Computing Nonlinear Frequency Response Functions (FRFs) for Systems with Iwan Joints

S. Iman Zare Estakhraji, Matthew S. Allen \& Drithi Shetty
University of Wisconsin-Madison
International Modal Analysis Conference (IMAC XXXVIII), Houston, Texas
February 2020

Nonlinearities due to joints are a major source of emror in modeling complicated, built-up structures.

Micro- and Macro-slip in joints introduces nonlinearity

Segalman's 4-parameter Iwan model has proven effective at capturing the nonlinearity observed in joints in a variety of experimental studies.

Log(Joint Force / Resp. Amplitude)
[1] D. J. Segalman et al., "Handbook on Dynamics of Jointed Structures," Sandia National Laboratories, Albuquerque, NM 87185, 2009.
[2] B. Deaner et al., "Application of Viscous and Iwan Modal Damping Models to Experimental Measurements ...," ASME JVA, vol. 137, p. 12, 2015
[3] D. R. Roettgen and M. S. Allen, "Nonlinear characterization of a bolted, industrial structure using a modal framework," MSSP, vol. 84, pp. 152-170, 2017.

The 4-parameter Iwan joint is straightforward to integrate, but no method exists for computing the nonlinear frequency response.

Outline

- Computing Iwan slider states from history of reversal points.
- SDOF Case:
- Reversals / Maximum Displacement
- Implementation
- Extension to MDOF Systems
- Conclusions

Iwan Joint

Determining the positions of the Iwan sliders from the past history of load reversals

Iwan Joint

Top Surface

- An Iwan element is a onedimensional, parallel arrangement of Jenkins elements.
- Each Jenkins element consists of a linear spring in series with a friction slider.

Iwan Joint: Nonlinear Force

- Force-deflection relation for an element [1]:

$$
\begin{array}{ll}
f_{i}=k x ; & \dot{x}>0,0 \leq x \leq f_{i}^{\star} / k \\
f_{i}=f_{i}^{\star} ; & \dot{x}>0, x \geq f_{i}^{\star} / k \\
f_{i}=\left[k x-\left(k A-f_{i}^{\star}\right)\right] ; & \dot{x}>0, A-2 f_{i}^{\star} / k \leq x \leq A \\
f_{i}=-f_{i}^{\star} ; & \dot{x}<0, x \leq A-2 f_{i}^{\star} / k
\end{array}
$$

f^{\star} : Strength of the element $\rho\left(f^{\star}\right)$: Distribution function f_{i} : Force of the element "i" A : Maximum displacement

- Nonlinear force in the joint [1]:

$$
f_{n l}=\int_{0}^{k x} f^{\star} \rho\left(f^{\star}\right) d f^{\star}+k x \int_{k x}^{\infty} \rho\left(f^{\star}\right) d f^{\star}
$$

Iwan Joint: Distribution function

- The maximum extension of the ith spring can be defined as [1]:

$$
\phi_{i}=f_{i}^{\star} / k
$$

- Distribution function defined based on the power-law distribution [1]:
$\rho(\phi)=R \phi^{\chi}\left[H(\phi)-H\left(\phi-\phi_{\max }\right)\right]+S \delta\left(\phi-\phi_{\max }\right)$
- The nonlinear force depends on the state of the sliders.

Visualizing the State of the Sliders

- The sliders don't have any internal dynamics.
- If the response is quasi-periodic, then the state of all of the sliders can be determined from $x_{\text {max }}$: the reversals (or the maximum
displacement in past history).

Reversal Points / Maximum Displacement

- The state of sliders can be specified:
- Some of them are at $x_{\max }-\phi_{i}$
\checkmark Green lines show ϕ_{i}
- Some of them are at Zero. (Never slipped)
- Reversal points can be used as a benchmark.
- One moment after max:

Joint is at a reversal point: $\dot{x}=0$

State of Sliders

- Sliders \#1~6 are sliding (red)
- Sliders \#1~6 are following the joint by the distance of ϕ_{i} (Green lines).
- Slider \#7 and \#8 are still stuck at $x_{\max }-\phi_{i}$
- Sliders \#9 and 10 never slipped.

Knowing this, we can use the relations defining the Iwan joint to compute the force at any instant.

- Force-deflection relation for an element [1]:

$$
\begin{array}{ll}
f_{i}=k x ; & \dot{x}>0,0 \leq x \leq f_{i}^{\star} / k \\
f_{i}=f_{i}^{\star} ; & \dot{x}>0, x \geq f_{i}^{\star} / k \\
f_{i}=\left[k x-\left(k A-f_{i}^{\star}\right)\right] ; & \dot{x}>0, A-2 f_{i}^{\star} / k \leq x \leq A \\
f_{i}=-f_{i}^{\star} ; & \dot{x}<0, x \leq A-2 f_{i}^{\star} / k
\end{array}
$$

T
f^{\star} : Strength of the element
$\rho\left(f^{\star}\right)$: Distribution function
f_{i} : Force of the element "i"
A : Maximum displacement

- Sum over the joints to compute the total force
- Total stiffness is the sum of the stiffnesses of the stuck springs.

Modified Continuation Procedure

Modified Continuation Procedure

- One additional state variable is added to the state vector:

$$
z_{0}=\left[\begin{array}{c}
x_{0} \\
\dot{x}_{0} \\
x_{\max }
\end{array}\right]
$$

- Shooting function:

$$
\begin{aligned}
H_{z_{0}}\left(z_{0}, t, T, x_{\max }\right) & =z_{T}\left(z_{0}, t, T, x_{\max }\right)-z_{0} \\
H_{x_{\max }}\left(z_{0}, t, T, x_{\max }\right) & =\max (x(t))_{0 \leq t \leq T}-x_{\max }
\end{aligned}
$$

- Convergence criteria:

$$
\begin{gathered}
\frac{\left\|H_{z_{0}}\left(z_{0}, T, x_{\max }\right)\right\|}{\left\|z_{0}\right\|}<\epsilon \\
\frac{\left\|H_{x_{\max }}\left(z_{0}, T, x_{\max }\right)\right\|}{\left\|x_{\max }\right\|}<\epsilon
\end{gathered}
$$

The Jacobians needed for the continuation algorithm are computed using finite differences.

- Correction (Newton-Raphson):

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\frac{\partial x}{\partial x_{0}}-1 & \frac{\partial x}{\partial \dot{x}_{0}} & \frac{\partial x}{\partial x_{\text {max }}} & \frac{\partial x}{\partial T} \\
\frac{\partial \dot{x}}{\partial x_{0}} & \frac{\partial \dot{x}}{\partial \dot{x}_{0}}-1 & \frac{\partial x}{\partial x_{\text {max }}} & \frac{\partial \dot{x}}{\partial T} \\
\frac{\partial x_{\text {max }}}{\partial x_{0}} & \frac{\partial x_{\text {max }}}{\partial \dot{x}_{0}} & \frac{\partial x_{\text {max }}}{\partial x_{\text {max }}}-1 & \frac{\partial x_{\text {max }}}{\partial T}
\end{array}\right]\left[\begin{array}{c}
\Delta x_{0} \\
\Delta \dot{x}_{0} \\
\Delta x_{\text {max }} \\
\Delta T
\end{array}\right]=} \\
& {\left[\begin{array}{c}
x_{0}\left(T, x_{0}, \dot{x}_{0}, x_{\max }\right)-x_{0} \\
\dot{x}_{0}\left(T, x_{0}, \dot{x}_{0}, x_{\max }\right)-\dot{x}_{0} \\
x_{\max }\left(T, x_{0}, \dot{x}_{0}, x_{\max }\right)-x_{\text {max }}
\end{array}\right]} \\
& \left\{\begin{array}{c}
z_{0,(j+1)}^{(k+1)}=\Delta z_{0,(j+1)}^{(k)}+z_{0,(j+1)}^{(k)} \\
x_{m_{a x j+1}}^{k+1}=\Delta x_{m a x_{j+1}}^{k}+x_{m a x_{j+1}}^{k} \\
T_{0,(j+1)}^{(k+1)}=\triangle T_{0,(j+1)}^{(k)}+T_{0,(j+1)}^{(k)}
\end{array}\right.
\end{aligned}
$$

- The step-size dilemma for $\sin (\mathrm{x})$ [1]:

Application to an SDOF System

Parameter	Value
$K_{\text {lin }}(N / m)$	9
$\zeta_{\text {lin }}$	2.78×10^{-5}
$M(k g)$	10
$F_{s}(N)$	10.0
$K_{t}(N / m)$	1
χ	-0.5
β	3.0

- Continuation state augmented with $x_{\max }$ (only one reversal considered)
- 100 sliders used to model the Iwan element

SDOF System NLFRFs

Extension for MDOF Systems

MDOF Algorithm

- Algorithm is similar, but there may be many reversals to keep track of.

Results for a 3-DOF system with an Iwan Element for different force levels

Conclusions

- While Iwan joints are complicated, the state of any Iwan joint can be determined algebraically if the displacement is known at enough reversal points.
- The Nonlinear Frequency Response (NLFRFs) can then be computed using continuation.
- With further development, this could be an effective tool for simulation or model updating using measurements.

Options for Computing NLFRFs
Time Integrate until Steady-
~100 hours State

Shooting \& Continuation
 (this talk)

Harmonic
 Balance

(ongoing work)
(computation times for SDOF system)

Acknowledgements

Iman Zare

- Iman Zare (who did møst of the work!)

- The National Science Foundation

- This material is based in part upon work supported by the National Science Foundation under Grant Number CMMI1561810. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Any Questions?
(6)

Results for a 3-DOF system with 3 Iwan Elements for different nonlinearities

$$
\begin{array}{ll}
\text { Blue: } & \chi=-0.5 \\
\text { Red: } & \chi=-0.8
\end{array}
$$

$$
F=\left[\begin{array}{l}
0.4 \\
0.3 \\
0.5
\end{array}\right]
$$

(6)

Iwan FRF

- A common numerical model for bolted or riveted joints is the Iwan model.
- In many applications it is desirable to predict the nonlinear Frequency Response Functions (FRFs) of a structure that contains joints.
- The steady-state response must be estimated over a range of frequencies.

$$
m \ddot{x}+C_{l i n} \dot{x}+K_{l i n} x+f_{n l}(x, t, y(t, \phi))=F_{e x t}
$$

Continuation Method

A numerical method to obtain the FRF

Continuation Procedure

- Numerical continuation can be used to obtain the FRFs of a nonlinear system.
- For a response to be considered steady-state, the displacement and velocity must be periodic.

$$
\begin{gathered}
H\left(z_{0}, T\right)=z_{T}\left(z_{0}, T\right)-z_{0} \\
\frac{\left\|H\left(z_{0}, T\right)\right\|}{\left\|z_{0}\right\|}<\epsilon
\end{gathered}\left\{\begin{array}{l}
z_{0}=\left[\begin{array}{l}
x_{0} \\
\dot{x}_{0}
\end{array}\right] \\
z_{T}=z\left(z_{0}, t=T\right)
\end{array}\right.
$$

Numerical Integration

- The differential equation is solved using implicit integration methods: Newmark-Beta.
- The state variables are sent to the integration function as the initial conditions.
- All the history dependent variables should be specified as the initial conditions to start the integration.

Continuation Procedure

- Prediction (pseudo-arclength continuation):
$\left[\left.\left.\frac{\partial H}{\partial z_{0}}\right|_{z_{0,(j)}, T_{(j)}} \quad \frac{\partial H}{\partial T}\right|_{z_{0,(j)}, T_{(j)}}\right]\left\{P_{(j)}\right\}=\left\{\begin{array}{c}\{0\} \\ 0\end{array}\right\}$

$$
\left\{P_{(j)}\right\}=\left[\begin{array}{ll}
P_{s,(j)}^{T} & P_{T,(j)}
\end{array}\right]^{T}
$$

$$
\left\{\begin{array}{c}
z_{0, p r,(j+1)}=z_{0, j}+s_{j} P_{z,(j)} \\
T_{p r,(j+1)}=T_{j}+s_{j} P_{T,(j)}
\end{array}\right.
$$

- Correction (Newton-Raphson):

$$
\begin{array}{r}
{\left[\begin{array}{cc}
\left.\frac{\partial H}{\partial z_{0}}\right|_{z_{0,(j)}, T_{(j)}} & \left.\frac{\partial H}{\partial T}\right|_{z_{0,(j)}, T_{(j)}} \\
P_{s,(j)}^{T} & P_{T,(j)}
\end{array}\right]\left[\begin{array}{c}
\triangle z_{0,(j+1)}^{(k)} \\
\triangle T_{(j+1)}^{(k)}
\end{array}\right]=} \\
\left\{\begin{array}{c}
-H\left(z_{0,(j)}, T_{(j)}\right) \\
0 \\
0
\end{array}\right\}
\end{array}
$$

$$
\left\{\begin{array}{c}
z_{0,(j+1)}^{(k+1)}=\triangle z_{0,(j+1)}^{(k)}+z_{0,(j+1)}^{(k)} \\
T_{0,(j+1)}^{(k+1)}=\triangle T_{0,(j+1)}^{(k)}+T_{0,(j+1)}^{(k)}
\end{array}\right.
$$

Iwan FRF: Challenges

The implicit nature of the state variables makes it non-trivial to use continuation to compute the frequency response using already established techniques such as the shooting method.

State of sliders

- It specifies if a slider is slipping or not:

$$
\left\{\begin{array}{l}
\Delta y_{i}=x_{i}-y_{i-1}<\phi_{i} \Rightarrow y_{i}=y_{i-1} \\
\Delta y_{i}=x_{i}-y_{i-1} \geq \phi_{i} \Rightarrow y_{i}=x_{i}-\phi_{i}
\end{array}\right.
$$

The non-linear force of Iwan joint is history dependent.

- For the case of steady-state response, the state of sliders should be periodic.

$$
\begin{gathered}
Y(t)=\left[\begin{array}{llll}
y_{1}(t) & y_{2}(t) & \ldots & y_{n}(t)
\end{array}\right]^{T} \\
Y(t)=Y(t+n T)
\end{gathered}
$$

- The state of sliders should be considered as the initial condition as well.

$$
Y(0)=Y(0+n T)
$$

Reversal Points

- Before max:

For the time $\mathrm{t}=0.28377 \times \mathrm{T}$ and $\omega=0.99128 \times \omega_{\mathrm{n}}$

- At max:

Reversal Points

- At max:

- One moment after max:

Joint is at a reversal point

Algorithm

Algorithm

Algorithm

Algorithm

Finite Difference

Finite Difference

- Finite difference is used:

$$
\frac{\partial H}{\partial z}=\frac{z_{p}-z_{0}}{\epsilon_{z}} \quad \frac{\partial H}{\partial t}=\frac{z_{p}-z_{0}}{\epsilon_{t}}
$$

- Step-size makes the differences:
- Number of iteration
- Next predictions
- The step-size dilemma for $\sin (\mathrm{x})$ [1]:

Step-Size Algorithm

Results

SDOF System

Parameter	Value
$K_{\text {lin }}(N / m)$	9
$\zeta_{\text {lin }}$	2.78×10^{-5}
$M(k g)$	10
$F_{s}(N)$	10.0
$K_{t}(N / m)$	1
χ	-0.5
β	3.0

- Just one reversal point is considered, and it seems that is enough.
- 100 sliders are used.
- Different Load cases is considered.
- For MDOF system more reversal points should be considered.

SDOF System

SDOF System

Preiodicity

MDOF System

The challenges and a need to a new algorithm

MDOF System

- More harmonics because of more nonlinearity in the system.
- More than two reversal points, all of them should be considered.
- The number of reversal points may change at each iteration. That causes the size of Jacobians to be Dynamic.

MDOF Algorithm

MDOF Algorithm : Part I

MDOF Algorithm : Part II

MDOF Algorithm : Part III

MDOF Algorithm : Part IV

- It continues until we get the state of sliders are periodic.

Appendix

Iwan FRF: Challenges

- The implicit nature of the state variables makes it non-trivial to use continuation to compute the frequency response using already established techniques such as the shooting method.
- A novel method to numerically compute the non-linear FRFs of a system with an Iwan element,
- The reversal points over the response period is included as a state variable.
- The shooting method is modified to account for the added state variable.

Reversal Points

- One moment after max:

Reversal Points

- When $\dot{x}>0$ and $0<x<x_{\max }$ the $1^{\text {th }}$ to $7^{\text {th }}$ sliders are sliding, the $8^{\text {th }}$ slider is stuck at some initial location. The $9^{\text {th }}$ and $10^{\text {th }}$ sliders are stuck at equilibrium.
- When and the $1^{\text {th }}$ to $7^{\text {th }}$ sliders are sliding, the $8^{\text {th }}$ slider is stuck at some initial location. The $9^{\text {th }}$ and $10^{\text {th }}$ sliders are stuck at equilibrium.

Solution Selection

Bifurcation Tracking \& Stability Calculations

- continuation paramerers

Joint Force / Resp. Amplitude

