
Computing Nonlinear Frequency 
Response Functions (FRFs) for 

Systems with Iwan Joints

S. Iman Zare Estakhraji, Matthew S. Allen & Drithi Shetty

University of Wisconsin-Madison

International Modal Analysis Conference (IMAC XXXVIII), Houston, Texas

February 2020



2

Nonlinearities due to joints 
are a major source of error 
in modeling complicated, 
built-up structures.

Micro- and Macro-slip 
in joints introduces 
nonlinearity

Nonlinearities due to joints 
are a major source of error 
in modeling complicated, 
built-up structures.



Segalman’s 4-parameter Iwan model has proven effective 
at capturing the nonlinearity observed in joints in a 
variety of experimental studies.

[1] D. J. Segalman et al., “Handbook on Dynamics of Jointed Structures,” Sandia National Laboratories, Albuquerque, NM 87185, 2009.
[2]  B. Deaner et al., "Application of Viscous and Iwan Modal Damping Models to Experimental Measurements …," ASME JVA, vol. 137, p. 12, 2015
[3]  D. R. Roettgen and M. S. Allen, "Nonlinear characterization of a bolted, industrial structure using a modal framework," MSSP, vol. 84, pp. 152-170, 2017.
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The 4-parameter Iwan joint is straightforward to 
integrate, but no method exists for computing the 
nonlinear frequency response.
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[1] M. Scheel et al., “Experimental Assessment of Polynomial Nonlinear State-Space and Nonlinear-Mode Models…,” MSSP, Submitted 2019.
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NLFRF from [1]

• Iwan joints modeled 
with 30-100 sliders

• Discontinuous time 
histories



Outline

• Computing Iwan slider states 
from history of reversal points.

• SDOF Case:
• Reversals / Maximum 

Displacement

• Implementation

• Extension to MDOF Systems

• Conclusions
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Iwan Joint
Determining the positions of the Iwan sliders from the past 

history of load reversals



• An Iwan element is a one-
dimensional, parallel 
arrangement of Jenkins 
elements.

• Each Jenkins element consists 
of a linear spring in series with a 
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• Force-deflection relation for an element [1]:

• Nonlinear force in the joint [1]:

[1] Iwan, Wilfred D. "A distributed-element model for hysteresis and its steady-state dynamic response." (1966): 893-900.

: Strength of the element

: Distribution function

: Force of the element “i”

: Maximum displacement

Iwan Joint: Nonlinear Force 



Iwan Joint: Distribution function

• The maximum extension of the ith spring 
can be defined as [1]:

• Distribution function defined based on the 
power-law distribution [1]:

• The nonlinear force depends on the state 
of the sliders.

[1] Segalman, Daniel J. "A four-parameter Iwan model for lap-type joints." Journal of Applied Mechanics 72.5 (2005): 752-760.
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Visualizing the 
State of the 
Sliders
• The sliders don’t have 

any internal dynamics.

• If the response is 
quasi-periodic, then 
the state of all of the 
sliders can be 
determined from xmax : 
the reversals (or the 
maximum 
displacement in past 
history).



Reversal Points / Maximum Displacement

• One moment after max:
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Joint is at a reversal point:

• The state of sliders can be specified:

✓ Green lines show 

o Some of them are at  

o Some of them are at Zero. (Never slipped)  

• Reversal points can be used as a benchmark.



• Slider  #7 and #8 are still 
stuck at
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State of Sliders

• Sliders #1~6 are sliding 
(red)

• Sliders #1~6 are  following 
the joint by the distance of 

(Green lines).       

• Sliders #9 and 10 never 
slipped.

sliding 
direction



• Force-deflection relation for an element [1]:

• Sum over the joints to compute the total force

• Total stiffness is the sum of the stiffnesses of the stuck springs.

[1] Iwan, Wilfred D. "A distributed-element model for hysteresis and its steady-state dynamic response." (1966): 893-900.

: Strength of the element

: Distribution function

: Force of the element “i”

: Maximum displacement

Knowing this, we can use the relations defining the Iwan
joint to compute the force at any instant.



Modified Continuation 
Procedure



Modified Continuation Procedure

• One additional state variable  is added to the state vector:

• Shooting function:

• Convergence criteria:



The Jacobians needed for the continuation algorithm 
are computed using finite differences.

• Correction (Newton-Raphson): • The step-size dilemma for sin(x) [1]:

[1] Mathur, Ravishankar. An analytical approach to computing step sizes for finite-difference derivatives. Diss. 2012.



Application to an SDOF System

• Continuation state augmented with 
xmax (only one reversal considered)

• 100 sliders used to model the Iwan
element

M
Iwan Element

Klin



SDOF System NLFRFs
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nonlinearity, 
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Slider displacements for Amp=1 N 
show complicated, nonlinear 

discontinuous response.



Extension for
MDOF Systems



MDOF Algorithm

• Algorithm is similar, but there may be many 
reversals to keep track of.



Results for a 3-DOF system with an Iwan
Element for different force levels
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Conclusions

• While Iwan joints are complicated, 
the state of any Iwan joint can be 
determined algebraically if the 
displacement is known at enough 
reversal points.

• The Nonlinear Frequency Response 
(NLFRFs) can then be computed 
using continuation.

• With further development, this 
could be an effective tool for 
simulation or model updating using 
measurements.

Options for Computing NLFRFs

Time Integrate 
until Steady-

State

Shooting & 
Continuation 

(this talk)

Harmonic 
Balance 

(ongoing work)

~100 hours

10-15 minutes

~2-5 minutes

(computation times for SDOF system)
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Results for a 3-DOF system with 3 Iwan
Elements for different nonlinearities
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Iwan FRF

• A common numerical model for bolted or riveted joints is the Iwan model.

• In many applications it is desirable to predict the nonlinear Frequency 
Response Functions (FRFs) of a structure that contains joints.

• The steady-state response must be estimated over a range of frequencies.



Continuation Method
A numerical method to obtain the FRF



Continuation Procedure

• Numerical continuation can be used to obtain the FRFs of a 
nonlinear system.

• For a response to be considered steady-state, the displacement 
and velocity must be periodic.



Numerical Integration

• The differential equation is solved using 
implicit integration methods: 
Newmark-Beta.

• The state variables are sent to the 
integration function as the initial 
conditions.

• All the history dependent variables 
should be specified as the initial 
conditions to start the integration.



Continuation Procedure

• Prediction (pseudo-arclength 
continuation):

• Correction (Newton-Raphson):



Iwan FRF: Challenges
The implicit nature of the state variables makes it non-trivial to 

use continuation to compute the frequency response using already 
established techniques such as the shooting method.



State of sliders 

• It specifies if a slider is slipping or not:

• For the case of steady-state response, the state of sliders should be periodic.

• The state of sliders should  be considered as the initial condition as well.

The non-linear 
force of Iwan joint 

is history 
dependent.



Reversal Points
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• Before max: • At max:
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Reversal Points

• At max:
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• One moment after max:
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Joint is at a reversal point



Algorithm



Algorithm 

Never slipped
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Slipping

Algorithm 



Algorithm 



Finite Difference



Finite Difference

• The step-size dilemma for sin(x) [1]:

[1] Mathur, Ravishankar. An analytical approach to computing step sizes for finite-difference derivatives. Diss. 2012.

• Finite difference is used:

• Step-size makes the differences: 

o Number of iteration

o Next predictions



Step-Size Algorithm



Results



SDOF System

• Just one reversal point is considered, 
and it seems that is enough.

• 100 sliders are used.

• Different Load cases is considered.

• For MDOF system more reversal 
points should be considered.

M
Iwan Element

Klin



SDOF System
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SDOF System
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Preiodicity
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MDOF System
The challenges and a need to a new algorithm



MDOF System

• More harmonics because of more non-
linearity in the system.

• More than two reversal points, all of them 
should be considered.

• The number of reversal points may change 
at each iteration. That causes the size of 
Jacobians to be Dynamic.
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MDOF 
Algorithm



MDOF Algorithm : Part I



MDOF Algorithm : Part II



MDOF Algorithm : Part III



MDOF Algorithm : 
Part IV • It continues until we get the state of sliders are periodic. 
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Appendix



Iwan FRF: Challenges

• The implicit nature of the state variables makes it non-trivial to use 
continuation to compute the frequency response using already established 
techniques such as the shooting method.

• A novel method to numerically compute the non-linear FRFs of a system 
with an Iwan element,

• The reversal points over the response period is included as a state variable.

• The shooting method is modified to account for the added state variable.



Reversal Points
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• One moment after max:



Reversal Points

• When             and                             the 1th to 7th

sliders are sliding, the 8th slider is stuck at 
some initial location.  The 9th  and 10th  sliders 
are stuck at equilibrium.
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• When             and                             the 1th to 7th

sliders are sliding, the 8th slider is stuck at 
some initial location.  The 9th  and 10th  sliders 
are stuck at equilibrium.



Iwan_FRF/MHB/3DOF/my-try-captured-all-weeks.fig

Iwan_FRF/MHB/3DOF/my-try-captured-all-the-peak-max(xdt).fig

Iwan_FRF/MHB/3DOF/my-try-captured-all-weeks.fig
Iwan_FRF/MHB/3DOF/my-try-captured-all-the-peak-max(xdt).fig




KT

FS

micro-slip
macro-slip

S
ti

ff
n

es
s

Joint Force / Resp. Amplitude


