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ABSTRACT 

This work proposes a means whereby weak nonlinearity in a substructure, as typically arises due to friction in 
bolted interfaces, can be captured experimentally on a mode-by-mode basis and then used to predict the nonlinear 
response of an assembly.  The method relies on the fact that the modes of a weakly nonlinear structure tend to 
remain uncoupled so long as their natural frequencies are distinct and higher harmonics generated by the 
nonlinearity do not produce significant response in other modes.  Recent experiments on industrial hardware with 
bolted joints has shown that this type of model can be quite effective, and that a single degree-of-freedom (DOF) 
system with an Iwan joint, which is known as a modal Iwan model, effectively captures the way in which the 
stiffness and damping depend on amplitude.  Once the modal Iwan models have been identified for each mode of 
the subcomponent(s) of interest, they can be assembled using standard techniques and used with a numerical 
integration routine to compute the nonlinear transient response of the assembled structure.  The proposed methods 
are demonstrated by coupling a modal model of a 3DOF system with three discrete Iwan joints to a linear model 
for a 2DOF system. 

Keywords: reduced order modeling, friction, interface, nonlinear modes, complexification and averaging.  

1. Introduction 

Experimental-analytical substructuring allows one to couple an experimentally derived model for a structure that 
is difficult to model, with a finite element model for the rest of the assembly in order to predict the system’s 
response.  While there are countless compelling industrial applications, many of the systems that are most 
difficult to model, and hence where experimental-analytical substructuring would be most beneficial, contain 
many interfaces with bolted joints.  Interfaces in built up structures are responsible for much of the damping in the 
assembly, and are the most common source of nonlinearity.  This work presents an extension of modal 
substructuring for this class of structure. 

Recent works have shown that bolted interfaces can cause the damping in a system to increase by a factor of two 
or more (see, e.g. [1-3]), while the effective natural frequency tends to change relatively little.  Furthermore, 
under the conditions outlined in [4] (simplistically that the joint forces and their harmonics are distinct from each 
modal frequency), the modes of the structure tend to remain uncoupled, so that the structure can be modeled 
accurately using a collection of uncoupled, weakly-nonlinear oscillators [5, 6].  This was thoroughly confirmed in 
[1] for an assembly of automotive exhaust components, by exciting the structure at multiple locations and various 
force levels (in the micro-slip regime).  A second investigation on a cylindrical structure with bolted joints and 
nonlinear contact between foam and an internal structure also highlighted the usefulness of this approach [7]. 

In this work we propose to use this class of model (e.g. uncoupled SDOF oscillators) to represent a subcomponent 
and then to assemble that subcomponent to the rest of the structure of interest.  Specifically, the set of nonlinear 
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oscillators are assembled using standard finite element assembly techniques.  The assembled equation of motion 
and its Jacobian are then used in a Newmark integration routine to predict the transient response of the assembled 
structure.  The methods are tested through simulations on a simple spring mass system.  While the method is 
applicable for a wide range of nonlinear SDOF oscillator models, this work uses a modal Iwan model for each 
subcomponent.  This type of model accurately captures the power-law dependence of damping on amplitude that 
is frequently observed in experiments [1, 5, 8, 9].  Other SDOF models, some of which may be simpler or less 
expensive to use, were evaluated in a recent study by the authors [7]. 

The paper is organized as follows. Section 2 outlines the approach used.  In Section 3 the proposed techniques are 
validated by deriving modal Iwan models for the three modes of a 3DOF system, which is then assembled to a 
linear 2DOF system. The conclusions are then presented in Section 4.  

2. Theoretical Development 

In the most general case, the equation of motion for substructure A can be written as follows,  
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J kf  maps each scalar joint force ,
A

J kf  to the points to which the joint is attached.  For example, in 

the example that will be discussed later, shown in Fig. 1 the first Iwan joint is between DOF 1 and ground so 

 T,1 1 0 0A
J f  and the third Iwan  joint is connected between DOF 2 and 3, so  T0 1 1 ,3

A
Jf .  Similar 

equations could be written for substructures B, C, etc…. 

When each mode of the substructure is represented as a modal Iwan model, the matrices M, C and K would be 
diagonal and the kth joint force would depend on only one modal displacement. 

We shall employ a primal formulation [10] to couple the substructures.  Without loss of generality, consider the 
case where substructure A will be joined to substructure B.  The substructures can be coupled by writing 
constraint equations of the following form,  
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and then eliminating the redundant degrees of freedom using 
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to obtain a set of independent (or unconstrained [11]) coordinates, q.  The equations of motion for the coupled 
system then become the following in terms of the coordinates q, 

 
 

 
 
 

, , ,1 ,
1T

, , ,1 ,
1

, ...
ˆˆ ˆ

, ...

J

j

J

j

N
A A A A A

J k J k k k N A
k

BN
B B B B B
J k J k k k N

k

f
t

t
f

 

 





 
             
 





f x
f

Mq Cq Kq L L
f

f x

   (5) 

where  

  



 T 0ˆ
0

A

B

 
  

 

M
M L L

M
 (6) 

and similarly for  and .  Further details can be found in [Ĉ K̂ 10] or ([11], Chapter 9). 

In order to simulate the response of the assembly, the unconditionally stable Newmark algorithm [12] is used (e.g. 
with N = 0.25 and  = 0.5).  This procedure was first developed by Simmermacher as reported in [8].  A Newton 
iteration loop is used to adjust the displacement of the joint (and the internal slider states) so that the joint force is 
in dynamic equilibrium at each time step.  Specifically, if the displacement at the jth time step is denoted q j, then 
the residual is defined as. 
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Then, the Jacobian is 
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 is the instantaneous stiffness of the kth Iwan joint and depends on the corresponding slider states, 

,1...
A

k  .  The estimate of the acceleration, displacement and velocity at this time step are updated as follows. 

For the first iteration the same procedure is used, only with 0j r . 
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Note that T ,
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 L and , and similarly for substructure B, are simply constant matrices 

that map each joint force onto the appropriate degrees of freedom in the assembled system.  These matrices, and 

the assembled system matrices ,  and  are calculated in advance and only the joint forces and stiffnesses 
need to be updated in each iteration. 
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2.1 Iwan Joint 

The preceding discussion is valid for a variety of joint models.  In this work the Iwan model is used, so each joint 
can be characterized by four parameters Fs, KT,  and  [13].  The first two parameters describe, respectively, the 
force at which the joint slips completely (macro-slip) and the stiffness of the joint when all sliders are stuck.  The 

model exhibits energy dissipation per cycle, D, that depends on magnitude of the displacement x  in a power-law 

fashion as 
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where R is a constant.  By analogy with a linear system, the effective damping ratio  of an SDOF system with 
mass m and with an Iwan joint in parallel with a spring of stiffness K0 is the following, 

  2
/ d nD m x     (11) 

where  and  2
0 /n TK K m   21d n    .  These relationships together with a Hilbert transform were 

used to fit an Iwan model to simulated measurements of each substructure.  For further details, see [1, 5]. 

3. Simulated Application 

The proposed approach was applied to the system depicted in Figure 1. 
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Figure 1. Schematic of the discrete system used to validate the proposed substructuring procedure. (top-

left) Substructure A, (bottom-right) Substructure B.  Mass and stiffness proportional damping was added to 
simulate material damping (dashpots not shown). 

Substructure A consists of three masses connected by linear springs of stiffness k in parallel with Iwan elements 
with the parameters shown in Table 1.  The other system parameters are m=10 kg, k=5 N/m, CA=0.002(MA+KA), 
CB=0.002KB.  The goal is to simulate a test on Substructure A to determine modal Iwan models for each mode of 
that substructure, and then to utilize modal substructuring to predict the response of the assembly when the 
masses are joined as indicated with x3=x4. 

Table 1. Parameters of Iwan Joints in Substructure A. 

Iwan Joint FS KT   

x1 – ground 10 N 5 N/m -0.5 0.1 

x1 – x2 1 N 4 N/m -0.2 0.01 

x2 – x3 100 N 3 N/m -0.8 1 

3.1 Estimating Modal Iwan Models for Substructure A 

The linear mode shapes  1 2 3φ φ φ  of Substructure A were assumed to be known (e.g. having been measured 

from a low-amplitude linear test).  Note that in such a test each Iwan joint acts as linear spring with stiffness KT.  
Then, to identify a nonlinear model for Substructure A, an experiment was simulated in which a half-sine impulse 
with a 0.1 second long period and amplitude of 100N was applied to mass 3.  The Newmark routine was used to 

determine the transient response and then the response of each mode was estimated using .  Note that t1q φ x he 

  



mode matrix used in this calculation corresponds to the linear, low amplitude modes that include the stiffness of 
the joints.  The FFT Qr()=FFT(qr(t)) of each modal response is shown in Figure 2.   A weak nonlinearity, as is 
typical of a structure with bolted joints, is visible near each peak.  
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Figure 2. Fast Fourier Transform of the modal response of substructure A.   

 

The simulated measurements were then post processed using the procedure outlined in [1] to identify modal Iwan 
parameters for each mode.  Briefly, each mode’s response was band-pass filtered and a smoothed Hilbert 
transform was used to estimate the instantaneous phase and amplitude as a function of time.  The derivative of the 
phase gives the damped natural frequency, d n  , as a function of time, and the derivative of the amplitude 

gives (t)n(t), from which the damping can be determined.  Then the frequency and damping were plotted versus 
amplitude to determine the modal Iwan parameters.  To assure that the power-law behavior was accurately 
captured, the low-level material damping 0 was subtracted from the estimated damping by visually inspecting the 
damping versus amplitude curve.  Then, a line of the following form 

   1

r rQ R Q
 

  (12) 

where R and  are constants, was fit to the log damping versus log amplitude using least squares.  Note that 
macro-slip was not observed in any of these simulations (and must be avoided for the modal Iwan model to retain 
its validity).  Hence, the joint stiffness cannot be measured and so it was simply assumed to be such that the 
frequency of each mode shifts by 0.05 Hz in macro-slip.  This and the linear natural frequency were then used to 
find KT, and then these values were used to solve for a value of FS and  such that the power law strength, R, in 
the Iwan model was equal to that obtained from the curve fit.  In essence, the model used is equivalent to a 
Palmov model [14], since macro-slip is never activated.  In all cases the modal Iwan model was found to fit the 
measured modal response very well, as illustrated for Mode 1 in Fig. 3.  The modal Iwan parameters obtained for 
each mode are shown in Table 2. 

  



The modal Iwan model is a SDOF model that could be integrated in response to an applied load (mapped onto the 
mode of interest) to compute the transient response.  For example, the 100N half-sine pulse used to derive the 
parameters for Mode 1 was applied to its modal Iwan model and the transient response was computed using the 
Newmark integrator.  The transient response thus computed is compared to the “measured” modal response q1(t) 
in Fig. 4.  While the computed and “measured” responses do eventually go out of phase due to small frequency 
errors, the simulation captures the amplitude and frequency of the “measured” response very well over the entire 
range of response amplitude.  Thus, we can proceed to use this modal Iwan model with confidence. 
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Figure 3. (blue) Damping ratio and natural frequency estimated using the Hilbert transform, and (black) 

those of a modal Iwan model fit to the measurements. (red dash-dot) Curve fit   1
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  to the 

damping ratio vs. amplitude, which was used to estimate the modal Iwan parameters. 
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Figure 4. (blue) True transient response of Mode 1, q1(t), due to the half-sine impulse . (green dash-

dot) Estimated modal response computed using the modal Iwan model and the modal force . 
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The same procedure was repeated for Modes 2 and 3 and the resulting modal Iwan parameters are shown in Table 
2.  For reference, the true natural frequencies and damping ratios of the linearized system are fn0,true=[0.0686, 
0.185, 0.269] Hz and 0,true=[0.00255, 0.001532, 0.001548].  The identification procedure has estimated the 
frequencies quite accurately, but there are errors of up to 25% in some of the damping ratios.  While these errors 
could have been reduced by integrating longer time histories and using a finer time step to improve the accuracy 
of the Newmark integrator, this level of error is probably to be expected in a real experiment. 

Table 2. Parameters of modal Iwan models of substructure A, estimated from simulated measurements.  
The parameters in parenthesis are not fully relevant since the modal Iwan model is only valid if the 

response is low enough to avoid macro-slip. 

Modal Iwan Models 
(Substructure A) 

(FS) (KT)   fn0 0 

Mode 1 0.886  0.171 –0.023 0.0519 0.0683 0.0032 

Mode 2 17.7  0.629 –0.641 0.132 0.184 0.00161 

Mode 3 0.508  0.959 –0.564 0.000833 0.268 0.00172 

 

3.2   Substructuring Predictions 

The substructures were assembled and the low-amplitude, linearized modal properties were calculated by solving 
an eigenvalue problem with the assembled mass and stiffness matrices including the linearized joint stiffnesses.  
The damping ratios were then calculated using the light damping approximation [11] (preserving the classical real 
modes) and are compared with the true values in Table 3.  Because these modal properties were computed with 
the joints linearized, they include only the linear viscous damping that was used to represent the material damping 
and thus there is no effect from friction in the joints.  The results show that the frequencies were accurately 
estimated, but the damping ratios show errors that are of a similar level as the errors in the estimates of the modal 
damping ratios of Substructure A. 

  



Table 3. Linear natural frequencies and damping ratios predicted by substructuring. 
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The response of the assembly to a 100 N input was then computed, and the responses x1(t) and x5(t) are shown in 
Fig. 5.  The substructuring predictions agree very well with the true transient response, both in frequency and 
damping.  Perhaps further insight can be gained by considering the FFT of the response, projected onto each 
linearized mode of the assembly, as shown in Fig. 6.  This shows that the substructuring predictions contain the 
correct frequency content for each mode, including small distortions which cause the modal responses to show 
slight coupling.  (The modal responses shown were estimated my multiplying the responses with the inverse of 
the linear, low-amplitude mode shape matrix.) 
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Figure 5. Transient response of the 4DOF assembly to a 100 N impulse.  (solid lines) True response, 

(dashed lines) Substructuring prediction, using the modal Iwan model for Substructure A, (blue) x1(t), 
(green) x5(t). The panes on the left and right show a magnified view near the beginning and end of the 

response. 
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Figure 6. FFT of the transient response of the 4DOF assembly to a 100 N impulse.  (solid lines) True 

response of each mode, estimated from the true response using  with the linear (low amplitude) 

modes, (dashed lines) Substructuring prediction, using the modal Iwan model for Substructure A. 
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Most previous research, and industry practice is based on a linear approximation.  Hence, it is also informative to 
consider whether the predictions shown above improve upon a linear approximation.  An example of such a 
comparison is shown in Fig. 7, for an impulsive input with a 500 N amplitude.  The linear approximation greatly 
overestimates the amplitude of the vibration, producing a response whose RMS is a factor of two larger (+99% 
error) than the true RMS response.  Of course, the level of error incurred by using a linear model depends on the 
strength of the forcing.  For the 100N impulsive input mentioned previously the linear model is in error by only 
38%.  At higher load levels the errors would be larger. 
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Figure 7. Transient response, x5(t), of the 4DOF assembly to a 500 N impulse.  (solid blue) Nonlinear 

substructuring prediction, (dashed red) Response predicted by linear substructuring. 

  



4. Conclusions 

This work has proposed to model a nonlinear substructure with strong damping nonlinearities (and weak stiffness 
nonlinearity) due to friction at bolted interfaces using a modal approach.  The linear modes are assumed to be 
preserved and to diagonalize the system, so that each mode’s response depends only on its displacement, velocity, 
and on the slider states used to capture its nonlinearity.  These nonlinear modal models can then be assembled 
using standard techniques and the equations of motion of the assembly can then be integrated using the Newmark 
algorithm or some other suitable integrator. 

The methods were demonstrated by estimating a modal Iwan model for each mode of a 3DOF system from 
simulated transient response measurements due to an impulsive load.  Then these modal Iwan models were used 
to create a nonlinear model for the substructure that was then assembled to a linear 2DOF system.  The proposed 
approach was then used to integrate the assembled equations subject to various impulsive loadings, producing 
estimates of the response that were found to be quite accurate.  The accuracy seemed to be primarily limited by 
the accuracy with which the modal Iwan model could be fit to the simulated measurements.  Of course, if the 
forcing amplitude became so large that one of the joints exhibited significant macro-slip then the modal 
approximation breaks down and errors were observed (although, for brevity, no such cases were reported here). 
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