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ABSTRACT 

Bolted structural joints often exhibit load-dependent stiffness and energy dissipation that leads to nonlinear, amplitude 

dependent frequency and damping in the structure. As an alternative to direct integration of the nonlinear equations of 

motion, quasi-static modal analysis (QSMA) determines the dependence of frequency and damping on response amplitude 

using loading behavior from nonlinear static analyses. QSMA has previously been demonstrated to substantially reduce 

computational cost and maintain accuracy relative to full nonlinear dynamic simulation. This work explores the applicability 

of QSMA to a complex, large-scale aerospace structure. QSMA is employed to analyze a nonlinear model of test hardware 

developed to support the Orion Multi-Purpose Crew Vehicle program, which exhibited nonlinear behavior during dynamic 

testing at flight-like load levels. In addition to the extraction of amplitude-dependent frequency and damping curves, a Bouc-

Wen hysteresis model was used in conjunction with the quasi-static results to develop nonlinear, uncoupled, time-domain 

modal equations of motion for the structure. Excellent agreement was observed between the reduced and full-order nonlinear 

models, encouraging future employment of QSMA to support accurate and efficient model reduction of structures with bolted 

joint nonlinearities. 
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INTRODUCTION 

 

Quasi-Static Modal Analysis (QSMA) estimates the effective natural frequency, damping ratio and mode shape of a 

nonlinear finite element using nonlinear static analyses.  The derivation of QSMA reveals the loading to a structure required 

so that the resulting static response approximates the dynamic response of the.  The result of the nonlinear static simulation 

can then be used to infer the way that the structure vibrates in a single mode of vibration over a range of amplitudes.  This 

methodology provides additional insights into the dynamics of the structure, beyond what can typically be gleaned from a 

transient dynamic analysis, and when the goal is to update the finite element model, QSMA can make that process much 

more efficient.   

While the basic concept of QSMA has been used for many years in one form or another, a formal framework appears to have 

been presented only recently.  The method was first presented by Festjens, Chevallier & Dion [1][2]. They presented a 

derivation of the method including the concept of uncoupled nonlinear modes, and demonstrated it on a finite element model 

of a structure with a bolted joint.  Allen & Lacayo were simultaneously working on a method inspired by the Implicit 

Condensation and Expansion model reduction approach [3][4] and independently came up with an approach that they dubbed 



QSMA [5][6], which they found to be a special case of the algorithm by Festjens et al.  Lacayo & Allen’s implementation of 

Festjens et al.’s approach has gained considerable traction recently for a few reasons.  First, it is simpler than the approach by 

Festjens et al.; their approach partitioned the structure into linear and nonlinear parts and required iterating on the solution, 

whereas Allen & Lacayo’s QSMA is a single nonlinear step.  Second, Lacayo and Allen were able to show that the algorithm 

agrees very well with dynamic response predictions, but with about three orders of magnitude reduction in the computation 

time, making the method very appealing for model updating [5].  Finally, they were able to correlate the method with 

recently developed test methods, which use a Hilbert transform to decompose the response of a weakly nonlinear system into 

the response of uncoupled or weakly coupled modes, and there is now a relatively large base of experimental data to which 

the method has been shown to apply, e.g. [7]-[11]. 

Advantages of QSMA are in the substantial computational cost reduction with retention of predictive accuracy relative to 

larger order models. The aforementioned studies all focused on bench-scale applications in academic settings. This work 

demonstrates the application of QSMA to the Orion Multi-Purpose Crew Vehicle (MPCV), a full-scale, real-world 

application, and discusses the challenges and opportunities presented by its use.  Furthermore, the nonlinearities employed in 

the MPCV model are different than any to which QSMA has previously been applied—Coulomb friction sliders and bi-linear 

springs rather than Iwan joints—and so the application here provides unique challenges. 

Additionally, this work explores the relationship between the modal model obtained by QSMA and the response to an 

arbitrary transient input.  In particular, the nonlinearities observed in the model of interest do not follow the form of the Iwan 

joints that were used previously, and so a new methodology is presented here wherein a single-degree-of-freedom (SDOF) 

system with a Bouc-Wen element is fit to each mode using the QSMA results.  The resulting collection of uncoupled, 

nonlinear oscillators is found to reproduce the dynamic response of the full order FEM with surprising accuracy. 

BACKGROUND 

 

Consider an otherwise linear structure that contains nonlinearities 𝑓𝐽  due to the joints that may depend on the displacements 

𝑥 as well as on internal states 𝜽 within the joint model. 

 𝑴𝒙̈ + 𝑪𝒙̇ + 𝑲𝒙 + 𝒇𝐽(𝒙, 𝜽) = 𝒇𝑒𝑥𝑡(𝑡) (1) 

For small vibrations, one can define a linear system that approximates the response about some equilibrium, 

 𝑴𝒙̈ + 𝑪𝒙̇ + (𝑲 + 𝛻𝒇𝐽|
𝒙0

) 𝒙 = 𝒇𝑒𝑥𝑡(𝑡) (2) 

where 𝛻𝒇𝐽|
𝒙0

 denotes the Jacobian of the nonlinear forces at the equilibrium state 𝒙𝒐.  One can now solve an eigenvalue 

problem to find the system’s natural frequencies, 𝜔0𝑟, and mass-normalized mode shapes 𝝋0𝑟 about this reference state: 

 [(𝑲 + 𝛻𝒇𝐽|
𝒙0

) − 𝜔0𝑟
2𝑴] 𝝋0𝑟 = 0 (3) 

 

Eq. (3) provides the modal properties of the system at very low response amplitudes when the nonlinearities are inactive (i.e. 

the joints are stuck).  

The system in Eq. (1) can be transformed to modal coordinates using the low-amplitude modal basis, 𝒙 = 𝚽𝟎𝒒, where 𝚽𝟎 is 

the matrix of mode shape vectors 𝝋0𝑟. This produces the following equation of motion for mode 𝑟: 

 𝑞̈𝑟 + 2𝜁0𝑟𝜔0𝑟𝑞̇𝑟 + 𝝋0𝑟
𝑇 𝑲𝝋0𝑟𝑞𝑟 + 𝝋0𝑟

𝑇 𝒇𝐽(𝜱0𝒒, 𝜽) = 𝝋0𝑟
𝑇 𝒇𝑒𝑥𝑡(𝑡) (4) 

Equation (4) assumes the modes diagonalize the linear damping so the low-amplitude linear damping ratio is defined in terms 

of the low-amplitude mode shape and frequency using 

𝜁0𝑟 ≜ 𝝋0𝑟
𝑇𝑪𝝋0𝑟/(2𝜔0𝑟). 



Note that in general the nonlinearities can cause all of the modes to influence the 𝑟th mode.  However, empirical evidence 

([10], [12], [13]) suggests that the linear modes tend to be preserved in the microslip regime for a structure with typical 

nonlinearities due to bolted interfaces, so that one can approximate the response effectively with a superposition of weakly 

nonlinear oscillators.  The theoretical foundation for such an occurrence is detailed in [14].  Whether the modes remain 

uncoupled or not, the QSMA approach estimates the response assuming the structure oscillates purely in a single mode, so 

the equation of motion is approximated as: 

 𝝋0𝑟
𝑇 𝒇𝐽(𝜱0𝒒, 𝜽) ≈ 𝑔(𝑞𝑟) (5) 

However, we recognize that the other modal displacements, 𝑞𝑗 for 𝑗 ≠ 𝑟 are generally not zero. So, we assume that they are 

slaved to the 𝑟th DOF in the same ratios that are observed in the static response. 

Specifically, we excite each mode in turn with a force applied over the entire structure in the shape of that linear mode by 

solving the following quasi-static problem, 

 𝑲𝒙 + 𝒇𝐽(𝒙, 𝜽) = 𝑴𝝋0𝑟
𝛼 (6) 

where 𝛼 is the load amplitude.  This produces the quasi-static response 𝒙(𝛼) of the structure up to some maximum load 

amplitude.  The response is computed at several intermediate steps yielding the entire load displacement curve.  The resulting 

displacements are then mapped to each of the modes using: 𝑞𝑟(𝛼) = 𝝋0𝑟
𝑇𝑴𝒙(𝛼).  The modes that were not directly excited 

are also retained and used to assess the degree to which the modes are statically coupled at each load amplitude.  It is also 

important to note that we have obtained a single valued relationship between 𝒙(𝛼) and 𝛼 by requiring that the load always 

ramps from an unloaded state to a maximum load 𝛼𝑚𝑎𝑥.  As a result, it is no longer necessary to track any internal states, 𝜽, 

e.g. slider states for the Iwan joint. 

Using the curve of the modal force 𝑓𝑟(𝛼) = 𝝋0𝑟
𝑇𝑴𝝋0𝑟

𝛼 = 𝛼 versus modal displacement, 𝑞𝑟, the full hysteresis curve is 

constructed using Masing’s rules [15], [16], i.e. 𝑓1(𝑞𝑟) = 2𝑓𝑟 (
𝑞𝑟+𝑞𝑟(𝛼)

2
) − 𝛼 and 𝑓2(𝑞𝑟) = 𝛼 − 2𝑓𝑟 (

𝑞𝑟(𝛼)−𝑞𝑟

2
) as illustrated in 

Figure 1. 

 
Figure 1. Sample loading curve obtained by solving Eq. (6). (blue) Hysteresis curve (forward 𝒇̂𝟏(𝒒𝒓) and reverse 

𝒇̂𝟐(𝒒𝒓)) computed using Masing’s rules. 

Hysteresis curves such as these can now be used to estimate the instantaneous stiffness and damping for each mode.  The 

secant to the curve is used to estimate the effective natural frequency, as follows. 

 𝜔𝑟(𝛼) ≜ √
𝛼

𝑞𝑟(𝛼)
 (7) 

The energy dissipated per cycle of vibration is the area enclosed by the full hysteresis curve 

𝐷𝑟(𝛼) = ∫ (𝑓1(𝑞𝑟) − 𝑓2(𝑞𝑟)) 𝑑𝑞𝑟

𝑞𝑟(𝛼)

−𝑞𝑟(𝛼)

 
(8) 
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where 𝛼 is the constant maximum load at the level of interest, and 𝑓𝑟 is a function of displacement 𝑞𝑟. 

Then, using the relationship between energy dissipated per cycle and the damping ratio for a linear system, the effective 

damping ratio can then be calculated from the following. 

𝜁𝑟(𝛼) =
𝐷(𝛼)

2𝜋(𝑞𝑟(𝛼)𝜔𝑟(𝛼))2
 

(9) 

It is important to note that these effective “modal properties” are not a linearization of the structure about some state.  Indeed, 

we are considering the effective behavior of the structure over a typical cycle of vibration.  Such a model is typically called a 

quasi-linearization or a “describing function” model ([17], [18]). 

A comprehensive verification of QSMA is presented by Lacayo & Allen [5] and is not repeated here for brevity.  

SDOF SYSTEM WITH BOUC-WEN JOINT MODEL 

 

In the application presented in this work, the goal was not simply to understand the nonlinear characteristics of each mode 

but to use QSMA to predict the dynamic response.  As a result, the QSMA results had to be used to estimate a nonlinear 

dynamic model that could capture the observed hysteresis.  In this process, the numerical QSMA curves of modal force vs. 

displacement are translated into a single degree of freedom system model that includes the hysteresis and which can be 

integrated in time to obtain the dynamic response. This requires some method to implement the load-displacement hysteresis 

in the system. In this work, the Bouc-Wen joint model was used; another candidate is a generalization of the modal Iwan 

model concept, which is typically applied using a four- or five-parameter form but in theory can be used to represent any 

symmetric, hysteretic modal force/displacement curve [16].  

Originating in the civil engineering community, one of the most prominent available models for simulation of hysteretic 

systems is the Bouc-Wen (BW) model [20], which augments a linear, second-order, single degree-of-freedom system to 

include a hysteretic force. With modal displacement 𝑞, modal velocity 𝑞̇, linear natural frequency 𝜔, and critical damping 

ratio 𝜁, the equations of motion for an individual mode are: 

 
𝑞̈ + 2𝜁𝜔𝑞̇ + 𝑓(𝑞, 𝑧) = 𝑓𝑒𝑥𝑡(𝑡)

𝑧̇ = 𝑞̇ − 𝛽|𝑞̇||𝑧|𝑛−1 − 𝛾𝑞̇|𝑧|𝑛  (10) 

The additional state 𝑧 corresponds to the hysteretic behavior of the system, with parameters 𝛽, 𝛾, and the exponent 𝑛 

governing the behavior of 𝑧. In the modal equation of motion, the function 𝑓(𝑞, 𝑧) is 

 𝑓(𝑞, 𝑧) = 𝛼𝑘𝑖𝑞 + (1 − 𝛼)𝑘𝑖𝑧 (11) 

Where the initial stiffness 𝑘𝑖 and stiffness loss ratio 𝛼 are related to the pre- and post-yield stiffnesses of the hysteresis loop.  

The Bouc-Wen parameters can be identified using an iterative least-squares process, as explained in reference [21] and 

improved upon for this work. The authors of [21] do not set an initial stiffness, leaving it as an independent variable in the fit. 

This significantly reduced accuracy at low amplitude excitation. The initial stiffness can instead be set by specifying 𝑘𝑖 = 𝜔2 

and 𝛼 = 𝑘𝑓/𝜔2 with 𝑘𝑓 the high-amplitude, post-yield stiffness value associated with the hysteresis loop. The procedure 

works best if a constant, final value of 𝑘𝑓 is achieved from QSMA, although not all models need exhibit such behavior. 

The remaining parameters are 𝑛, 𝛽, and 𝛾. The latter two are linearly related to the evolution of 𝑧, but, an exponent, 𝑛 cannot 

be obtained by least squares calculation. Instead, 𝑛 is specified with 𝑛 = 2 and updated if needed as discussed below. Then, 

we consider the set of QSMA results as a series of measurements 𝑓𝑗 associated with modal displacements 𝑞𝑗. A difference 

equation can be written in terms of the nonlinear 𝑓(𝑞, 𝑧): 

 𝑓𝑗 − 𝑓𝑗−1 = 𝛥𝑓𝑗 = 𝛼𝑘𝑖𝛥𝑞𝑗 + (1 − 𝛼)𝑘𝑖𝛥𝑧𝑗 (12) 



If a fictitious Δ𝑡 is considered, then fictitious time derivatives 𝑧̇𝑗 ≈ Δ𝑧𝑗/Δ𝑡 and 𝑞̇𝑗 ≈ Δ𝑞𝑗/Δ𝑡 can be defined. Performing these 

substitutions and referring to Eq. (10) leads to  

 𝑓𝑗 − 𝑘𝑖Δ𝑞𝑗 = 𝛼 − (1 − 𝛼)𝑘𝑖 [𝛽|𝛥𝑞𝑗||𝑧𝑗|
𝑛−1

𝑧𝑗 + 𝛾𝛥𝑞𝑗|𝑧𝑗|
𝑛

] (13) 

or 

 𝑦𝑗 = [𝛼 − (1 − 𝛼)𝑘𝑖  ] ⋅ [|𝛥𝑞𝑗||𝑧𝑗|
𝑛−1

𝑧𝑗 ,      𝛥𝑞𝑗|𝑧𝑗|
𝑛

] {
𝛽
𝛾

} (14) 

Building up matrices associated with all 𝑗 measurements leads to a least-squares problem 𝒚 = 𝚽𝐱 to identify 𝛽 and 𝛾 for a 

given exponent 𝑛. Repeating for multiple values of 𝑛 ultimately leads to an optimal set of parameters for the BW model. In 

general, these will not match the hysteresis loop obtained from QSMA exactly. However, as shown in the comparisons that 

will be discussed later, the hysteresis loops were very well approximated by the BW model for this application. 

QSMA IMPLEMENTATION 

 

The main steps used to apply QSMA to the MPCV are summarized graphically in Figure 2. Starting from a multi-level 

dynamic test of the MPCV configuration, a nonlinear model calibration was performed. The calibrated nonlinear FEM was 

constructed using Abaqus software and consisted of several linear direct matrix inputs along with a collection of nonlinear 

connector elements at the matrix interfaces. Both friction and bilinear elements were used in the model, with joint properties 

calibrated to match dynamic test results.  The QSMA procedure was applied to the nonlinear FEM to obtain the quasi-static 

modal hysteresis curves, from which effective frequency and damping were computed as functions of modal amplitude using 

Eq. (7) and Eq. (9). Finally, transient simulations of a QSMA-derived dynamic model were performed by fitting a Bouc-Wen 

model to the QSMA hysteresis curves, which is described in greater detail in a subsequent section. Each step of the process 

presents certain challenges, as elaborated in the next few paragraphs. 

 

Figure 2. Key steps for construction of uncoupled hysteretic modal equations of motion using the MPCV nonlinear 

FEM. 

During multi-level dynamic testing, forcing must be at a high enough level and applied in such a way that it will adequately 

excite the important nonlinearities that are present in the loading envelope. Repeatability is a major concern for structures 

dominated by joint dynamics.  Furthermore, the forcing must also not be too high in amplitude, otherwise it could induce 

additional nonlinearity–hard-stops, geometric effects, or even material plasticity–that are not of interest in the actual 

environment and would require much more complicated methods for simulating the nonlinear joints. 

Nonlinear FEMs are expensive to construct, debug, simulate, and calibrate. It can be challenging to select nonlinear elements 

and tune their parameters such that they produce the behavior observed in the measured response. Unlike linear models, 

response sensitivities of a commercial nonlinear FEM can only be obtained by finite-difference approaches in general.  



Uncertainty quantification methods are similarly difficult to apply to nonlinear models, which presents additional challenges 

due to the aforementioned repeatability issues presented by structural joints. 

Quasi-static hysteresis curves are, in theory, straightforward to obtain, but one must use care when deriving them from 

commercial FEMs. Since QSMA is not a standard procedure implemented within current Finite Element Analysis (FEA) 

codes, it is up to the analyst to ensure correct coordinate transformations are applied during every step of the process: Modal 

extraction, force generation, force application, displacement extraction, and modal filtering. QSMA requires access to the 

structural mass matrix, which is typically available but can grow quite large for commercial-scale models. Modes can be 

obtained either through the FEA modal solve routine, or by extracting system matrices and computing modes in an external 

sparse eigenvalue solver. 

Once the QSMA procedure has been implemented, required analyst inputs are fairly minimal. The analyst must first 

determine which modes to probe for nonlinearity; one could perform QSMA on every mode in the frequency range of 

interest, but often there is prior knowledge which reveals which modes are most likely to exhibit nonlinearity. Next an 

appropriate load scaling factor must be selected for each mode. This requires some amount of iteration, but an informed 

decision can be made by examining the hysteresis curves that have been computed for each mode. Too low a factor will be 

seen to not sufficiently excite nonlinearity. However, if the factor is too high, the static analysis may fail to converge or the 

nonlinearity may be so strong that the low-level response cannot be well approximated.  In the latter case, if the load is 

reasonable for the structure then this simply reveals that the joints will essentially always be in their slipping state and is not a 

fault of the analysis. As mentioned above, an optimal value can typically be found after several iterations of the QSMA 

process, and for this application, simple trial and error took only a few minutes to find each value. 

The result of QSMA to the first mode of the MPCV configuration is demonstrated in Figure 3. Starting from the origin, the 

model force initially follows the linear stiffness at low amplitudes before rolling off in a bilinear fashion. As the load is 

reduced and reversed, a symmetric hysteresis loop is evident in the response. In Figure 3, the QSMA output from FEA is 

shown with a dashed black curve with a Bouc-Wen model fit in blue. The red dashed line shows the linear stiffness of this 

mode. 

The QSMA results can be used to compute effective frequency and damping ratios as a function of modal amplitude, as 

shown in Figure 4. Note that the plotted damping ratio is purely nonlinear, and should be considered in addition to any 

baseline viscous damping present in the system. In Figure 4, the damping increases to a maximum value before beginning to 

decrease. This behavior is frequently observed in systems with Coulomb friction sliders.  In contrast, the frequency drops 

monotonically from its linear value down to a minimum decrease of roughly 20%.  This reveals that this mode loses a 

substantial fraction of its stiffness as the load increases. 

 

Figure 3. Modal force vs. displacement curve for primary Y-bending mode of the MPCV. 



QSMA relies on the assumption that modes remain decoupled even as the amplitude of excitation increases. This assumption 

can be checked, statically at least, by assessing the relative displacement of each mode as forcing is applied in the shape of 

just the mode of interest. Figure 5 shows a graphical check of the independence of mode 10, the first bending mode, as a 

function of modal displacement. It is seen that the activation of all other modes is much lower than mode 10, with mode 12, 

the second bending mode, being the most activated at no more than 10% the level of mode 10. 

 

Figure 4. QSMA frequency and damping ratio as a function of modal acceleration for the primary Y bending mode 

with acceleration normalized such that the frequency shift begins at roughly a reference amplitude of 1.0. 

 

Figure 5. The importance of modal coupling can be inferred from static loading done in the QSMA framework. Here 

relative to mode 10, all other modes maintain much lower displacement for all amplitudes. 



RESULTS AND COMPARISONS 

The QSMA results, BW model fit, and implementation of transient dynamic equations of motion were verified through 

numerical comparison to results from the nonlinear Abaqus FEM. The response of the MPCV was computed to reference 

base-excitation inputs for three simulations: 

 Abaqus/Standard nonlinear simulation, using the HHT-𝛼 integrator with default 𝛼 = −0.05 and 2 kHz integration 

rate. Each integration took on the order of several hours to complete. 

 Abaqus modal dynamics (linear) solution. The Abaqus modal dynamics solver uses an explicit central difference 

solver to integrate the modal coordinates using a linear model. The same 2 kHz integration was again specified. 

Each integration took on the order of several minutes to complete. 

 A MATLAB-based integration of the QSMA/BW model implemented using the standard ODE45 solver, with 

accuracy tolerances decreased from the default 10−6 to a more restrictive 10−9. ODE45 is an adaptive timestep 

solver but an output frequency of 2 kHz was specified. Each integration took on the order of several seconds to 

complete. 

The modal models included 14 fixed-base modes of the MPCV model. A fixed viscous damping ratio of 1.5% was applied to 

the MATLAB equations of motion, while damping of the Abaqus models was obtained directly from the supplied damping 

matrix inputs. The QSMA/BW model was simulated in a completely uncoupled fashion; a small amount of modal coupling 

may have been present in the Abaqus modal dynamics simulation due to projection of the modes through the damping matrix. 

Two separate sets of base excitation inputs were used for verification. The first input, here called Event 1, is a load case 

which features moderate amplitudes and excitations across the entire modal bandwidth, with little variation during the 

integration period.   A second input, here called Event 2, provided high-amplitude excitations at lower frequencies, with a 

large reduction in amplitude during the period of integration. The time histories were supplied as 6-DOF base excitations.   

An additional scaled version of Event 1 reduced to 10% of its nominal value was used to verify correct implementation of the 

base excitation loading in MATLAB. 

The Pearson correlation coefficient, 𝜌𝑥,𝑦 =
𝐸[(𝑥−𝜇𝑥)(𝑦−𝜇𝑦)

𝜎𝑥𝜎𝑦
, was used to evaluate agreement between time histories computed 

from each simulation method. This coefficient tends to punish errors in phase much more harshly than errors in amplitude, 

but still provides a useful metric to summarize agreement between multiple signals. Values for the coefficient range between 

0 and 1, with values close to 1 showing a high level of correlation between signals. 

Results for each case are shown in the titles of each of Figure 6 through Figure 8.  In first of these figures, the input has been 

scaled to 10% of nominal to limit excitation of nonlinear behavior. Here good agreement between all methods is evident, as 

expected for a low-amplitude excitation. The Abaqus linear modal model performs somewhat better than the QSMA/BW 

model due to limitations of the BW model fit, which begins rolling off into hysteresis earlier than the FEM and, as a result, 

displays a somewhat higher effective damping ratio at low amplitudes. 



 

Figure 6. Time history comparisons between (top): Abaqus/Standard and QSMA/BW; (bottom): Abaqus/Standard 

and Abaqus linear modal dynamics for a 10% scaled Event 1. 

For the excitations at nominal amplitude levels, the QSMA/BW model performs significantly better than the linear model. 

While the QSMA/BW model does exhibit noticeable amplitude errors for the Event 1 response in Figure 7, phase errors are 

minimal. The linear model, on the other hand, dramatically overpredicts the response by a factor of nearly three. As shown in 

Figure 8, QSMA/BW performs very well in simulating the Event 2 response, whereas the linear model initially overpredicts, 

then underpredicts, the actual response, and exhibits high-frequency dynamics that are not present in the late-time nonlinear 

responses. 



 

Figure 7. Time history comparisons between (top): Abaqus/Standard and QSMA/BW; (bottom): Abaqus/Standard 

and Abaqus linear modal dynamics for nominal Event 1 base excitation. 

 

Figure 8. Time history comparisons between (top): Abaqus/Standard and QSMA/BW; (bottom): Abaqus/Standard 

and Abaqus linear modal dynamics for Event 2 base excitation. 



Pearson correlation coefficients for each case are summarized in Table 1. While a much more comprehensive set of 

verification data, along with a model validation effort on flight-representative hardware, would be required to more 

rigorously verify the applicability of QSMA and associated dynamics models to nonlinear coupled loads analysis, the results 

of this study are promising and should encourage future efforts towards this goal. 

Table 1. Summary of correlation coefficients for each QSMA/BW test case  

as compared to the fully nonlinear Abaqus FEM 

Case QSMA/BW Linear Modal 

Dynamics 

Event 1 (10% level) 0.961 0.983 

Event 1 (100% level) 0.951 0.622 

Event 2 0.971 0.471 

 

A relevant short-term outcome of the QSMA/BW modeling effort is the finding that an uncoupled nonlinear modal model 

based on the linearized modes of the MPCV was able to accurately predict the nonlinear response of the fully-coupled 

nonlinear finite element model. This suggests that dynamic modal coupling is of limited importance in this model of the 

MPCV and at the load levels that are relevant for system dynamic analysis. (Static modal coupling is included in the QSMA 

model.)  However, the changes in natural frequency and damping for each mode are significant. 

This finding could have several important implications.  First, when seeking to update the FEM to correlate with 

measurements, this finding reveals that one can consider each mode independently.  For example the mode shape in question 

can be considered to determine which joints would cause a significant change in its properties, to help guide model updating.  

Any change that produces damping in that mode will bring the response near the associated resonance into better agreement.  

In other words, one can adapt linear modal methods to nonlinear model updating.  Second, because the structure behaves as if 

it has modes, only with somewhat variable frequency and damping with amplitude, it may be reasonable to use a linear model 

that is tuned to the appropriate amplitude to perform coupled loads analysis or other life predictions.   

CONCLUSION 

Quasi-Static Modal Analysis (QSMA) was applied to an industrial-scale system with nonlinearities approximating bolted 

joints.  The system was simulated in the time domain by fitting the QSMA hysteresis to a Bouc-Wen (BW) model form. 

Time integration of the equations of motion with the Bouc-Wen model was shown to match a full nonlinear solution response 

with greater than 95% accuracy for a few limited cases. Additionally, this came with a substantial cost reduction, with Bouc-

Wen models running on the order of seconds, while Abaqus/Standard runs took on the order of a day. This cost savings could 

make it feasible to perform extensive parametric studies, model updating, and uncertainty quantification. 

The ability of an uncoupled nonlinear modal model based on linearized modes to accurately predict the nonlinear response of 

a complicated and fully-coupled nonlinear finite element model indicates that modal coupling is of limited importance to the 

model studied. This alone could have several important implications. First, FEM updating can be performed on a modal 

basis; the alternative would be to consider whether each update to the FEM improves agreement across a potentially large 

range of potential loading scenarios.  Second, because the structure behaves as if it has modes, only with somewhat variable 

frequency and damping with amplitude, it may be reasonable to use a linear model that is tuned to the appropriate amplitude 

to perform coupled loads analysis or other life predictions. 
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