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Abstract 
Nonlinear Normal Modes (NNMs) offer tremendous insight into the dynamic behavior of 

a nonlinear system, extending many concepts that are familiar in linear modal analysis. Hence 
there is interest in developing methods to experimentally and numerically determine a system's 
NNMs for model updating or simply to characterize its dynamic response. Previous experimental 
work has shown that a mono-harmonic excitation can be used to isolate a system's dynamic 
response in the neighborhood of a NNM along the main backbones of a system. This work shows 
that a multi-harmonic excitation is needed to isolate a NNM when well separated linear modes of 
a structure couple to produce an internal resonance. It is shown that one can tune the multiple 
harmonics of the input excitation using a plot of the input force versus the response velocity until 
the area enclosed by the force-velocity curve is minimized. Once an appropriated NNM is 
measured, one can increase the force level and retune the frequency to obtain a NNM at a higher 
amplitude or remove the excitation and measure the structure's decay down a NNM backbone. 
This work explores both methods using simulations and measurements of a nominally-flat 
clamped-clamped beam excited at a single point with a magnetic force. Numerical simulations are 
used to validate the method in a well defined environment and to provide comparison with the 
experimentally measured NNMs. The experimental results seem to produce a good estimate of 
two NNMs along their backbone and part of an internal resonance branch. Full-field 
measurements are then used to further explore the couplings between the underlying linear modes 
along the identified NNMs. 
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1 Introduction 
 Over the past several decades a suite of testing and modeling techniques has been 
developed to quantify the dynamic motion of a structure using its linear modal properties (e.g. 
resonant frequencies, mode shapes, and damping ratios) [1-3]. The measured or calculated modal 
properties are typically used to quantify the inertial (mass), elastic (stiffness), and dissipation 
(damping) characteristics of a structure. Modal properties provide the benefit of describing the 
global dynamics of a structure using a small number of parameters, and can also be used to 
predict the response due to an arbitrary excitation thanks to invariance, superposition, etc... The 
classical (undamped) Linear Normal Modes (LNMs), that are of interest to this work, can be 
considered a special case of Complex Modes; LNMs are directly related to resonant responses of 
a structure only when dissipation is well approximated as proportional to the mass and stiffness 
matrices [4]. LNMs are particularly useful in decoupling the equations of motion, allowing one to 
find the response of the structure through a summation of individual single degree of freedom 
responses. Further details can be found in many textbooks [5-8].  
 When a structure exhibits the nonlinear force-displacement relationships that are typical 
of geometrically nonlinear structures under large amplitude loading conditions, the dynamic 
response characteristics change with amplitude. For large response amplitudes, LNMs no longer 
uncouple the undamped equations of motion [9] and so the dynamic motion can no longer be 
thought of as a summation of uncoupled single degree of freedom systems. An alternate 
definition of modes has been sought, presumably with the hope that an extended superposition 
principle could be developed and used to solve the nonlinear equations of motion. While that has 
proved elusive – superposition does not hold for any of the existing definitions of NNMs – these 
definitions have led to considerable insight into the dynamics of complicated systems and thus 
proven useful for engineers [11, 12]. Rosenberg [10] was the first to pursue a definition, coining 
the name Nonlinear Normal Modes (NNMs) to describe certain synchronous oscillations 
exhibited by the conservative nonlinear equations of motion. This definition was subsequently 



simplified and expanded to include internal resonances by defining a NNM as simply a not 
necessarily synchronous periodic oscillation of the conservative nonlinear equations of motion 
[10]. Some NNMs described using this definition originate from a structure's LNMs at low 
response amplitudes, but NNMs can also describe jumps, bifurcations, internal resonances, modal 
interactions and sub- and super-harmonic responses which have no counterpart in linear systems 
[11, 12]. Much of the initial work on NNMs to date has focused on analytical or numerical 
investigations of low-order lumped-mass systems or Galerkin models of simple continua [10-18]. 
Recently, methods have been developed which extend the numerical calculation of NNMs to 
more complicated structures which are described by geometrically nonlinear finite element 
models (FEMs) [19, 20]. 

 While NNMs are a new concept, they have found some use already in several 
applications.  For example, NNMs have been used to provide insights to guide the design of 
nonlinear vibration absorbers [21].  With the extension mentioned above and in [19, 20], they are 
now also being used to characterize FE models of complicated, geometrically nonlinear 
structures.  For example, they were used to correlate simulations [22] with experimental 
measurements [23, 24] and to assess the fidelity of simulation models [20]. The insights that they 
provide could also be used to guide the design of a nonlinear structure in general or to evaluate 
advanced model reduction techniques.  

This work focuses on an extension of experimental modal analysis (EMA) techniques in 
which a harmonic forcing is used to experimentally isolate NNMs [22].  EMA methodologies can 
be broadly split into two areas classified by the number of LNMs measured during a test. Phase 
Separation Methods (PSMs) excite multiple LNMs at a time with broadband excitation and then 
the response is decomposed using modal parameter estimation techniques to identify the LNMs 
that are active in the response. These are the most popular and commonly used methods for linear 
experimental modal parameter identification. Several works have sought to extend these to 
nonlinear identification,  [9, 25, 26], but in the presence of nonlinearity the response is not a 
simple superposition of LNMs, and indeed one may not even be able to accurately postulate the 
form of the mathematical model a priori, so this becomes challenging. Furthermore, as these 
methods are applied to higher order systems the number of terms to be identified can become 
excessive. 
 Phase Resonance Methods (PRMs) excite one LNM at a time by tuning the input force 
and monitoring the phase of the response until a criterion is met and the measured response 
becomes the LNM of interest. They are less popular in linear EMA because they can be time-
consuming. However, PRMs are still used in Ground Vibration Tests where closely spaced modes 
occur and highly accurate results (especially in regards to damping) are needed. [27-29]. For 
linear systems, several methods have been developed [30-33] to identify the distribution of the 
input force needed to cause the response to lag the input force by 90 degrees, thus fulfilling the 
phase lag criterion. In the presence of nonlinearity, linear PRMs have still been applied and when 
the classical phase condition is met, they are thought to provide a quasi-linearization of the 
nonlinear structure that can be used to access the dependency of resonant frequencies, structural 
damping, and generalized mass with the amplitude of structural responses [29]. PRMs have also 
begun to be extended to the measurement of NNMs through the implementation of different 
methods of force appropriation. For instance, a method called force appropriation of nonlinear 
systems (FANS) was presented in [34] that uses a multi-point, multi-harmonic force to isolate a 
single LNM in nonlinear response regimes. This is done by iteratively canceling any coupling 
between LNMs. Then one can identify the nonlinear characteristics of the isolated mode without 
modal coupling terms. This work follows a different approach, pioneered by Peeters et al. who 
presented a rigorous theory by which an undamped NNM could be isolated in a measurement [22, 
23]. They showed that a multi-point multi-harmonic sine wave could cancel damping and isolate 
a general NNM. It was then demonstrated both analytically and experimentally that a single-point 
single harmonic force could be used to isolate a response in the neighborhood of a single NNM 



with good accuracy [23, 24]. In these investigations, once phase lag quadrature was met, the input 
force was turned off and the response allowed to decay tracing the backbone of the NNM. 
 This work explores a means whereby multi-harmonic excitation (i.e. a signal containing a 
fundamental frequency, , and various integer harmonics, 2, 3, 4, etc…) can be used to 
isolate a NNM. The theory shows that a simple metric based on a plot of the input force versus 
response velocity can be used to monitor the phase condition in real time, and to understand 
which harmonics should be added to the input force to minimize the phase condition. The results 
also show that the phases of the response and its harmonics are highly sensitive to perturbations 
and so the mode indicator function appears to be a more useful metric in gauging whether an 
adequate estimate of the NNM has been obtained. The methods are tested by measuring two 
NNMs of a flat clamped-clamped beam. Modal interactions from internal resonances are detected 
experimentally and isolated to the level permitted with the current setup.  
 The next section briefly reviews the theory underlying NNMs using the simulated NNMs 
from a finite element model (FEM) of the structure of interest to illustrate key concepts. Then the 
force appropriation methodology is reviewed as well as the proposed extensions that facilitate the 
tuning of multi-harmonic excitation signals that is applied in simulation. The experimental setup 
and results are then described in Section 3. 
 
2 Theory 
2.1 Nonlinear Normal Modes 
2.1.1 Introduction 
 Similar to the LNMs reviewed in the appendix, the definition of NNMs used in this work 
is rooted in the conservative nonlinear free vibration EOM:  

 0)::,:,()(  xxxxxxfxM nlt  (1) 

where fnl is the nonlinear restoring force which is purely a function of displacement (e.g. 
including only stiffness terms). The nonlinear restoring force can be represented by many 
functional forms depending on the type of nonlinearity expected (e.g. polynomial stiffness and 
damping, clearances, impacts, friction, and saturation effects). This work focuses on pure 
geometric nonlinearities, in which case the restoring force is a nonlinear function of 
displacement, typically expressed as a polynomial with second order terms that typically 
corresponds to a spring softening effect, or a decrease in the fundamental frequency of vibration 
for increasing energy levels, and third order polynomial terms that typically correspond to a 
spring hardening. The clamped-clamped flat beam examined in this work exhibits these physics 
due to coupling between bending and axial stretching, see [35, 36] for a more thorough treatment. 

2.1.2 Example: Numerically Computed NNMs of the Flat Beam 
 A 41-node finite element model (FEM) was created for the flat clamped-clamped beam 
whose dimensions are given in Sec. 3.1. The finite element model used here is identical to that 
described in [18]. A few methods were recently developed to calculate the NNMs [18, 20] of a 
finite element models such as this; the numerical results presented here were calculated using the 
applied modal force numerical continuation technique [18], which iterates on the nonlinear 
transient response of the FEM until a periodic solution is obtained. Hence, the NNMs that it 
calculates satisfy the geometrically nonlinear FEM to some tolerance.  
 For convenience, 'families' of NNMs can be presented in frequency-energy plots (FEPs) 
based on the fundamental frequency of the response and total energy conserved over a period of 
the response. Three distinct 'families' of NNMs of the flat beam will be discussed in this 
investigation. The first 'family' corresponds to the nonlinear continuation of LNM-1, also called 



the backbone of NNM-1, which is shown in Fig. 1(a) in blue. The flat beam exhibits a spring 
hardening nonlinearity, or an increase in the fundamental frequency of vibration with increased 
input energy as discussed in [36, 37]. A change in the fundamental frequency of vibration of 36% 
is captured along this backbone. For reference, a demarcation is added to these plots showing the 
energy at which the maximum displacement amplitude would be equal to one beam thickness (i.e. 
0.76mm). The second 'family' corresponds to a 5:1 harmonic coupling between LNM-1 and 
LNM3, or an internally resonant bifurcation from NNM-1 and is shown in Fig. 1a in red.  
 To illustrate the deformation of the beam at various points on the frequency energy plot, 
the deformation of the beam throughout a quarter period of the response is shown in Figs. 1(b)-(e) 
and the Fourier coefficients of the response are shown in Figs. 1(f)-(i)  Figure 1(b)-(c) reveal that 
the response has the shape of LNM-1 along the backbone and there are minimal contributions 
from higher harmonics observed in Figs. 1(f) and 1(g). In this regime, the dynamic response is 
clearly a nonlinear continuation of LNM-1.  Along the internal resonance, a strong coupling is 
observed between LNM-1 and LNM-3 as seen in the deformation shapes of Points 3 and 4 in Fig. 
1(d) and Fig. 1(e). The strength of the fifth harmonic increases as the response contains more 
energy along the internally resonant branch and the deformation of the beam transitions from 
being dominated by LNM-1 shape to being dominated by LNM-3.  

0 50 100 150 200
0

0.005

0.01

X Coordinate, mm

Y
 D

e
fo

rm
at

io
n,

 m
m

(b) Point 1 

0 200 400 600 800 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

Frequency, Hz

A
m

pl
itu

de
, m

m

(f) Point 1 

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

X Coordinate, mm

Y
 D

e
fo

rm
at

io
n,

 m
m

(c) Point 2 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Frequency, Hz

A
m

p
lit

ud
e,

 m
m

(g) Point 2 

0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

(d) Point 3 

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Frequency, Hz

A
m

pl
itu

d
e,

 m
m

(h) Point 3 

 

10
-6

10
-4

10
-2

80 90 100 110
Frequency, Hz

E
ne

rg
y,

 N
-m

 

 

Backbone
Internal Resonance
1 Thickness
Point 1
Point 2
Point 3
Point 4

(a) 
0 50 100 150 200

-0.2

-0.1

0

0.1

0.2

0.3

X Coordinate, mm

Y
 D

ef
or

m
at

io
n,

 m
m
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Figure 1: Numerical NNM 1 for flat clamped-clamped beam- a) Frequency-energy plot, b-d) 
Deformation shapes for a quarter period (─ 0%, ─ 4%, ─ 8%, ─ 12%, ─ 16% , ─ 20%, ─ 25% of the 
period) at selected points along the FEP, e-g) FFT of the response at the center of the beam at those 



  
 A NNM backbone emanates from each of the LNMs. Since LNM-3 is of interest in this 
study, NNM-3 as computed from the FEM is shown in Fig. 2 in a similar format. Once again, the 
horizontal line on the FEP in Fig. 2a marks the points where the structural deformation is equal to 
one beam thickness. It is important to note that over an order of magnitude more energy is 
required to achieve this deformation level when compared to NNM-1, since the deformation of 
NNM-3 is more complicated and the frequency/stiffness is higher. Throughout this range, LNM-3 
dominates the deformation of the beam where the response is mono-harmonic with the 
fundamental frequency increasing by 52% over the range shown. Within this range, there are no 
internally resonant branches detected and NNM-3 is simply a nonlinear continuation of LNM-3. 
This conclusion is verified in Figs. 2(b)-(g), where low and high amplitude deformation shapes 
and FFT's are shown. A subtle broadening can be observed in the lobes of the mode shape, due to 
axial stretching from large amplitude deformations, but the shape retains the same basic character 
as amplitude increases.  A similar broadening can be observed for NNM-1 in Fig. 1(c). 
 Figures 1 and 2 illustrate the wealth of insight that NNMs can provide into the response 
of a geometrically nonlinear structure such as this. The rest of this work is concerned with how 
one can measure NNMs such as these in order to characterize a structure or validate a 
computational model. 

 
2.1.3 Measuring NNMs with Force Appropriation 
 The industry standard phase lag criterion, which is reviewed in the appendix, only holds 
for LNMs, yet Peeters et al. presented an extension in [22] by which an undamped NNM can be 
isolated with force appropriation. This extension holds for a system with linear damping and 
nonlinear stiffness, which can be described by the following equation of motion: 

 )()( tt innld fffxM   (2) 

Where the forced EOM defined previously have been augmented with the nonlinear restoring 
force vector, fnl which is only a function of displacement x(t). Using the method of harmonic 
balance [9], it can be shown that fnl will induce harmonics in the response at integer multiples of 
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Figure 2: Numerical NNM 3 for flat clamped-clamped beam- a) Frequency-energy plot, b-d) 
Deformation shapes for a quarter period (─ 0%, ─ 4%, ─ 8%, ─ 12%, ─16% , ─ 20%, ─ 25% of the 
period) at selected points along the FEP e-g) FFTs of selected points along the FEP 



the forcing frequency. Therefore it is beneficial to express the structural response as a sum of 
complex exponentials (a single term sufficed in Eqn. (16) for the linear system): 

    









 
1

)(

1

)(2 Re)(;)(Re)(
m

tmi

m

tmi etemt  mm XxXx  (3) 

Similarly, under this assumption of harmonic motion, the damping force becomes: 
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Therefore, a NNM is appropriated when: 

 )(tind ff   (5) 

 Simply stated, the response of a structure approximates a NNM when the forcing function 
exactly cancels the damping forces in the structure. Furthermore, since the damping force is 
multi-harmonic, the input force must be as well. Then the phase condition must hold for all 
harmonics of the response. In practice one cannot apply a force that exactly cancels damping, so 
the goal is to apply a force that approximately isolates a NNM. In this work we apply the force at 
only a single point, denoted point n, and consider Nf harmonics, so the jth element of the input 
force becomes the following: 
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As was done in the Appendix, one can use the energy balance technique [38, 39] to find a force 
that puts the same amount of energy into the structures as is dissipated by damping. Because the 
sine functions are orthogonal over the fundamental period, T, when this is substituted into Eqn. 
(24), one obtains a sum of terms that give the contribution of each harmonic in the force to Ein/cyc. 
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 In summary, given the known NNM motion, ẋ(t), and damping matrix, C, the multi-point 
damping force, Cẋ, can be computed. From this, coefficients, Ak, of a multi-harmonic, single-
point force can be determined that would input the same energy per cycle when the structure 
oscillates in the NNM of interest. This relationship explains why one can isolate a NNM by 
applying a single-point force, and it was also used in this work to numerically determine the 
forced responses needed to isolate a NNM in the simulation model. In practice the NNM is not 
known a priori, so one will generally have to tune the input until an NNM is isolated. Below we 
describe a simple strategy whereby one can observe how successive changes in the amplitude and 
fundamental frequency of the input force can be made to isolate the NNM of interest.  

 For either of the damping models described in the Appendix the damping force lags the 
displacement of the structure by 90 degrees, or it will be in phase with the structure's velocity. 



The input force and response velocity can often both be measured at the point at which the 
structure is excited, and so one can use them to construct a simple indicator of the quality of the 
appropriated force by plotting the input force versus the velocity at the input location. One can 
use Green's theorem to show that the area enclosed on a force-velocity plot such as this goes to 
zero if all harmonics of the force and velocity are in phase. Hence the area enclosed by the curve 
provides an excellent indicator of the phase condition, and one which is easy to display in real 
time using an oscilloscope. The practical value of this indicator will be demonstrated in the 
simulation and experimental results that follow.  

 In order to find a the evolution of an NNM along a branch, this appropriation process can 
be repeated at subsequent frequency and amplitude levels until the branch of the desired NNM is 
identified. Since each point along the NNM corresponds to a time invariant periodic response of 
the structure, the measured force and response time series can be decomposed using a discrete 
Fourier transform, but one must take care to choose the sample increment and period carefully to 
avoid leakage; in practice, this will usually require re-sampling the signal. In this work the 
authors chose, instead, to use least squares to fit a multi-sine to the force and response at the 
dominant harmonics observed. Then the phase of all harmonics of the force and response are 
easily computed and can be used to check the phase condition. However, the examples presented 
here show that these phase measures can be overly sensitive and difficult to interpret. Instead, it is 
more convenient to use the NNM Appropriation Indicator (NNMAI) that was developed in [23]: 
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Where Nf is the number of harmonics included in the indicator and ΔNNM = 1 for a perfectly 
appropriated mode. The tools available to aide in isolating an NNM are summarized in the table 
below. 

Table 1: Summary of metrics which are used in this work to isolate an NNM.  The values in the table 
correspond to the condition at resonance, or when an NNM has been isolated.  

response type phase lag 
relative to force 

characteristic of a force vs. response 
plot when an NNM is isolated 

NNMAI 

displacement 90 roughly elliptical (not used in this work) 1 

velocity 180 area enclosed approaches zero 1 

acceleration 270 roughly elliptical (not used in this work) 1 

 

Throughout the rest of this paper, the phase of velocity relative to force will be the primary focus 
and the NNMAI, ΔNNM, will be shown to be an excellent metric for assessing whether one is close 
to an NNM. 

 

 



2.1.4 Numerical Example of Stepped Sine Measurement of NNM 
 The proposed approach will first be demonstrated numerically for the flat beam whose 
NNMs where shown previously. For this investigation, a Modified Crisfield integration technique 
is used to integrate the equations of motion to find the forced dynamic response of the flat beam 
when subjected to a single point harmonic excitation at the center of the beam. This integration 
can be prohibitively time consuming for a full order FEM, so the nonlinear reduced order model 
(NLROM) of the beam that was developed and verified in [20], was used to estimate the forced 
response. The theory underlying this type of NLROM is detailed in [36]. In summary, a model is 
sought in terms of the modal coordinates, qr, which are related to the physical displacements as: 
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where ѱr is the rth eigenvector of the conservative system linearized about an equilibrium of 
interest. Using this transformation and assuming viscous modal damping, Eqn. (2) can be recast 
as: 
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where ζr and ωr are the rth modal damping ratios and eigenvalues of the structure. The modal 
damping ratios used in the simulation model considered here were identified using a single input 
modal hammer test and were assumed to be constant (i.e. not amplitude dependent) in the 
simulations. Additionally, the nonlinear modal restoring force, fr

nl, is expressed as: 

    
    


r r r r rr

r

N

i

N

j

N

i

N

j

N

k
kji

r
ijkji

r
ij

N

i
i

r
iN

r
nl qqqAqqBqCqqqf

1 1 1 1 11
21 ,...,,

 (11) 

where the nonlinear stiffness coefficients are represented by C (linear), B (quadratic), and A 
(cubic) terms. These nonlinear stiffness coefficients were found by applying a series of static 
loads to the FEM, and using the resulting responses to solve a least squares problem, i.e. using the 
applied loads procedure [40] otherwise termed the Implicit Condensation method [36]. The model 
used in this work contains six modes, LNMs 1, 3, 5, 7, 9, and 11.  
 Once the reduced model had been created, the response was simulated and then the 
forcing frequency was stepped slowly near a NNM until an appropriated response was found. The 
force-velocity plot was used as an indicator of the phase condition as shown in Figs. 3 and 4 for 
two points identified on the numerical NNM which represent: a strongly nonlinear case (Point 2 
in Fig. 1), and an internally resonant case (Point 3 in Fig. 1).  
 The results for Point 2 can be seen in Fig. 3. In addition to the force-velocity relationship, 
Fig. 3a, NNMAIs were calculated for the fundamental frequency of the input and all harmonics of 
the response and are given in the figure's caption. Each color corresponds to an increase in input 
frequency until the NNMAI is close to 1 while the input force amplitude was held constant. As 
seen in Fig. 3a and Fig. b,  the response amplitude increases with increasing frequency as the 
forcing frequency becomes closer to the resonant frequency. To provide a comparison with Fig. 
1c, the deformation over a quarter of a cycle of the appropriated response (NNMAI = 0.9999) is 
shown in Fig. 3c. The forced response can be seen to be a good approximation of the NNM-1 
deformation shown in Fig. 1c. It is also interesting to note that the force-velocity trace is not a 
line but curves slightly at the ends as the NNM is reached due to the higher harmonics that are 
present in the response (which come about due to the stiffness nonlinearity). If the system were 
linear, the force-velocity relationship would be a line.  
 The response at Point 2 was dominated by a single-harmonic, so only one harmonic was 
needed in the input force to fully appropriate the response of the beam. 
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Figure 3: Appropriated force for Point 2. a) Input force versus response velocity, and  b) Amplitude of
force and velocity Fourier coefficients at points where the NNMAI values were (─0.5671, ─0.9358, 
─0.9972, ─1.000), c) Deformation shapes for a quarter period (─0%, ─4%,─8%, ─2%,  ─16% , ─20%, 
─25% of the period)  
 
 Continuing to Point 3, which is on an internal resonance, a strong coupling is observed 
between LNM-1 and LNM-3 as previously discussed. Due to this coupling, higher harmonics 
were found to be necessary in order to appropriate the beam's response on the NNM. The single-
point multi-harmonic forcing needed was determined using Eqn. (7). As in the previous figure, 
the responses at various points approaching the internal resonance are shown in Fig. 4. Once 
again the area enclosed by the force-velocity relationship in Fig. 4a does not simply follow a line 
in the force-velocity plane, yet while the curve is complicated the area enclosed by the curve 
decreases as the response approaches the true NNM confirming that the force-velocity plot is a 
good visual indicator of the quality of the appropriated response. The fifth harmonic of the 
response increases substantially as the driving frequency approaches the NNM frequency.   
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Figure 4: Appropriated force for Point 3. a) Input force versus response velocity, and  b) Amplitude of
force and velocity Fourier coefficients at points where the NNMAI values are (─0.5153, ─0.7747, 
─1.0000), c) Deformation shapes for a half of a period at (─0%, ─4%, ─7%, ─11%, ─14% , ─18%, 
─25%) of the period 

  
 In a simulation such as this it is trivial to compute the phase of the response compared 
with the phase of the input force and to compute the NNMAI. However, while the phase of the 
first harmonic was informative, it was challenging to make sense of the phase of the higher 
harmonics. To illustrate this, the phases computed at the points shown in Figs. 3 and 4 are 
presented in Tab. 2. Because the "measured" forcing will typically not be a pure sinusoid, the 
phase of all harmonics of the response were first corrected to account for the time delay that 
would make the fundamental harmonic of the input force a pure sinusoid. As previously 
discussed, one expects every harmonic to have a phase of 0° or 180° if the response is perfectly 
appropriated with the input force. For the cases shown in Figs. 3 and 4, it is interesting to note 
that although a single harmonic input force is used for Points 1 and 2, the higher harmonics of the 
response mostly approach this 0° or 180° relationship as the NNM is approached (and the 
NNMAI increases), but the phases in certain harmonics are as large as 90° even when the 



NNMAI is quite high. This is explained by the fact that these harmonics have negligible 
amplitude in the response; the NNMAI automatically considers both amplitude and phase and 
hence seems to be a more robust metric than the phase lag. 

 
Table 2: Frequency, NNMAI, and Phase Lag relative to force for Numerically Appropriated NNMs.  The 

cells colored cyan are the frequencies at which the forcing harmonic was nonzero 
Harmonic Number Test 

Description 
Fundamental 
Frequency 

NNMAI 
1 2 3 4 5 6 7 

1 91.6 0.567 41.1 151.7 123.2 214.1 31.8 53.7 126.0 
2 97.0 0.935 14.7 196.8 44.2 50.9 254.0 110.6 -76.1 
3 97.9 0.997 3.02 184.9 9.2 1.05 195.7 -27.6 201.7 P

oi
nt

 2
 

4 97.9 1.000 -0.24 179.5 -0.58 -1.64 179.4 -2.87 179.0 
1 83.0 0.515 44.1 126.5 131.4 -84.4 187.7 262.1 256.5 
2 85.6 0.774 28.3 136.4 85.2 139.4 3.41 199.6 58.5 

P
oi

nt
 3

 

3 87.2 1.000 4.58 163.0 16.1 244.7 6.58 -6.7 15.9 

 
In the experiments that follow, there was some doubt as to whether the phase of the input 

force could be precisely measured, and in a ring down experiment (as was used in [22] and as will 
be shown later), the forcing is zero so it is beneficial to consider whether the relative phases 
between the response harmonics can be used as an indicator. In this spirit, Tab. 3 shows a 
comparison between the phase of the fundamental harmonic of the response and all of the higher 
harmonics for all of these cases.  If the NNM in question is synchronous, then the harmonics 
again should approach 0° or 180°. The results show that, for the cases considered, the phases do 
align as expected as the frequency approaches that of the true NNM.  

 
Table 3: Relative Phase Lag between response harmonics for Numerically Appropriated NNMs. The cells 

colored cyan are the frequencies at which the forcing harmonic was nonzero.  
Harmonic Number Test 

Description 1 2 3 4 5 6 7 
1 0 110.59 82.09 173 -9.3 12.6 84.87 
2 0 182.13 29.49 36.18 239.33 95.94 -90.83 
3 0 181.94 6.18 -1.97 192.65 -30.68 198.73 P

oi
nt

 2
 

4 0 179.73 -0.34 -1.4 179.65 -2.63 179.25 
1 0 82.41 87.28 -128.54 143.63 218.03 212.42 
2 0 108.1 56.92 111.12 -24.92 171.32 30.23 

P
oi

nt
 3

 

3 0 158.46 11.57 240.17 2 -11.28 11.41 

 
 

2.1.5 Simulated Free decay Measurement of a NNM 
As mentioned previously, the stepped sine approach is time consuming since the NNM 

must be isolated at each amplitude of interest. For systems exhibiting light damping, one might be 
able to find a high amplitude forcing that drives the system into one NNM and then measure the 
damped free decay of the system as described in [22]. It should be noted, however, that the 
authors found that this was difficult to do for the structures studied here.  In order to excite an 
NNM the authors found it far easier to begin near resonance at low forcing amplitude and then to 
slowly increase both the force and the forcing frequency.  In any event, in order for the free decay 
measurement to approximate an NNM several assumptions must be made about the dynamics of 
the structure. First, one must consider the damped nonlinear mode definition developed by Shaw 



[41] and Jiang et al [14]. In that description, a NNM can be considered an invariant manifold, that 
describes the evolution of a pair of state variables in linear modal phase space. Note that to 
describe interactions of modes one must retain a pair of coordinates, (e.g. modal displacement 
and velocity), for each mode involved in the NNM response, complicating the interpretation. Due 
to the invariance property of these manifolds, a motion that initiates on the manifold will remain 
on it for all time. In practice the motion will never initiate precisely on the manifold, but if the 
damped NNM is an attractor of the damped free response then the motion will tend to decay 
along the manifold. Finally, the damping should be light so that the damped manifold is well 
approximated by the undamped manifold. Under these conditions the free decay of a system 
initiated on a damped NNM can be considered an approximation of the undamped NNM 
manifold. Since fundamental frequency in the free response changes with time, more complex 
signal processing techniques, such as the Wavelet Transform [42] and Hilbert Transform [43], are 
needed to interpret the results. An interesting contribution to this type of signal processing, 
applied to the identification of NNMs of structures, can be found in [44]. 

 The Wavelet toolbox in MATLAB® was used here, with a Morlet wavelet, to examine 
the frequency and amplitude content of a decaying response of the flat beam, measured at the 
midpoint. A decay for the fully appropriated responses at Points 2 and 3 were simulated by 
removing the input force and calculating the free response as the amplitude decayed from this 
initial state. For Point 2, the time series and the Wavelet Transform are presented in Figs. 5a and 
5b. Two harmonics are initially observed in this response at 110.7Hz and 335.7Hz corresponding 
to a 3:1 harmonic interaction; however, the fundamental harmonic dominates the response by 
more than an order of magnitude when compared with the third harmonic. For the decay initiated 
at Point 3, the wavelet transform, shown in Fig. 5d, shows two dominant frequencies in the 
response at 85.91Hz and 430Hz corresponding to the first and fifth harmonics of NNM-1. Based 
on this information alone, one cannot tell whether these responses have decayed along an NNM. 
It is therefore helpful to compare the true NNM-1 with the results of these free decay simulations 
and with the stepped-sine simulations. 
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Figure 5: Wavelet analysis of free decay of appropriated NNMs. a) Time series and b) Wavelet decay of 
NNM appropriated at Point 2. c) Time series and d) Wavelet decay of NNM appropriated at Point 3 

 
Figure 6 compares the stepped-sine and free decay estimates with the true NNM 

computed by AMF.  Notice that the vertical scale is now in maximum deformation because it is 
not convenient to estimate energy from measurements. It should be noted that, with this change 
from energy to maximum displacement, the internal resonance branch now shows a decrease in 
the maximum deformation experienced by the structure, while it was shown before that there was 
an increase in response energy along the internal resonance branch. This is due to the internal 
resonance branch being dominated by LNM-3 which is a more complicated deformation resulting 
in greater response energy even though the maximum displacement decreases. It is also 
interesting to note that the maximum deformation of the center point crosses the backbone 
branch, while this does not occur in the frequency-energy plot. 

The responses found using stepped-sine excitation were analyzed using Fourier series 
techniques and are shown with markers. The instantaneous amplitude and frequency of the 
decaying response was determined using the Hilbert Transform [43] and is shown with dashed 
lines. The decay that initiated from Point 2 is shown with a gold dashed line and can be seen to 
overlay well with the true backbone.  The free decay seems to produce a good estimate of NNM-1 
even though the response passes near the bifurcation point where the internal resonance occurs. 
The decay initiated at Point 3, shown with the dashed cyan line, also follows the backbone well 
even though it was initiated on the internal resonance (but near the backbone) and its response 
initially contained a significant 5th harmonic component. The starting point of this decay is shown 
as a cyan circle. An additional decay experiment was also performed at a higher energy starting at 
Point 4 and is shown with the dashed black line. This decay does not follow the NNM backbone 
but tracks a course through the frequency-maximum amplitude space that is separate from the 
NNMs.  Finally at much lower energies it converges to the NNM-1 backbone.  This example 
illustrates a potentially important limitation to the free decay technique when an NNM exhibits 
strong modal coupling. 



 
Figure 6: Comparison of NNM measurement techniques. 

 
  

3 Experimental Application to a Clamped-Clamped Flat Beam 
3.1 Structure Description 
 The structure used for the experiments presented here is a precision-machined feeler 
gauge made from high-carbon, spring-steel in a clamped-clamped configuration as shown in Fig. 
7.  The random response of this same hardware was previously studied in [45]. The beam has a 
nominal effective length of 228mm, a width of 12mm, and a thickness of 0.76mm. It is important 
to note that all presented dimensions are nominal and subject to variation from clamping and 
stress variations from machining process to obtain the desired thickness. Prior to clamping, the 
beam was prepared for three dimensional digital image correlation (3D-DIC) and continuous-scan 
laser Doppler vibrometry (CSLDV) as discussed in [46] and shown in Fig. 7. The clamping force 
was provided by four 6.35-28 UNF-2B bolts tightened to 9 N-m from left to right. After clamping 
the beam to the fixture, a single-input single-output modal hammer test was performed on the 
beam so linear natural frequencies and damping ratios could be identified as well as a static 3D-
DIC measurement so any initial geometry variations could be identified. Additionally, operational 
modal analysis and CSLDV [47] were used to determine the mode shapes of the beam. The 
natural frequencies and damping ratios of the first ten modes, identified from the modal hammer 
test, are shown in Tab. 4, and the first seven elastic bending mode shapes measured by CSLDV 
are shown in Fig. 8. The CSLDV method measures the mode shape twice as the laser sweeps 
forward and then backward, so deviations between the two measurements give an indication of 
the measurement error. 
 



 
Figure 7: Photograph of Beam Specimen 

 
Table 4: Linear (low amplitude) natural frequencies of flat clamped-clamped beam 

  
Mode 

1 
Mode 

2 
Mode 

3 
Mode 

4 
Mode 

5 
Mode 

6 
Mode 

7 
Mode 

8 
Mode 

9 
Mode 

10 
f, Hz 45.8 171.6 371.7 638.7 973.7 1376.5 1847.7 2387.2 2586.5 2994.7 

ζ1 , % 0.38 0.12 0.09 0.08 0.08 0.07 0.06 0.06 0.04 0.06 
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Figure 8: The first seven mode shapes of the beam. a-g) Modes 1-7 
 

3.2 Experimental Setup 
For this experimental setup, there are 3 systems: 1) exciter/controller, 2) Continuous-scan 

Laser Doppler Vibrometer measurement system, and 3) system for force appropriation:  
1) Excitation of the structure was provided by a non-contacting magnetic driver powered 

by a Piezo Amplifier. The input force exerted by the magnetic driver cannot be directly measured, 
so instead a PCB force transducer was mounted between the magnetic driver and a solid base in 
an attempt to measure the reaction force of the driver. At lower forcing amplitudes, 



complimentary results between the input voltage and measured force were found but a small 
phase difference was observed for some unexplained reason. At higher forcing amplitudes, the 
magnetic driver setup further contaminated the measured force as discussed later in Sec. 3.3, but a 
better alternative was not available. 

 2) Full-field dynamic measurements were taken using Continuous-scan laser Doppler 
vibrometry (CSLDV) and a 3D-DIC system was present but its results will not be presented here.  
Measurements from these two systems were compared in [48]. 

3) Prior to scanning, the single point laser Doppler vibrometer (LDV) was used to 
measure the response of the beam as it was subjected to a single frequency sinusoid at a specified 
excitation amplitude. The voltage input to the exciter was measured as well as the reaction force 
at the base of the magnetic driver. The velocity response and input voltage signals were measured 
in real time and displayed in a custom LabView program that also provided the capability of 
manually modifying the amplitude and frequency of each harmonic in the voltage sent to the 
amplifier.  

 
3.3 Effect of Magnetic Driver on the Dynamics of the Beam 
 For light structures such as the beam investigated here, the apparatus used to apply an 
external force can modify the dynamics of the structure of interest. This has increased the interest 
in developing alternative methods of excitation, such as the magnetic driver which is used here. 
As previously mentioned, the magnetic driver used for the experimental setup can interact with 
the structure so care must be taken to understand how the magnetic driver will contaminate the 
results. The magnetic driver has a permanent magnet embedded in the inductor, so there is a 
magnetic field present even when no voltage is supplied. A low amplitude hammer test was 
performed on the beam before and after the magnetic driver was placed in front of the beam to 
characterize the linearized stiffness and damping effect that the magnetic driver has on the beam. 
The change in the identified natural frequencies and damping ratios before and after the magnetic 
driver was placed in front of the beam are presented in Tab. 5. The results show that the magnetic 
field has a greater effect on the estimated linear damping of the beam than the linear natural 
frequencies due to the presence of the magnetic field. For linear force appropriation, this will 
require a change in the force needed to achieve an appropriated response. It is also important to 
note that the natural frequencies and damping ratios changed by a comparable amount before and 
after the stepped-sine tests, presumably due to relaxation at the boundary conditions, temperature, 
or other effects, as discussed in [49]. 

Table 5: Percent Error of Identified Natural Frequencies and Damping Ratios  
when the magnetic driver is near the beam 

Percent 
Error 

Mode 
1 

Mode 
2 

Mode 
3 

Mode 
4 

Mode 
5 

Mode 
6 

Mode 
7 

f 2.07 0.88 0.36 0.26 0.02 0.17 0.12 
ξ -5.45 90.0 -35.0 0.0 -22.2 -6.7 0.0 

 
 Since the expected beam deflections are large, any nonlinearity from the driver could 
potentially contaminate the measured NNMs. In particular, since the magnetic driver is mounted 
on one side of the beam, the fluctuating magnetic field will asymmetrically load the structure 
causing the presence of unexpected dynamics. Therefore,  To determine whether the voltage 
signal is representative of the input force, the exciter was used to excite a load cell mounted to a 
rigid base. The reaction force measured on the magnetic driver setup and the excited load cell 
were shown to compare well with each other and the input voltage as discussed in [49] so 



measurements proceeded. However, during the measurements the reaction force was found to 
vary considerably from the input voltage. For example, Figs. 9a and 9b compare the measured 
force, voltage, and velocity of the structure at a low and high amplitude resonance responses 
similar to those that will be presented later. The input voltage closely resembles the response of 
the beam, but the measured reaction force exhibits a small phase shift for the low amplitude 
response and completely different characteristics for the large amplitude response. 

0 0.005 0.01 0.015 0.02 0.025 0.03

-0.6

-0.4

-0.2

0

0.2

0.4

Time, s

A
m

pl
itu

d
e

 

 

Force, N
Voltage, V
Velocity, mm/s

 
(a) 

0 0.01 0.02 0.03 0.04 0.05

-4

-3

-2

-1

0

1

2

3

Time, s

A
m

p
lit

u
d

e

 

 

Force, N
Voltage, V
Velocity, mm/s

 
(b) 

Figure 9: Comparison of force, voltage and velocity signals.  
a) Low amplitude response. b) High amplitude response. 

 
 It appears that the magnetic driver induces a force on the beam that is not well 
characterized by the input voltage (which will be used later as a surrogate for the force in the 
appropriation experiments). However, the higher harmonics in the force do not seem to induce 
much deformation in the beam, and hence they may not contribute significantly to the energy 
input to the beam. To verify this, the energy that would be input by the measured reaction force 
was calculated using Eq. (22) with the integral evaluated numerically. Several harmonics are 
present in the measured force, so the energy was further decomposed into the contribution of each 
harmonic to the energy input. The process was then repeated at three points where appropriation 
results are presented, as elaborated in the next section, and the result is shown in Tab. 6. For the 
first three points, the first harmonic dominates the power input to the beam. At Point 3, which 
corresponds to an internally resonant NNM-1 branch, the power input by the fifth harmonic 
appears to have a significant contribution as well.  In contrast, the second harmonic, which is 
responsible for much of the distortion in the measured force in Fig. 9b, contributes negligible 
power and hence its effect on the NNM can hopefully be ignored. Because the measured force is 
not trustworthy, in all of the results presented in the following section the input voltage will be 
used as a surrogate for the input force. 

Table 6: Power Input to the Beam 
 Harmonic 

1 
Harmonic 

2 
Harmonic 

3 
Harmonic 

4 
Harmonic 

5 
Harmonic 

6 
Harmonic 

7 
Point 1 2.63x10-3 7.34x10-5 2.01x10-5 9.76x10-7 2.86x10-7 9.09x10-8 1.13x10-7 

Point 2 4.43x101 2.03x10-1 6.29x10-1 1.99x10-1 -1.80x10-1 -2.90x10-3 -2.99x10-3 

Point 3 1.22x101 6.10x10-2 -1.37x10-1 1.69x10-2 -1.33x100 3.30x10-2 2.06x10-1 

 
3.4 Experimental Example of Stepped Sine Measurement of NNM 
 As was done in the following section the results of force appropriation will first be 
highlighted at three points which, following the same nomenclature used in the previous section, 



are thought to correspond, respectively to: a point at low energy, a point high up on the main 
NNM-1 backbone, and a point on the internal resonance. In each case a single-harmonic force 
was stepped up in frequency until the fundamental harmonic was nearly appropriated and 
additional harmonics were added to reduce the area enclosed by the voltage-velocity relationship 
and tune the shape of that curve.  
 At Point 1, three successive measurements were taken where a harmonic was added to 
the forcing function at each measurement. The added harmonic was selected to counter the 
strongest harmonic observed in the response. The results are shown in Fig. 10, where blue 
corresponds to a single harmonic force, green is a two harmonic force, and red is a three 
harmonic force. It is interesting to note that although higher harmonic content was added to the 
input force changing the shape of the voltage-velocity relationship considerably (Fig. 10a), the 
amplitudes of the second and third harmonics of the response, shown in Fig. 10b, remain very 
small. The second harmonic seems to reduce the area enclosed by the curve, but the third simply 
serves to linearize the force-velocity relationship.  If the voltage is an accurate surrogate for force, 
then one would expect the case with two harmonics (in green) to produce a response closest to the 
underlying nonlinear mode, suggesting that the system is still somewhat nonlinear at this low 
amplitude. The addition of the third harmonic may or may not improve the result. This question is 
deferred until later  when the  resulting NNMAI metrics are presented (e.g. see Table 7). 
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Figure 10: Appropriated force for Point 1. a) Voltage vs. Velocity, b) Amplitude of Fourier coefficients 
 

This process was repeated for Points 2 and 3. The results for Point 2, which correspond to 
a strongly nonlinear point on the backbone of NNM-1, are shown in Fig. 11. Again, higher 
harmonics were added to the input force based on the harmonic content observed in the response. 
With the addition of two harmonics, the area enclosed by the voltage-velocity relationship 
approaches zero, as shown in Fig. 11a. For this strongly nonlinear response, a the third harmonic 
begins to stand out in the spectrum shown in Fig. 11b. As in the Point 1 case, the addition of 
further harmonics seems to cause the voltage-velocity relationship to approach a straight line.  
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Figure 11: Appropriated force for Point 2. a) Voltage vs. Velocity, b) Amplitude of Fourier coefficients 
 
 The results for Point 3, on the internal resonance, are shown in Fig. 12. Here the voltage-
velocity curve is far more complicated.  The 5th harmonic seems to significantly reduce the area 
enclosed by the curve.  Adding further harmonics seems to reduce the area further, but it also 
causes the relationship to be nearly linear. In the final appropriated response, the fifth harmonic is 
almost half the amplitude of the fundamental harmonic, showing a strong harmonic coupling of 
LNM-1 and LNM-3 as was seen in the finite element model. Qualitatively, the response 
characteristics match those of the simulated beam but the phase and NNMAI will need to be 
examined in detail to see which result provides the most accurate estimate of the NNM. 
 

 

 As was done for the simulated experiments, the measured voltage and velocity were 
decomposed using a least squares multi-sine fit. The resulting complex Fourier coefficients were 
used to calculate the phase of the first several harmonics.  For ease of comparison, the response 
harmonics were shifted to account for the phase of the fundamental harmonic of the input voltage. 
The phase of the voltage is thought to give an adequate, yet imperfect estimate of the phase of the 
induced magnetic field in the inductor which is related to the force input to the beam, as discussed 
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Figure 12: Appropriated force for Point 3. a) Voltage vs. Velocity, b) Amplitude of Fourier coefficients 



in Sec. 3.3. The phases of the harmonics of the response relative to the fundamental harmonic of 
the input voltage were computed and are shown in Tab. 7. The cells shaded with blue correspond 
to harmonics that were nonzero in the input voltage.  It is immediately apparent that many of the 
harmonics show phases that are very far from the desired 0 or 180o.  Particularly, the even 
harmonics tend to be near 90o whether or not a corresponding force had been applied.  In 
particular, it seems that the 2nd harmonic need not have been added to the input force. 

For Points 1 and 2 the phases are near 0 or 180o when the force includes only a single 
harmonic, and some improvement is seen as higher harmonics are added; however, some of the 
cases show that as additional harmonics are added, the phase gets worse. Even then, all of the 
cases shown for Points 1 and 2 seem to be well appropriated. For Point 3, as higher harmonics are 
added the phase of the 5th and 7th harmonics improve somewhat. The results presented here show 
that care must be taken when adding harmonics to the force.  If the harmonics aren’t needed they 
seem to artificially linearize the force-displacement relationship, making the estimate of the NNM 
less accurate. 

Table 7: Phase relationships between the first harmonic of the Input Voltage  
and all harmonics of the measured response 
Phase  (°) Between Voltage and Response 

Harmonic Number Test Description 
1 2 3 4 5 6 7 

1 1.18 -91.87 177.74 88.51 -0.62 102.83 27.42 
2 1.05 -92.37 177.19 83.59 -4.41 88.85 58.86 

P
oi

nt
 1

 

3 1.30 -91.86 177.97 86.11 -2.59 92.81 67.82 
1 2.14 -90.07 -177.65 94.06 -176.90 -75.11 4.87 
2 0.79 -93.01 178.34 89.44 176.50 -79.48 -4.22 
3 0.63 -93.25 177.73 89.62 175.64 -78.04 -4.46 P

oi
nt

 2
 

4 0.59 -93.49 177.67 89.18 175.40 -78.54 -5.23 
1 1.87 -89.96 -173.23 -113.58 -18.44 -107.99 163.15 
2 1.90 -90.07 -172.63 -110.74 -17.08 -107.89 164.51 
3 3.51 -86.57 -164.18 -108.60 -13.46 -103.35 171.77 P

oi
nt

 3
 

4 2.92 -87.95 -166.86 -108.87 -14.40 -104.66 169.54 

 
 As discussed previously, there is some doubt as to whether the phase of the voltage 
matched the phase of the force.  To circumvent this, the relative phases between the response 
harmonics were considered as was done previously in Tab. 3 and the result is shown in Tab. 8. 
The NNM Appropriation Indicator (NNMAI) introduced in Eqn. (8) is also shown in Tab. 8. 
Three NNMAIs were computed, each including a different set of harmonics: all harmonics 1 
through 7, the odd harmonics, and the even harmonics. The maximum value of each NNMAI in 
each test is shaded in orange. The odd harmonics dominate the nonlinear response, as was shown 
in Figs. 10b, 11b, and 12b. 
 For any of the selected force distributions, the odd harmonics can be considered well 
appropriated (e.g. all NNMAI values are above 0.83) and confirm that the stepped-sine backbone 
is a good estimate of the NNM. In all three cases the results show that some of the higher 
harmonics that were added did not improve the estimate of the NNM.  Fortunately, in the 
simulation section the frequency-amplitude behavior was shown to not be very sensitive to even 
relatively large changes in the NNMAI, so the measured NNMs should still be reasonably 
accurate. 



 
Table 8: Phase relationships between the fundamental and higher harmonics of the response 

Relative Phase (°) of Response to first harmonic 

Harmonic Number NNMAI Test 
Description 1 2 3 4 5 6 7 All Odd Even 

1 0.00 -94.23 174.21 83.79 -6.52 95.75 19.16 0.5398 0.9643 0.0091

2 0.00 -94.47 174.04 79.40 -9.65 82.56 51.53 0.5406 0.8337 0.1743

P
oi

nt
 1

 

3 0.00 -94.45 174.09 80.93 -9.06 85.04 58.75 0.4738 0.8398 0.0162

1 0.00 -94.35 175.93 85.50 172.40 -87.95 -10.11 0.5208 0.9867 0.0549

2 0.00 -94.60 175.95 86.26 172.52 -84.25 -9.78 0.5586 0.9873 0.1300

3 0.00 -94.52 175.83 87.08 172.47 -81.85 -8.91 0.5054 0.9884 0.0224P
oi

nt
 2

 

4 0.00 -94.68 175.89 86.81 172.43 -82.10 -9.38 0.5841 0.9877 0.1805

1 0.00 -93.69 -178.83 -121.05 -27.78 -119.19 150.07 0.5539 0.8834 0.2244

2 0.00 -93.86 -178.33 -118.34 -26.57 -119.28 151.22 0.5533 0.8918 0.2148

3 0.00 -93.59 -174.71 -122.65 -31.02 -124.43 147.18 0.5254 0.8581 0.1927P
oi

nt
 3

 

4 0.00 -93.78 -175.61 -120.54 -28.98 -122.16 149.13 0.5212 0.8740 0.1684

 
3.5 Measured Backbone Curves 
 Before examining the measured NNMs, it is interesting to examine the free response as 
the beam decayed from Points 2 and 3 and their corresponding Morlet wavelet transforms, shown 
in Fig. 13. The decay was initiated at 106.98 Hz, after a 61.18 Hz shift in the first mode of the 
beam from its linear natural frequency, so it encompasses a response over a strongly nonlinear 
regime.  The amplitude of the time signal decays smoothly but there is a sudden jump near 2.5 
seconds. Similarly, the wavelet coefficients near the 5th harmonic of the response show a sudden 
increase at that same instant. At this instant in the decay, the response is near the internal 
resonance branch showing contamination between the NNMs. The higher harmonic content was 
still quite small and so it was disregarded when estimating the NNM backbone. 

Figures 13c and 13d show the results for the decay that initiated at Point 3. For the decay 
from this point, the wavelet coefficients at the 5th harmonic are on a similar scale as the 
fundamental harmonic as seen in Fig. 13d.  
 Similarly, a decay experiment was performed on NNM-3. The wavelet transform shown 
in Fig. 13f shows only a single frequency response, with no higher harmonics clearly visible. 
However, there does appear to be an interaction with LNM-1, which can be seen near the bottom 
of the plot in light blue. This sub-harmonic content only occurs after the force has been turned off 
and its frequency does not change during the decay, so it could simply be due to a spurious 
excitation of linear mode 1 when the force is turned off. Since NNM-3 has a higher frequency, its 
response decays in a third of the time required for NNM-1 to decay. This makes it more 
challenging to accurately extract the backbone using the wavelet or Hilbert transforms. 
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Figure 13: Time series and wavelet transform of the three experimentally measured free decays. a) Time 
series and b) Wavelet transform corresponding to the NNM-1 Point 2 decay, c) Time series and d) Wavelet 
transform corresponding to the NNM-1 Point 3 decay, e) Time series and f) Wavelet transform 
corresponding to the NNM-3 Point 2 decay. 
 These results were next used to estimate the backbone of NNM-1 and the result is shown 
in Fig. 14. The circles mark the results from the stepped-sine testing and the lines show the 
backbones extracted from the free decays using the Hilbert transform. The free decay initiated at 
Point 2 (blue) agrees very well at high amplitude, although it begins to deviate at low amplitude 
as the LNM is approached. The maximum difference between the two is 2.71 Hz, and this is 
similar to the difference between the backbone estimated from the stepped sine test and the linear 
natural frequency estimated in a hammer test. The maximum deviation in frequency between the 
stepped-sine and the decay from Point 2 is 4.25 Hz, occurring at the second lowest amplitude 
response point measured by the stepped-sine technique. This point is at a lower frequency then 
the point with the lowest amplitude and this could be a result of a spring-softening.  This structure 
is known to be prone to softening behavior [49] and the magnetic exciter might also induce 
softening. 
 The stepped sine results show a plausible estimate of the internal resonance, although the 
points do not evolve as smoothly as one would expect.  However, when a free decay was initiated 
from the point shown on this branch the measured amplitude was found to follow a seemingly 
arbitrary path in frequency and amplitude until it finally settles on the NNM-1 backbone. Note 
that the Hilbert transform algorithm induces an initial transient in the calculated frequency-
amplitude relationship that was removed for a better fit. The start point of the free decay was 
added to the decay results based on the identified frequency and amplitude from the steady-state 
measurements, resulting in a discontinuity observed at the highest frequency of the internally 
resonant decay.  
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Figure 14: Frequency-Amplitude behavior of the NNM-1 backbone and internally resonant branch  

 
 Similar results are found for NNM-3, where only a single decay is needed to measure the 
backbone shown in Fig. 15. Due to limitations in the experimental setup, NNM-3 can only be 
measured to a smaller maximum deformation than was achieved for NNM-1. It should be noted 
that although the results between stepped-sine and free decay appear more scattered the 
maximum frequency error between the identified backbones is only 1.4% which is within the 
experimental error.   
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Figure 15: Frequency-Amplitude behavior of the NNM-3 backbone. 

 
 



3.6 Full-Field Deformation Shapes along the measured NNM backbone 
 An additional benefit to the use of stepped-sine testing is the ability to easily implement 
advanced full-field measurement techniques to measure the deformation of a structure. This 
allows the full-field deformation shapes to be examined and compared with numerically 
calculated deformations. The CSLDV system mentioned previously was used to measure the 
deformation of the surface of beam along the line of retro-reflective tape shown in Fig. 7. 
 Again following the first three Points of the NNM shown in Fig.14, the deformation 
shapes of the experimentally measured NNM in the neighborhood of these three points is shown 
in Fig. 16. The deformation near Point 1, shown in Figs. 16(a) and 16(d), matches the expected 
deformation for a linear beam and harmonic content in the response is similar to that in the 
analytical NNM, as was shown in Figs. 1(b) and 1(f). 

Point 2 shows a similar deformation pattern, but as the deformation approaches zero, a 
small skew is observed. Although this deformation is dominated by single harmonic and by 
LNM-1, the second and third harmonic also contribute as shown in Fig. 16(e). 

The measured NNM near Point 3, shown in Fig. 16(c), shows the same interplay between 
LNM-1 and LNM-3 that was seen in the simulated results in Fig. 1(d),.  The experimental 
measurement also shows a slight asymmetry in the deformation. The fifth harmonic also begins to 
contribute more to the response as expected. 
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Figure 16: Full-field deformations of experimentally measured NNM. a-c) Deformation shapes for a half 
of a period at (─0%, ─4%, ─7%, ─11%, ─14% , ─18%, ─25%) of the period. d-f) Fourier coefficients of 
the response at the center of a beam over a period of the response. 
 
4 Conclusion 
 This work has shown that multi-harmonic forces can be used to experimentally isolate 
NNMs even on an internal resonance. In doing so, it is helpful to monitor a plot of the force 
versus velocity and then it becomes fairly intuitive to adjust the amplitudes of the harmonics in 
the force until the curve shows minimal area.  However, the results presented here show that one 
can find several responses that seem to have minimal area yet do not satisfy the phase criterion 
equally, and so it is wise to also compute the nonlinear mode indicator or the phases of the 
response harmonics to check whether an NNM has been accurately isolated.  Fortunately, the 
simulation results also showed that one can accurately estimate the frequency and 
amplitude/energy of an NNM even if there is considerable error in the mode indicator.  Values of 
NNM as low as 0.5 can still be used to estimate the NNM frequency within only a few percent.  It 
was also shown that the phases of the response harmonics can provide a good indicator of how 
close one is to an NNM, but they are more challenging to deal with because they are also very 
sensitive to small changes to the forcing and the weak harmonics tended to have spurious phases. 
 Another goal of this work was to compare stepped sine appropriation to the more 
convenient free decay method. The results showed that the free decay method provided 
comparable results when the response was initiated on the main backbone of an NNM. However, 
when initiated on an internal resonance the transient decay did not follow the backbone of the 
NNM, but instead decayed along a totally different path.  There does not seem to be any easy way 
to query the free response to see whether it is still on a true NNM or not. In this regard the 
stepped sine method is preferred because one obtains a quantitative metric that can be used to 
evaluate the quality of each point.  One additional benefit of the use of stepped-sine 
measurements is that it became easy to implement continuous-scan laser Doppler vibrometry 
(CSLDV) to measure the full-field deformation along the surface of the beam. The deformation 
shapes measured from the beam showed excellent qualitative agreement with the numerically 
calculated NNMs. 
 Admittedly, the structure studied here was fairly simple, but even then simulations have 
shown that the NNM backbones and the couplings between the underlying linear modes can be 
highly sensitive to the boundary conditions and to the initial shape of the beam.  Hence, 
experimental measurements of the NNMs such as these are expected to be very valuable when 
updating the finite element model to better correlate with the actual test hardware.  For more 
complicated structures, such as the skin panel of an aircraft, these tools are expected to be even 
more critical. In the future, it may even be possible to project the measured deformation onto the 



experimentally identified linear modes, allowing one to develop a reduced order nonlinear modal 
model experimentally.  This will be pursued in future work.  
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5.1  Linear Normal Modes 
5.1.1 Introduction 
 Linear Normal Modes (LMNs) have become fundamental to the understanding of linear 
dynamics and are rooted in the conservative free vibration equations of motion (EOM), which can 
be written as follows for a n degree of freedom (DOF) system: 

 0)()(  tt KxxM   (12) 

where M is the n x n mass matrix, K is the n x n stiffness matrix, x(t) is an n x 1 vector of the 
displacement of the system, and  ẍ(t) is an n x 1 vector of the acceleration. Using the method of 
undetermined coefficients, the acceleration and displacement of the system can be represented in 
the exponential form: 

    titi etet  XxXx Re)(;Re)( 2   (13) 

where X is a vector of real variables and ω is the excitation frequency. By substituting Eqn. 
Error! Reference source not found. into Eqn. Error! Reference source not found. and 
rearranging, one obtains the familiar eigenvalue problem: 

   02  XMK   (14) 

5.1.2 Review of Linear Normal Mode Measurement with Force Appropriation 



 As mentioned previously, phase resonance testing is a method whereby a harmonic force 
is applied to the structure and then tuned through force appropriation until the mode has been 
isolated.  Tuning methods can be split be split into iterative and direct methods [33, 50], but all 
methods find roots in the characteristic phase lag theory [31].   
 Beginning with an N degree of freedom (DOF) system, the forced response of a system 
can be represented by: 

 )()()( ttt ind ffKxxM   (15) 

Where M is the mass matrix, K is the stiffness matrix, and fd are the damping forces, which may 
come from linear viscous damping or linear material damping and hence may be dependent on 
displacement or velocity. fin(t) is the input force vector, which can be assumed to take the form: 

  i( ) Re tt e inf F  (16) 

Where X and F and are vectors of real variables, ω is the excitation frequency. If the structure has 
classical, undamped modes, then the response can be written as x(t) = Re(Xeiωt-θ), where θ is the 
phase lag of the response relative to the force. There are several forms fd can take depending on 
the dissipation characteristics expected in the structure investigated. Two common forms of linear 
damping are viscous and structural, which have the following form for harmonic motion: 

  )()(Re    titi eiei DXCXfd  (17) 

Where iωC is related to linear viscous damping and iD is related to structural damping (e.g. 
D=ηK where η is the material loss factor), and both are 90 degrees out of phase from the response 
due the i term in each expression. As a result, both are in phase with the structure's velocity. 
Using the definitions established in Eqns. (16) and Error! Reference source not found., and 
pulling out the coefficients of the damping terms, Eqn. Error! Reference source not found. can 
be separated into imaginary and real parts with the phase in the complex exponential separated 
into sine and cosine terms. 

    0cossin2  XFMK d   (18) 

    PXFMK d   sincos2  (19) 

As discussed by de Veubeke [31], when the response has a delay of 90 degrees with the input 
force vector, Eqn. Error! Reference source not found. only contains the relationship between 
the stiffness and mass of the structure and Eqn. Error! Reference source not found. only 
contains the effect from damping, which is balanced by the input force vector. For this phase 
criterion, the excitation frequency is at the undamped natural frequency of the structure, ω = ωn, 
and the mono-phased response displacement, X, is the Normal Mode shape.  
 Before proceeding to discuss nonlinear systems, it is beneficial to examine the force that 
must be applied to isolate a linear mode using the energy balancing technique [38, 39, 51]. This 
technique provides an approximate description of the input forced needed to cancel the damping 
in the structure; however, for a perfect force appropriation the energy would have to be equal at 
all times. For the purposes of this investigation, the average is assumed to be sufficient in the 
appropriation of a normal mode. If the system is oscillating on a LNM, the power dissipated at 
any instant is: 

 )()( T ttdiss xCxP   (20) 

Where only the viscous damping case has been considered for simplicity. The total energy 
dissipated over one period of the response is: 
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Similarly, for a forcing function fin(t), the energy the external force inputs into the system is: 
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 At resonance the energy dissipated by the damping forces must equal the total energy 
input to the system over the period T:  

 cycincycdiss EE //   (23) 

and by equating these two expressions one can determine what force to exert to isolate a known 
mode, X, at a given amplitude.  
 For a structure with well separated modes, a single-point mono-harmonic force is all that 
is needed to isolate a LNM. Note that such a force is not necessarily a good approximation to the 
dissipative forces in the structure, but this works because the total energy input per cycle matches 
the energy dissipated and the energy absorbed by modes other than the mode of interest ends up 
being very small. In this context, when a single-point, mono-harmonic force fin(t)=Asin(ωt) is 
applied at a location n on the structure, with amplitude A, the energy balance criterion in the 
equation above becomes: 
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where ẋn denotes the velocity of the structure at the point where the force is applied.  
 This energy balance criterion provides a direct link between the computed LNMs and the 
resonant response of the damped forced system [39]. If the response is not 90 degrees out of 
phase with the force, then over the course of a cycle the input forces alternately add and remove 
energy from the system and the motion, x(t), that is measured is not an invariant of the structure 
but depends on the forcing. 
 In an experiment, the mode is not known a priori so an in situ "hard tuning" of each mode 
is used to bring the isolated mode to some specified level of accuracy. An overview and 
comparison of different force appropriation methods can be found in [33]. The response can be fit 
to a complex model, x(t) = Re(Zeiωt), where Z is the complex amplitude of the response and the 
following modal indicator function can be checked to determine how close the measured response 
is to a pure normal mode [33, 52]: 
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where ()H is the Hermitian. 
 


