body 
modes.  In addition, a zeroed early-time fast Fourier transform 
(ZEFFT) [3] was used to show how the nonlinearity of both the 
model and the measured data progressed over time.  Fig. 7 
shows the ZEFFTs taken at several different times including: 
0.051, 0.29, 0.53, 0.76, and 1.0 second as indicated in the 
legend.  The solid and dashed lines correspond to the 
experimentally measured response and the simulated response 
from the modal Iwan models respectively. 
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Fig. 7  ZEFFTs for the midpoint of the 

structure for both the experimental measurement 
(solid lines) and the model (dashed lines). 

The ZEFFTs show that the first three modes dominate the 
response in this frequency range and that the frequencies do not 
shift very much over time.  The model matches the 
measurement very well, except at those frequencies where the 
measurement falls below the noise floor of the sensors.  It is 
typically necessary to zoom in near each resonance peak to 
evaluate the ZEFFTs for a system such as this.  Fig. 8 shows a 
zoomed in view of the first resonant peak from Fig. 7. This 
comparison reveals that the model agrees quite well with the 
measurements; both predict a similar variation in the amplitude 
of the peak with time and a similar level of smearing as the 

frequency of oscillation increases with time (due to decreasing 
amplitude).  It is important to note that no filtering was 
performed on the measured data, so this confirms that the filters 
used when obtaining the modal Iwan parameters have not 
distorted the data significantly. 
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Fig. 8  Zoomed in view of the first resonant 

peak with ZEFFTs for the both the experimental 
measurement (solid lines) and the model (dashed 

lines). 

In order to compare the responses in the time domain, a 
filter was applied to eliminate the rigid body motion.  The 
measured response was filtered using a fourth order 
Butterworth filter, with frequencies between 50 and 600 Hz 
kept.  Note that other frequency bands were experimented with 
and including higher frequencies in the filtering process did not 
change the time response significantly. The filtered measured 
response was compared to the simulated response in the time 
domain as shown in Fig. 9. 
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Fig. 9  Time response comparison of the 

filtered experimental measurement (solid lines) 
and the model (dashed lines). 

The velocity ring-down for the model (dashed line) is 
observed to compare very well with the ring-down of the 
filtered measurement (solid line).  In this type of comparison, it 
is important to note that the measured data is filtered which 
could distort the signals, but in this case the distortion would 
hopefully be minimal since only the rigid body motions have 
been eliminated. 

CONCLUSION 
In this work, a viscous damper was added in parallel with a 

modal Iwan model and a procedure was discussed to identify 
parameters for the model from laboratory data.  The 4-
parameter Iwan model was found to fit the measurements very 
well for the first three bending modes, suggesting that modal 
coupling was weak and that a modal Iwan model may be an 
effective way of accounting for the nonlinear damping 
associated with the mechanical joints of the system.  The 
measurements also showed that it was important to also have a 
viscous damper in parallel with the Iwan element in order to 
account for the linear damping associated with the material and 
the boundary conditions.  There are only a few parameters to 
identify and the parameters , , C and KT are all fairly clearly 
represented in the modal response.  On the other hand, in this 
study FS and K∞ were somewhat difficult to estimate since we 
were not able to apply large enough input forces to drive the 
system well into the macro-slip regime.  This is likely to always 
be a problem when impulsive forces are used since the joint 
dissipates a lot of energy in the first few cycles, before the 
filters and Hilbert transform have stabilized. 

This modal Iwan approach is very appealing since it allows 
one to treat a structure as a set of uncoupled linear modes with 
slightly nonlinear characteristics in the micro-slip regime; a 
collection of modal Iwan models such as this is extremely 
inexpensive to integrate, making this approach very attractive 
whenever the force levels are low enough that the approach is 
sufficiently accurate.  In the validation section, this model was 
used to predict the response of the structure to a measured 
impulsive force and the comparison showed that the modal 
Iwan model did accurately predict the measured response over 
the frequency range of interest.  Future works will further 
explore the validity of the modal model, by using inputs at 
other locations and other types of inputs. To date, experimental 
and analytical results have suggested that this approach can be 
very successful, except perhaps at very high force levels when 
serious macro slips occur [6]. 
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