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Abstract

A two degree-of-freedom (DOF) nonlinear oscillatory system is presented which exhibits jump phe-
nomena where the period of oscillation jumps to an integer multiple of its original period when the state
changes by a small amount due to damping. The jump phenomenon is investigated within the framework
of Catastrophe theory where the abrupt change in the response characteristic of the system is explained
by the interaction between its invariant manifolds. The authors recently presented an approach based on
the concept of the Instantaneous Center Manifold (ICM), where, the center manifold of a conservative
nonlinear system was replaced by an equivalent set of ICMs as two-dimensional invariant manifolds of
the system that contain all of its periodic orbits. This study attempts to explain the sudden change in
the response of a slightly damped oscillator as its response decays, based on the ICMs of its underlying
undamped system. Such abrupt changes in the response of the system are explained based on the ori-
entability properties of the local ICMs of the undamped system. This study also presents a bifurcation
analysis of periodic orbits of the undamped system to illustrate the evolution of different types of periodic
orbits, orientability of their local ICMs and their effect on the transient response of the damped system.
These effects are expounded in cases of jump phenomena observed in numerical simulation of the free
response of the damped system.
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1 Introduction

Mechanical systems often exhibit phenomena in which the response of the system changes character dra-
matically for a seemingly small change of some parameter. These phenomena are often characterized by
a large amplitude discontinuity in the dynamic response of the system to small amplitude disturbances.
Some examples include; sudden jumps in nonlinear torsional vibration of a power transmission system [1],
vibration of nonlinear dynamic absorbers [2, 3, 4], forced vibration of a diaphragm air spring [5, 6], dynamic
oscillation of a diesel generator [7], forced vibration of bladed disks (internal resonance)[8, 9, 10], roll-coupled
maneuvers of airplanes [11, 12, 13] and vibration of mechanical and electrical systems described by Duffing’s
equation [14, 15, 16, 17]. Standard perturbation methods such as Poincare-Linsteddt method and multiscale
method, which are most suited for approximation of small amplitude nonlinear responses, can not be used to
describe the large amplitude associated with such discontinuities. In these cases, catastrophe theory provides
a natural synthesis between the practically observable and theoretical aspects of their sharp discontinuity
when a small continuous change is made.

Catastrophe theory originated in the mid-1960’s, with the ideas of French topologist Thom which were
published in the book [18]. Later, Zeeman [19] suggested that the theory of catastrophes, to mean a particular
mathematical model of catastrophic changes in the response of a system, should be called “Catastrophe
Theory”. The centerpiece of Catastrophe theory is Thome’s transversality theorem. This theorem asserts
that two manifolds, in general position, intersects transversely where the intersection is stable in a sense that
a small perturbation will not change the nature of the response significantly. However, when the intersection



is non-transversal, any arbitrarily small perturbation will change the qualitative nature of the intersection
dramatically. One can determine whether an intersection is transverse by checking the Jacobian of the
manifolds at the intersection. What can be defined as the manifolds, in Thom’s transversality theorem,
depends on the response characteristic of the system being studied. If the solution of the system in state
space is being investigated, one can choose the stable, unstable and center manifolds of the system as the
invariant manifolds in Thom’s transversality theorem.

However, for conservative oscillatory systems, the invariant manifolds of the system reduce down to only
the center manifold which is, in general, defined in a high dimensional space. In a recent study, Ardeh
et al [20], using the center manifold theory, proposed an approach to replace the center manifold with an
equivalent set of low dimensional invariant manifolds which were named Instantaneous Center Manifolds.
Later, following the works of Rosenberg [21, 22, 23, 24, 25|, Shaw et al [26, 27, 28] and Kerschen et al
[29, 30], the ICM concept was used to define nonlinear modes of vibration as periodic orbits on these
invariant manifolds of the system. This definition, not only extended the previously defined set of invariant
manifolds of fixed points by Shaw et al [26, 27, 28] to include the invariant manifolds of periodic obits, but
was also capable of capturing the entire geometry of such manifolds (see [31] for more details).

These recently discovered invariant manifolds of periodic orbits, in a sense, are more significant than
those associated with the fixed points of the system, since they intersect with the manifolds of fixed points
non-transversely. That is because, at the point where they intersect the manifolds of the fixed points, the
Jacobian of the center manifold is singular. This condition, i.e. singularity of the Jacobian of the center
manifold, is often called the (internal) resonance condition where DOF of the system oscillate at unequal
frequencies with rational ratios.

Moreover, as it will be discussed in Section 5, periodic orbits on the new interconnecting manifolds are
products of bifurcations of periodic orbits on the invariant manifolds of fixed points, i.e. the manifolds of the
primary nonlinear normal modes discussed in [29]. In this sense, since catastrophes are bifurcations between
different equilibrium or fixed point attractors, these new interconnecting manifolds can be used to explain
unexpected phenomena such as jump phenomena. In other words, one may roughly define Catastrophe
theory “Bifurcation theory from the topological viewpoint” that is the study from a qualitative point of
view of the ways that solutions to differential equations change [32, 33, 34]. The inverse relation has been
previously studied by Arnold [35] where Thom’s transversality theorem was used to locate bifurcations in
versal families'. In this regard, this study attempts to explain catastrophes, observed in a case study, by
establishing a connection between Bifurcation theory and Catastrophe theory through the concepts of ICMs
and nonlinear modes of vibration.

To this end, Section 2 presents a two DOF conservative nonlinear system. The ICMs of the systems are
calculated and illustrated in different views, each, emphasizing a different characteristic of the periodic orbits
of the system. The concept of orientability is discussed in Section 3 to explain how it affects the evolution
of the transient response of a dynamical system. Moreover, examples of orientable and non-orientable local
ICMs of the conservative 2DOF system are presented. Section 4 discusses the stability of periodic orbits of
the system in question and the relation between the stability of periodic orbits and orientability of their local
ICMs. In addition, this section presents presents the upper limit of the approximation error in calculating
the Floquet exponents. This limit defines a criteria that can validate the calculated Floquet exponents in
stability analysis of periodic orbits, , and is the key to accurately assessing the stability of the orbits studied
here. This section also explains the mechanisms of losing stability, through which, some of the less trivial
periodic orbits of the system bifurcate from other equilibria. In Section 5, the conservative system is modified
by adding very small damping terms which are treated as perturbation terms. This is used to study the effect
of changing changing the damping terms on the free response of the system, especially in the cases of jump
phenomena. This study reveals that the jump phenomena occur as the state of the system approaches local
manifolds with different orientability properties. Conclusions and directions for future work are provided in
Section 6.

LA set of deformations that retains a special universal property under certain changes.



2 Case Study: The Underlying Conservative System

In this section, the two DOF conservative, nonlinear oscillatory system, shown in Fig.1, is considered. The
periodic orbits of the systems are calculated and illustrated in three different views; an invariant manifold
(ICM) representation, an energy-frequency plane representation and a cross-section view of their Poincare
map.
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Figure 1: A two DOF nonlinear oscillatory system

Equations of motion (EOM) for the system shown in Fig.(1) can be obtained for the following parameters
values k‘l = kig = k‘3 = 1, Cl =Cy =C3 = 0 and knl =0.5 as
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which can also be recast in state space defined by (z1, 22, y1,y2) = (x1, T2, 41, Z2) as
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2.1 Periodic Orbits in the Energy-Frequency Plane

One of the characteristic features of nonlinear systems is the frequency-energy dependence of their periodic
orbits (nonlinear modes). As a result, the modal amplitudes and frequencies of nonlinear modes depend on
the total energy of the system. Regarding this dependence, one typical representation of nonlinear modes is
an energy-frequency plot. In this plot, a branch of nonlinear modes, which represents an invariant manifold
(ICM), qualitatively shows how the frequencies of periodic orbits change as the total energy of the system
increases. In this regard, the (scaled) frequencies of the periodic solutions of the system (1) are shown as
functions of their their energy in Fig 2. The scaled frequency f, is defined as

fs = (3)

! [m(f = fnin) = n(f — fmaz)] f Otherwise

fmaz _fmin

{f ICM I and ICM I

where f is the fundamental frequency of periodic orbits of the system (1), and m and n are the positive
integer factors in the terms ICM I-m, II-n referring to an invariant manifold (ICM) that intersects with the
ICM I and ICM II at periodic orbits that are cases of, respectively, m:1 (m to one) and n:1 resonances,
ie. fi = mfy and fi = nfs. It is important to notice that the frequency f, represents the fundamental
frequency only for the ICMI and ICMII. For all of the other ICMs, fs represents a scaled version of their
fundamental frequencies, where, the scaling factor is a positive integer only at the intersection of theses ICMs
with the ICM I and ICM II. This scaling is done to show all of the branches of the nonlinear modes in a
region between the two branches defined by ICM I and ICM II.

2.2 Periodic Orbits on the Invariant Manifolds of the System

Periodic orbits of the system (1) are found using the ICM approach and continuation algorithm [31, 30] and
used to construct the ICMs of the system (1). Examples of such ICMs are shown in Fig. 3. Each manifold



is constructed by creating a mesh in which each individual solution, i.e. a periodic orbit (limit cycle) of the
system (1), generates a tray of the geometry of the invariant manifold.
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Figure 2: Scaled frequencies of periodic orbits nonlinear modes on ICMs are shown as functions of their
energies for the same ICMs. Scaled frequencies are calculated using Eq. (3). One group of ICMs, shown in
cyan, start from the ICM IT and land on ICM II while the other group of ICMs, shown in black, start from
the ICM I (ICM II) and land on ICM II (ICM I).

Figure 3: The displacement components of some of the ICMs are shown. For each surface, x5 of the system
is plotted versus the x; and H,, where z; is the first DOF chosen as the independent variable and H,, is
the Hilbert transform of z;. Left: First (of two) invariant manifolds that is tangent to the vector field of
the system at its fixed point, i.e. the origin. Middle: Second invariant manifold that is tangent at the fixed
point of the system. Right: One of infinitely many invariant manifolds that is tangent to the vector field of
the system at its periodic orbit. This manifold is an example of one that connects the other two invariant
manifolds, as mentioned in Section 1.

2.3 Periodic Orbits as Fixed Points of a Poincare Map

Another way to illustrate the periodic orbits of this system is through a Poincare map. In this regard, a
Poincare section 2 is defined by Q = {(21, 72, 91,%2) € R*|y2 = 0}. The set Q defines a hyperplane in R*which



has the property that all the solutions of the system in (2) cross it transversely. This can be validated by
proving that the tangent on the solutions of the system (2) when they cross this hyperplane, i.e.
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is non-zero. One can readily show that the tangent vector (4) is almost always non-zero, except at the origin
which is the fixed point of the system (1). Next, a cross-section of fixed points of the mentioned Poincare
map defined by the plane y; = 0, a contour of the Poincare map, is shown in Fig. 4. In addition, fixed
points in this cross-section of the Poincare map are shown for varying f in Fig.5 where three groups of ICMs
can be recognized. First, denoted by ICM I and ICM II, are the loci of all the nonlinear modes (periodic
orbits) that are continuations of linear modes of the system. Second, shown in cyan, is a group of ICMs
that resemble contours of two saucer-shape surfaces sitting on top of the ICM II. The last group consists
of two types of ICMs; a saddle-shape and a group of inverted saddle-shape ICMs. The last two groups are
products of bifurcations from the periodic orbits (modes) on ICMs I and II. This will be further investigated
in Sections 4 and 5.
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Figure 4: Cross-section of a Poincare map is shown for the solutions with energies less than 35. Other than
ICM I and ICM II, which are the loci of all the linear modes and their nonlinear continuations two other
groups of ICMs are identified. First, shown in cyan, is a group of ICMs that only cross the ICM II. The
second group, shown in black, consists of ICMs that cross both ICMs I and II.
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Figure 5: Scaled frequencies of periodic orbits on ICMs are shown versus the fixed points of the Poincare
map.Scaled frequencies are calculated using Eq. (3).

3 Orientability of Invariant Manifolds

To understand the dynamics of conservative vector fields, one typically looks for attractors (stable limit cycles
or periodic orbits), their basin of attraction and, in particular, the boundaries of these attracting domains.
Invariant manifolds often act as basin boundaries, and it is important to know where they are located and
what they look like [36, 37]. These manifolds are sometimes called separating manifolds, as they separate
the state space into two invariant regions. Orbits starting on one side of the manifold are confined to this
region since they cannot pass through an invariant manifold. In particular, a separating manifold must have
two sides, namely an inside and an outside. However, there are two-dimensional invariant manifolds that do
not have two sides. Such manifolds are called nonorientable manifolds.

Figure 6: Left: The Mobius strip is a nonorientable surface. Middle: A twisted strip represents an orientable
surface. Right: Torus is also an orientable surface.

The classical example of a nonorientable manifold is the Mobius strip. A Mobius strip can be easily made
by wrapping a strip of paper around a circle and gluing its ends together after giving it half of a twist (see



Fig. 6). This surface only has one side since any trajectory that starts on the top surface will end up on
the opposite surface after one cycle. In other words, orbits can advance through this type of surface without
crossing it. Two examples of orientable surfaces, i.e. a twisted strip and a torus, are also shown in Fig. 6.
Orbits that starts on one side of the twisted strip or inside of a torus can not move through these surfaces
without crossing them.

The Mobius strip is the only two dimensional non-orientable manifold that can be embedded in R? without
self-intersection. For example, for the system in 1, the local invariant manifolds of the period lengthened
periodic orbits form complicated manifolds that intersect themselves. However these manifolds, a few of
which are shown in Fig. 7 are nonorientable and have very similar structures to that of the Mobius strip.
The complexity of these manifolds is caused by the shape of their periodic orbits (mode shapes). In other
words, to construct theses manifold, like the Mobius strip, one can start with a strip of paper but, in this
case, the strip needs to be wrapped along the mode shape of the periodic orbit instead of a circle. Also, its
ends now need to be glued together after an odd number of half twists.

Figure 7: Examples of nonorientable manifolds. Left: A local ICM representing a twisted strip with (548) x
(thirteen half ) twists around a periodic orbit, shown with a solid black line, with 5:8 resonance. Right:
local ICM representing a twisted strip with (16 + 1)1 (seventeen half) twists.
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The system (1) also has several periodic orbits along orientable manifolds. For example, Fig. 8 represents
three cases of twisted strips with, respectively, one, four and six full twists and a case of a torus local ICM.
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Figure 8: Examples of orientable manifolds. Left: A local ICM representing a twisted strip. Middle-Left:
Local ICM of a periodic obit with 3:1 resonance. This surface can be made by wrapping a strip of paper
along the mode shape of the periodic orbit, shown in black, and gluing its ends after (3 4+ 1) x % twists.
Middle-Right: Local ICM of a periodic obit with 5:1 resonance. Right: A torus local ICM.

These local invariant manifolds are key building blocks in shaping the orbits of nonlinear conservative
systems, since, they can be seen as the gates and walls of the state space that the orbits of these systems
can move through and cannot cross, respectively. In this regard, one needs a quantitative tool to determine
the orientability (or nonorientability) of these local ICMs. This can be done through the stability analysis
of their corresponding periodic orbits.



4 Stability of Periodic Orbits and Orientability of Their Invariant
Manifolds

In this section, the relation between the orientability of local ICMs and the stability of their defining periodic
orbits is explained. In order to determine the stability of periodic orbits of nonlinear systems, one needs to
perform a Floquet analysis. In this regard, Floquet theory is explained briefly next.

4.1 Stability of Periodic Solutions (Floquet Theory at a Glance)

Stability of periodic solutions of nonlinear system is assessed by analyzing the boundedness or otherwise of
the solutions of the linearization of the system around its periodic orbit. In this sense, considering a n DOF
nonlinear, conservative system defined by
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with a periodic solution represented by z = [T, 7|7, Floquet theory replaces (5) with its linear approxi-
mation about the periodic solution z
. T 0 I T _ .
z=| . | = _ =Jr(2)z, i,7=1,...,n, 6
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and studies the boundedness of its solutions in order to determine the stability of the periodic solution of
the original nonlinear system.

Figure 9: Floquet theory essentially replaces the nonlinear system by its corresponding linear system at each

point along the periodic solution. The perturbed periodic solution z = z(t * +T) + { zo } , [ 20 } X«
0 0

z(t * +T), where z(t * +T) represent an arbitrary point along the periodic solution z and To 1 is the

perturbation term, will asymptotically converge (will not diverge) to the periodic solution z if the solution
of linear system (6) is stable (marginally stable), i.e. the response to the perturbation term is bounded.

Since z has a period T', so does the Jacobian matrix Jr(Z) and based on Floquet theory, solutions of the
(6) accept the form

e p(t) (7)

where p(t) is also periodic with period T. This way, Floquet concluded that the solutions of the linear
system (6) are bounded, and consequently the periodic solution of the nonlinear system (5) is stable, if for
all the Floquet exponents p;, Re{u;} <0,i=1,...,2n.



In order to calculate the Floquet exponents of the system (6) one may first find its characteristic multi-

pliers. Denoting the fundamental matrix of the system in (6) by Z(¢t) = {zl Dot zn}, where 21, ..., 2,

are n linearly independent solutions of the system (6), the characteristic multipliers of the system (6), i.e.
D1y ey Pn, can be defined as the eigenvalues of the monodromy matrix

B=2Z(0)"'Z(T). (8)

The characteristic exponents or Floquet exponents of the system (6) are then defined as 1, ..., uy, satisfying

et = p;. 9)

Figure 10 shows the Floquet exponents of the system (1) for the ICMs I-11,I1-19 and II-2. All regions
with at least one positive Floquet exponent represent unstable periodic orbits.
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Figure 10: Real parts of Floquet exponents are shown for the ICMs I-11,II-19 (left) and II-25 (right) over
the cross-section of the Poincare map defined in Section 2. When one or more exponent is positive, the
corresponding periodic orbit is unstable.

4.1.1 Range of Validity of Floquet Stability Analysis

As mentioned above, the stability of the periodic solution of (5) is evidenced by (the signs of) the (largest)
Floquet exponents of its associated linear system. Frequently, the eigenvalues computed based on a numerical
solution to Eq (6) are not accurate enough to allow stability to be assessed as clearly as is shown shown
in Fig. 10. That is because, the periodic solution of the original nonlinear systems (5), its period and also
the solutions of its associated linear system used in (8) are all prone to approximation error. Therefore, in
order to assure the validity of the stability analysis, one has to show that all the aforementioned sources of
approximation errors would lead to an acceptable error |§Re{u}| < |Re{u}|. This can be done by finding
the maximum approximation error caused, first, when calculating the periodic solution of the nonlinear
system and its period and, second, when integrating the solution of the linear system (6). To find periodic
solution of the system 1, one can approximate these solution with harmonic terms [31].Then the sum of
the mentioned error, i.e. dRe{u} must satisfy |6Re{u}| < |Re{ps}|. The following inequality expresses the
constraint obtained using this approach.
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Where e; is the i—th column of the identity matrix, &, is the periodic solution of the system (5) approximated
by k harmonic terms, J¢ is the Jacobian of the vector field f , T} represents the period of the solution
&y (proof will be given in a forthcoming paper). This condition is used to determine how accurate the
approximation of the periods, T}, of the periodic orbits of the system (1) had to be in order to perform the
stability analysis in Fig. 10. In contrast, Fig. 11 compares this approach with a more standard approach in
which a fixed accuracy is used and the validity is not checked. The results in that case are highly inaccurate
and hence difficult to interpret.
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Figure 11: Floquet exponents calculated without satisfying the inequality (10) (left) and after satisfying (10)
are shown for the ICM I-11,11-19 in Fig 10. Three regions, as shown in the right, have been magnified in
both sets of valid and invalid computed Floquet exponents.

4.2 Stability of Periodic Orbits and Orientability of Their Local Invariant Man-
ifolds

Orientability is a geometric property. In this sense, the orientability of an invariant manifold, such as those
shown in Fig.6, can always be determined by finding its geometry. However, for more complicated geometries
like the ones shown in Figs. 7-8, determining the orientability, although possible, is not trivial. For invariant
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manifolds of dynamical systems, however, one can find the orientability of such manifolds by analyzing the
behavior of the solutions of the system. For example, the geometries of the invariant manifolds of periodic
orbits are shaped by the asymptotic behavior of the solutions that are initiated close to the orbits. The
dynamics of such solutions, as mentioned earlier in this section, are governed by Eq. (6). Furthermore, since
the Floquet exponents of the system in (6) dictate the asymptotic behavior of the mentioned solutions, they
consequently determine the geometry of the invariant manifolds of their associated periodic orbit. In this
regard, stability analysis (using Floquet exponents or multipliers) is essential for any quantitative approach
to determine the orientability of the local invariant manifolds of periodic orbits. Explaining the relation
between the stability of periodic orbits and the geometry of their local invariant manifold is the main focus
of the (global) bifurcation theory.

Roughly speaking, bifurcation theory explains how fixed points of systems turn into (branches of) simple
periodic orbits and how simple periodic orbits change into more complicated ones when they lose stability.
The mechanisms that govern such transformations between different types of equilibrium are important, not
only because they explain why and how such changes happen, but also because they can be used to predict
when the changes happen and what they are. The latter feature of such mechanisms is the main tool for
determining the orientability of invariant manifolds of periodic orbits. For example, when a simple periodic
orbit, such as a solution that orbits on a circle on a cylinder, loses its stability, it may transform into a
periodic orbit that moves on the surface of a twisted strip or a torus. What determines the geometry, where
the resultant unstable periodic orbit travels on, is the mechanism, through which, the simple periodic orbit
loses its stability. If the simple periodic orbit loses its stability through Andronov-Hopf bifurcation (torus
bifurcation), then the resultant periodic orbit will travel on the surface of torus.

A thorough study of all possible types of bifurcation is beyond the scope of this paper. However, for the
system 1, nine types of periodic orbits have been identified and are provided in Appendix A. Also two cases
of bifurcations and their associated mechanisms of losing stability are presented in Appendix B.

5 Numerical Simulation of Jump Phenomena

Analysis of the free response of oscillatory systems is the foundation of many identification methods [38, 39,
40, 41]. In some, such as [42, 43], free responses of a slightly damped system have been used to identify
the nonlinear modes of vibration of the underlying undamped system. Theses approaches use the decaying
response of the system, initiated on a branch of nonlinear modes, to extract the frequency-energy dependence
of the branch using time-frequency analysis tools such as a wavelet transform. This section reveals the
sensitivity of such algorithms to the amount of damping and also the accuracy of the initial conditions. This
is explicated by presenting examples of jump phenomena in the frequency of the response of the system
for a set of different damping ratios and also accuracy of the initial conditions. This section also provides
an explanation of these jumps using catastrophe theory, which describes the jump phenomena as a sudden
change in the state of the system passing through local manifolds which are tangent to each other or manifolds
with different orientability properties. In this sense, this study can help to extend the application of the
aforementioned approaches, since, jumps are one of the primary factors preventing broader adoption of this
type of identification.

5.1 Non-conservative System

The non-conservative system shown in Fig. 1 is considered herein with non-zero damping coefficients with
the same underlying conservative system as the system in (1). The EOM of this system can be written as
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where the damping matrix C' is defined by
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in which, (iw,V’); define the linearized modes of the conservative part of the system in (11). This way, one
can readily find the damping matrix
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that should be used to give two desired modal damping ratios in the system (11).

5.2 Cases of Jump Phenomena in the Free Response of the Non-conservative
System

In this section, the system described in (11) is initiated at an initial condition that is on one of the periodic
orbits on ICM I or ICM II, but with a small deviation §. The time evolution of the solution is then calculated
using the EOM defined in (11) for different values of ¢ and §. Then, the short time Fourier transform is used
to obtain the spectrogram of the solution. The dominant frequency at each time instant is then extracted
from the spectrogram. Figures 13-16 show the results of a few of these simulations in which jump phenomena
are observed as the system looses energy along different invariant manifolds of the underlying conservative
system. Two (out of many possible) scenarios are outlined next to explain these jumps as the interaction
between invariant manifolds of the system.
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Figure 12: Time-frequency history of the solution of the system, initiated on the ICM II, is calculated using
short-window Fourier transform.
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In order to explain the jumps in the dominant frequency of solution of the system, for example in the
time-frequency plot shown in Fig.12, some background could be beneficial. This is provided next. Moving
along an invariant manifold of the system, in this case the local center manifold or local ICM, the solution of
of the system may change its path from one manifold to another manifold that comes to contact with it. In
this scenario, in order for such a change to happen, two ingredients are required. First, the two mentioned
manifolds should be tangent to each other at the state where the solution changes its course from one to
another. This tangency or non-transversality can be captured by the resonance condition or equivalently in
the transversality condition. At the resonance condition, the Jacobian of the linearized system around the
equilibrium becomes singular, indicating that its manifold may have more than one tangent plane at that
equilibrium. The non-transversality condition described in Eq. (17) expresses the same concept in terms
of (real part of) Floquet exponents and the change in the stability of the equilibrium. Second, the solution
of the system needs to be perturbed (or be in a perturbed state) while passing through the neighborhood
of the non-transversal intersection. In this regard, the initial perturbation J is imposed to the solution of
the system on the local ICMs. Note that when the manifold (NNM branch) is stable, the deviation ¢ will
gradually decay due to damping until it is no longer strong enough to cause a jump in thepath of the solution.

Jump phenomena may also occur when the solution of the system changes its pathbecause of the ori-
entability properties of the manifolds on its path. The manifold described by one of the NNM branches is
typically a curvilinear plane or a twisted strip. It may be intersected by a variety of other manifolds. For
example, suppose that the second manifold is a closed orientable manifold such as a torus. In this case, the
solution of the system cannot lose energy by orbiting outside of the torus and needs to move to the inside.
That is not possible because torus defines an orientable manifold. In such cases, a jump to the next open
manifold is likely to happen. On the other hand, a twisted Mobius stripes and twisted strips are both open
(nonorientable and orientable) manifolds where the solution of the system can lose energy while orbiting on
one side of the manifold without having to cross it, and so, the response of the system is likely to stay on
this type of manifold and not exhibit a jump.

Figure 13, shows an example where the solution was initiated on the ICM II with § = 0.05% deviation in
its initial condition. The damping ratio was set to ;2 = le — 7. Each neighborhood of the points marked
with circles (denoted by letters A to F) houses two consecutive jumps which will be explained next. Starting
(almost) on ICM II, the solution of the system begins losing energy on one side of ICM II (an orientable
Twisted strip) until it hits point A. Two consecutive jumps, one because of non-transversality and another
because of an orientable torus happens in the neighborhood A. First, the solution jumps from ICM II to
ICM I-5,I1-15 because of non-transversal intersection of the ICM II and the ICM I-5,I1-15 manifolds become
tangent (15:1 resonance). However, this jump is not evident in the dominant frequency shown in Fig 13,
because, the scaling function described in (3) is used to scale the dominant frequency. In the absence of this
scaling function, the dominant frequency would be seen to jump to 1/15th of the ICM II frequency. Then,
since the manifold ICM I-5,I1-15, at the neighborhood of A is a torus, the solution jumps again to ICM I
in the neighborhood B where ICM 1 is locally a orientable twisted Mobius strip. The solution continues to
lose energy until it reaches the end of the neighborhood B where the local ICM I is tangent to ICM II (3:1
resonance-the local ICM of this point is visualized in Fig (8)- Middle-Left). At this point, the solution jumps
back on the ICM II and continues to lose energy on one side of its orientable twisted strip until it enters
in the neighborhood C. Same set of jumps as in the neighborhood A happens in neighborhood C causing
the solution to jump down on the ICM I which is locally an orientable twisted strip in the neighborhood D.
Another sets of two consecutive jumps similar to neighborhoods A and C, send the solution back up to the
ICM II (neighborhood E) and then down to ICM I (neighborhood F). However, at this point, the deviation
0 has decayed to a level that is not enough to cause any other jumps at the upcoming points prone to jump
at its path on ICM 1.
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Figure 13: Dominant frequency of the decaying solution of the system is overlaid on top of ones from identified
ICMs of the underlying conservative system. Unstable periodic orbits are shown in red dots for five of the
ICMs, i.e. ICM I, ICM II, ICM I-5,I113,ICM 1-5,I114 and ICM I-5,I115. Jumps occur at six neighborhood
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Figure 14: Left: Poincare map sowing the ICMs I, IT and I-5,II-14. Right: Magnified view showing the
solution of the system at the neighborhood B and C highlighted by red arrows.

These jumps are examined in more detail in Fig. 14, which shows a cross section of a Poincare map of
the system (defined in Section. 2) that shows several of the ICMs of the system in the neighborhoods B
and C that were marked in Fig. 13. Moving along the the ICM I, the solution reaches the non-transversal
intersection between the ICM I and ICM II at the point By in the neighborhood B. At this point the deviation
0 causes the solution to jump from ICM I to ICM II and continue on it until it reaches the point C; in the
neighborhood C. At this point the ICM II and ICM I-5-1I-14 intersect non-transversaly and the solution
jumps onto the ICM I-5-11-14 and it continues on ICM II until point Co. The point Cs represents a periodic
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solution that orbits on the surface of a torus (its local ICM) . The periodic orbit at Cy is the product of the
periodic orbit at C; after losing stability through torus bifurcation. At this point, since the solution cannot
lose energy by orbiting outside of a torus and also cannot move through it, since the torus is orientable, it
jumps again onto the ICM I in the neighborhood D.

In another case, shown in Fig. 15, the solution, which was initiated on ICM I, reveals a similar set of
jumps at the neighborhood B, C, and D and finally rest at ICM II.
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Figure 15: Dominant frequency of the decaying solution of the system initial (almost) on the ICM I with
0 = 0.06% and ¢ = le — 6. At thre neighborhood B, C, and D the divination of the solution from the
periodic orbits of the underlying conservative system forces the solution to move form one ICM to another
one at their non-transversal intersections causing the frequency of the solution to jump. It’s worth noting
that although the solution was initiated on the ICM I, it reaches the origin through losing energy on the
ICM II.

As explained earlier, damping also causes the deviation to decay as the solution advances. This effect is
evident at the neighborhood F where the deviation has decayed to such an extent that it is not enough to
cause another jump despite the existing potential for another set of jumps at its next encounters with non-
transversal intersections. This effect can be further examined by recomputing the response with a damping
ratio (3 2 = le — 6, that is ten times larger than what was used in Fig. 13. To illustrate this effect, the
dominant frequency of the solution of the system (for the same set of initial conditions and deviation) are
obtained for damping ratios ¢; = (o = {be — 7, le — 6, 12e — 6}. As shown in Fig. 16, increasing the
damping ratio will cause a the initial deviation to decay more quickly so that it falls below the level at which
it is sufficient to cause a jump at a non-transversal intersection. At ( = 12e — 6, the initial deviation is
damped enough before the solution reaches the first non-transversal intersection. It is worth mentioning that
decreasing the initial deviation has the exact same effect as increasing the damping ration on the behavior
of the solution at non-transversal intersections on its path.
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Figure 16: Dominant frequency of the solution of the damped system, shown with a solid green line, obtained
for damping ratios ( = {5e — 7, le — 6, 12e — 6}. Increasing the damping ratio, while the initial deviation
was held fixed, has caused the initial deviation to decay quickly to below the level at which it is large enough
to perturb the solution at its first encounter with the non-transversal intersection at neighborhood A and
at all subsequent intersections. It is also interesting to note that the response continues to decay along the
ICM II even though many of the periodic orbits are unstable for energies below 10°1.
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6 Conclusion

This paper has showed that catastrophe theory and bifurcation theory can be used to understand abrupt
discontinuities in the response of a dynamical system. While this is a concept that has attracted scientists
and engineers for centuries and the bifurcation and catastrophe theory that have been employed are not
new, this work has sought to connect these concepts to modes of vibration and (internal) resonance. In
this regard, this paper presented a brief introduction of an extended definition of modes of vibration, i.e.
nonlinear modes, through the concept of ICM. Three different representation of such modes are provided for
a two DOF nonlinear conservative system. One key tool that is needed in this type of analysis is a means
of calculating the stability of periodic orbits. Although the concept is well established, this is incredibly
challenging for a nonlinear system based on numerical ICMs or NNMs. Here a new criteria was presented
that makes this possible

This study discussed the effect of nonlinear modes on the solutions of nonlinear systems through geometric
concepts such as the loci of nonlinear modes (ICMs) and their orientability. These concepts are explicated by
few examples of orientable and nonorientable ICMs of the nonlinear modes of the case study. An explanation
is provided at two qualitative and quantitative levels that relates the bifurcation theory, catastrophe theory
and the geometric properties of the ICMs of nonlinear systems. Furthermore, a slightly damped adaptation
of the cases study is presented. Decaying response of the system is studied using time-frequency analysis.
Results reveal multiple cases of jump phenomena which were explained through catastrophes and bifurcations
caused by non-transversal (tangential) intersection of ICMs.

The findings presented here can be used in several ways. As mentioned previously, they explain why it
is sometimes difficult to force a system to decay along one of its NNMs as is required in the identification
method in [43]. This may lead to a better understanding of what classes of systems are most suitable for
that identification method and how to increase the probability of success. One other application, is to utilize
to find the ICMs (branches of nonlinear modes) that are not continuations of linear modes. Regions that
exhibits jump phenomena can be searched for new nonlinear modes by initiating continuation algorithms at
different directions.

Appendix A: Orientability of Periodic Solutions

This section explains a quantitative approach that can determine the orientability property of local invariant
manifolds using the Floquet multipliers and exponents of the corresponding periodic orbit about which
the manifold was created. In this approach , first, periodic orbits are categorized based on their Floquet
exponents as shown in Table 1. Then , the orientability of both the local stable and unstable manifolds, if
they exist, are determined using Floquet multipliers. This orientability property is the key to understanding
whether a periodic orbit can be reached by the system from a particular region in the state space, and hence
whether the system is likely to jump or remain on a particular solution branch. For example, in the damped
system studied herein, since the system is losing energy, it will always approach any periodic orbit, on its
path, from its local stable manifold. Therefore, if the stable manifold of a periodic orbit is orientable, the
periodic orbit in question will not affect the the path of the solution of the system. In this study, these
periodic orbits are referred to as isolated periodic orbits. Next, the orientability of local center manifold is
determined using Floquet multipliers. However, local center manifold do not always exist. In such cases,
one can assign the orientability of the local ICM to the periodic orbit. That is because, the orientability of
the local center manifold and the local ICM should agree at all times since ICMs are the loci of all periodic
orbits of the system. In other words, in such cases , periodic orbits adopt the orientability of the center
manifolds of periodic orbits in their neighborhood on the local ICM.

The basis in identifying the orientability property of local stable and unstable manifolds of periodic
orbits is the fact that Floquet multipliers of a periodic orbit are the same as eigenvalues of its Poincare map
[37, 44, 45]. In [46, 47, 48] it was shown that a local manifold is orientable if all of the eigenvalues of its
Poincare map are real and positive. This was done using the fact that the Poincare map is an orientation
preserving map?.

2Poincare map is a rotation matrix with unity determinant.
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Periodic Orbit Type

Floquet Exponent

Stable Manifold / Unstable Manifold

Center Manifold/ICM

H1 =iy
1. Center 1 o = —ithy 0
] 4D Orientable Surface (curvilinear planes)
(Center-Center) 13 = ity 0
M4 = —iY3
n1 = —A1 + i
2. Sink 1 po = —A1 — iy 4 e rtT Onorientable 2k + 1 Nonorientable
4D p; |ty = Stable 0,2D p+q= ! surface
(Sink-Sink) 13 = —XAg + iy 1= otherwise Nonorientable 2k Orientable
M4 = =g = iy
K1 = i
3. Sink 2 - _ )
by = —ip + ‘ntable
2 1 2D p; |t 4 = ER Onorientable 4 ) 2D Orientable Torus
(Sink-Center) g = —Ag + iy i= otherwise Nonorientable
pg = —Ag — ity
K1 = A1+ ivg
4. Source 1 o = Ay — iy 4 ert Onorientable
4D p;l, = > Unstable 0, 2D Orientable Torus
(Source-Source) 13 = Ao + iy = otherwise Nonorientable
Ha = Ao — 1o
wuy =ivy
5. Source 1 - _; .
po = —iy Rt 3 le
2 1 2D pild_y = {€ ~ Onmorientable ;4 oble 2D Orientable Torus
(Source-Center) pg = Ag + io i= otherwise Nonorientable
Kg = A = ig
H1 = A1
6. Saddle 1 fy = —A1 2D Orientable Stable 2k +1 Nonorientable
0,2D p+q= ! surface
(Saddle-Saddle) w3 = XAz 2D Orientable Unstable 2k Orientable
Hg = —Ag
n1 =M
7. Saddle 2 Ho = —Ap 1D Stable Curve
] 2D Orientable Torus
(Saddle-Center) pn3 = ivy 1D Unstable Curve
M4 = —iYy
mp = —A1 + vy ap py2_ = | € rt Onorientable
8. Saddle 3 By = —Ap — i Pili= = \otherwise Nonorientable
) i Onorientablo 0, 2D Orientable Torus
(Source-Sink) K3 = A2 + i 2D p;lig = HEARIC  Unstable
, Ao — 1) i= otherwise Nonorientable
14 = Ag — io
p1 = —A1 + iy op o — JERT Onorientable
9. Saddle 4 By = —A1 — ivy P1 = Y otherwise Nonorientable
) ¢ rt Onorientabl ¢, 2D Orientable Torus
(Source-Sink) 3 = A1+ Yy 2D pp = norientable  (hstable
. otherwise Nonorientable
g = A1 — i

Table 1: Nine types of periodic orbits are identified for the system (1) based on their Floquet multiplier and
exponents. Floquet multipliers and exponents are denoted by p and p respectively.

The orientability of a local center manifold is based on the type of bifurcation that has generated it.
In this study, the system exhibits, mostly, three types of bifurcations, namely, Hopf-Hopf bifurcations,
Period-Doubling bifurcations and Andronov-Hopf (or Torus) bifurcations. One can determine which type of
bifurcation one has based on the Floquet multipliers of the periodic orbit, as will be discussed in the next
section. In this regard, the local center manifold of a periodic orbit is:

e an orientable curvilinear plane if it is originated from a Hopf-Hofp bifurcation,

e a twisted strip with &k half-twists (orientable for even k and nonorientable for odd k) if it is originated
from a Period-Doubling bifurcation, or

e an orientable torus if it is originated from an Andronov-Hopf (torus) bifurcation.

In cases where the local center manifolds do not exist, such as cases of periodic orbits with Period-Doubling
bifurcations, the local ICMs can be used to determine the orientability property of the periodic orbits. In
this regard, since, all coordinates of a periodic solutions are also periodic, one can assume an analytical

representation of the ICMs [31] of the system 1 as
1 = EAg,ll) CoOS M@ = Cos P1 (Agl)(T) 4+ Y2 [Afé) coS m(le
H, = EAQ) sinmg¢ = sin ¢ (Agl) + Y=o [Ag,ll) sin m(ﬁlD
Ty = ZAgg) coS M@z = COS P2 (AP + Ym=2 {Ag) cos m(bgD

where ¢;’s, in general, are
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1 = qoo
¢2 = poo

and , ¢ = Q%t and T represents the period of the periodic orbits. Equation (15), in general®, defines a
twisted strip with p + ¢ half-twists (see ruled surfaces in [49, 50]). In this sense, following the discussed
in Section 3, if p + ¢ is odd, then (15) defines a nonorientable surface. On the other hand, the surface is
orientable if p + ¢ is even.

To this end, nine types of periodic orbits are identified and the orientability of their local invariant
manifolds (including the local ICM) are summarized in Table 1. It is importance to mention that Table 1 is
obtained applies only to a 2 DOF conservative oscillatory system and is far from providing a complete list
for a general dynamical system in R*.

(16)

Appendix B: Mechanisms of Losing Stability (Cases of Local and
Global Bifurcations)

Section 4.1 discussed how the stability of a periodic orbit manifests itself through Floquet multipliers (or
exponents). Section 4.2 presented the relationship between the Floquet multipliers (or exponents) and
the orientability of the local invariant manifolds of the periodic orbits. This section, explains some of the
mentioned relations based on mechanisms through which fixed points or periodic orbits lose stability and as
a result new periodic orbits come to exist. These mechanisms describe the change in the structure of the
geometry of the periodic orbits and their local invariant manifolds as a function of the change in their period.
In this regard two mechanisms explaining two types of bifurcations, with an eminent role in the system 1,
are presented. Note that the system in 1 exhibits a very rich set of different types of bifurcations, including
some special cases. However, the study of all such cases of bifurcations is beyond the scope of this paper.
For more details on different types of bifurcation, specially in R*, readers are referred to [37, 51, 45, 35].

6.1 Bifurcations of Periodic Orbits from a Fixed Point

Hopf-Hopf Bifurcation- An equilibrium point is referred to as a Hopf-Hopf point (or double Hofp point) if,
at the mentioned point; first, the system has only two pairs of purely imaginary eigenvalues, i.e. tiwq, *iws
and, second, if the change in the imaginary part of the Floquet exponents with respect to the period is zero,
or specifically, the transversality (generosity) condition (see [37, 51, 35])

d

ﬁ#i =
is satisfied. This is a broad definition that also includes unusual Hopf points. In a four dimensional system,
at a Hopf-Hopf point many cases of bifurcation can occur which are described in [51]. In the case of the
system 1, bifurcation of double Hopf points is the birthplace of four (half) branches of periodic orbits on
two dimensional invariant linear (and later curvilinear) planes. These branches of periodic orbits include
linear modes of vibration and their nonlinear continuation. In this sense, one can state that the Hopf-
Hopf bifurcation of the fixed point of the system (1) is the birthplace of the modes of vibration in that
neighborhood.

0 (17)

3In some special cases, such as where ¢o = @ - %qﬁl, k,l € N, Eq. (15) generates Tori.
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Figure 17: Top: Real parts of Floquet exponents calculated for ICM I and ICM II and shown on the cross-
section of the Poincare map described in Section 2. The period T is defined as an descending variable
along theses branches as they move away from the fixed point at the origin. The transversality (generosity)
condition, i.e. (fi”Ti = 0, is satisfied at the fixed point of the system (1) at the origin. Therefore, the fixed
point at the origin is double Hopf point for the system (1). Bottom: Imaginary parts of Floquet exponents
calculated for ICM I and ICM II.

6.2 Bifurcations of Periodic Orbits from a Periodic Orbit

Neimark-Sacker Bifurcation- Neimark-Sacker (Torus) bifurcation® is characterized by a pair of complex
conjugate multipliers crossing the unit circle at

p=e0 ¢ #0,m (18)

The bifurcation into a torus only happens in three or higher dimensional systems. In this case, a periodic
orbit, that has lost its stability, spirals around a torus. This is schematically shown for a 3 dimensional case
in Fig 18. Moreover, as shown in Fig. 18, in case of a torus bifurcation, the fixed point of Poincare map
becomes unstable and generates limit cycles.

41t is sometimes called Hopf bifurcation of periodic orbits, secondary Hopf bifurcation or generalized Hopf bifurcation.
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Figure 18: Left: A schematic illustration of torus bifurcation. A stable periodic orbit becomes unstable
surrounded by a stable 2D torus. Right: Poincare map (shown with black dots) of a periodic orbit (shown
in solid red) initiated at (0.9061 -1.6894, 0, 0). Appearance of limit cycles in the Poincare map reveals a
case of torus bifurcation.
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Figure 19: Left: Real part of Floquet multipliers calculated for ICM I-5,I1-9 (Top) and ICM II-56 (Bottom).
Right: Floquet multipliers of ICM I-5,II-9 (Top) and ICM II-56 (Bottom) in the neighborhood of the unit
circle.

Numerous cases of torus bifurcations occur in the system (1). This can be observed in Figure 19 which
shows the Floquet multipliers of two branches of periodic orbits. For example, in ICM I-511-9, the type-4

21



periodic orbits (in Table 1) bifurcate from the periodic orbit with multipliers shown in solid black circles
through torus bifurcation . Both pairs of multipliers move outside the unit circle. The type-8 periodic orbits
shown in red solid circles are the products of torus bifurcation of the periodic orbit with multipliers shown in
solid green circles. In addition, in ICM II-56, the type-9 periodic orbits are created through torus bifurcation
of the periodic orbit with multipliers shown in solid black circles. A pair of multipliers move inside the unit
circle while the other one move inside.
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