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ABSTRACT 
Bolted joints are common in assembled structures and are a 

large contributor to the damping in these assemblies. The joints 

can cause the structure to behave nonlinearly, and introduce 

uncertainty because the effective stiffness and damping at the 

joint are typically unknown. Consequently, improved modeling 

methods are desired that will address the nonlinearity of the 

jointed structured while also providing reasonable predictions of 

the effective stiffness and damping of the joint as a function of 

loading. 

A method proposed by Festjens, Chevallier and Dion 

addresses this by using a sort of nonlinear modal analysis based 

on the response of the structure to quasi-static loading. This was 

further developed by Allen and Lacayo and thoroughly 

demonstrated for structures with discrete Iwan joints.  This work 

explores the efficacy of quasi-static modal analysis for 2D and 

3D finite element models in which the geometry, contact 

pressure and friction in the joint are modeled in detail. The mesh 

density, contact laws, and other solver settings are explored to 

understand what is needed to obtain convergence for this type of 

problem.  For the 2D case study, the effect of bolt preload and 

coefficient of friction are explored and shown to produce 

reasonable trends. Three dimensional models prove far more 

challenging and significant effort was required to obtain 

convergence and then to obtain results that are physically 

realistic; these efforts are reported as well as the lessons learned.  

 

INTRODUCTION 
Finite element analysis is the cornerstone of modern day 

structural analysis. From rollercoasters to rovers, FEA allows for 

the discretization of a CAD model into a mesh of nodes and 

elements from which a variety of analyses can be performed to 

examine the structure’s stresses, thermal loading, vibrational 

modes, and more. Current FEA methods produce extremely 

accurate results for models of a single solid and often rely on 

linear solvers to do so. Most structures, however, are composed 

of multiple parts fastened together and it is not straightforward 

to determine the effective stiffness and damping of these 

connections [1]. Furthermore, the modeled connections 

introduce nonlinearities that can make the model very costly to 

simulate, and may require expensive physical prototype tests to 

validate [2-7].  

To help address this, Festjens et al. [8] proposed a model 

reduction technique that spatially decomposes a structure into a 

linear domain away from the joint and a nonlinear domain near 

the joint. Then the inertial term in the joint domain is neglected 

and the joint is assumed to behave quasi-statically. Allen et al. 

[9] later presented a variant on this method and applied it to 

structures where the joints were modeled as discrete Iwan 

elements.  Their work demonstrated that the technique produces 

very accurate estimates of the amplitude-dependent modal 

damping and natural frequency when the response is dominated 

by a single mode, thus allowing them to more easily tune Iwan 

models to reproduce the nonlinear damping (and to a lesser 

extent stiffness) observed in experiments.  In essence, the 

developed quasi-static modal analysis is an extension of modal 

analysis to structures with weakly nonlinear joints. 

The Iwan models used in [9] are not predictive but need to 

be tuned to experimental measurements for every joint geometry, 

preload, material, etc…  In contrast, this work explores the use 

of quasi-static modal analysis to predictive modeling of a joint 

wherein the joint geometry, bolt preload force, and interface 
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friction law are used to predict the nonlinear behavior of each 

mode.   

To effectively model a bolted joint, it is important to first 

take a step back and understand the mechanics of a bolted 

interface; several phenomena occur when two members are 

fastened together. First, the bolt itself imposes a clamping force 

proportional to the bolt preload on the joined members, forcing 

them into contact with one another. Simultaneously, friction 

limits lateral motion of the surfaces. Then, if the bolted structure 

has external forces applied, these effects will result in the bolted 

surfaces trying to slip relative to each other. First the bolted 

contacting members will experience microslip, or slipping near 

the edge of contact where the clamping pressure is lowest. As the 

external forces increase in magnitude though, the joint may slip 

completely and transition from microslip to macroslip. In the 

macroslip regime, severe nonlinearity can be observed. 

Microslip is known to cause damping, up to 90% of the 

damping in some systems [10], and can induce fatal fretting 

fatigue [11]. However, it is costly to model and so microslip is 

typically neglected in FE models. Instead, an iterative method is 

used in which a FE model of the structure is created and a 

physical prototype is constructed. Then tests are conducted on 

the prototype to estimate the structure’s damping, and then the 

measured damping is imposed on the linear FE model. This 

process is repeated until the model is deemed acceptable for 

structural dynamic response prediction.  

In addition to the existing analysis methods being extremely 

costly, various studies have shown that structures with bolted 

joints can exhibit variations in damping of hundreds of percent 

with response amplitude. Therefore the existing analysis method 

may not provide tractable results to the structures life cycle and 

thus a more robust and predictive method for modeling joints is 

needed [12-17]. To address the latter of these concerns, any 

method to examine damping in a built up structure should assess 

a variety of forcing magnitudes. For the quasi-static method 

employed in this paper, this was done by imposing a range of 

load levels, or forcing magnitudes, on the models which allowed 

for energy dissipation analysis over most of the microslip regime 

with maximum forcing levels near the initiation of macroslip.  

The friction responsible for the joint's microslip and 

macroslip was modeled by Coulomb friction in this work. There 

is a current discussion in regards to the effectiveness of assuming 

a Coulomb friction model and whether it is sufficient for contact 

mechanics [18-20]. Coulomb friction is often used for 

mechanical contact problems, and while it has often proved 

effective when modeling macroslip, there is evidence that it is 

not adequate for microslip [21]. Adam Brink’s thesis examined 

this concern and concluded that with proper solver settings for 

the FEA model, Coulomb friction is still acceptable for microslip 

models [22]. However, because bolted joints are so costly to 

model, only one study has ever thoroughly compared 

experimental measurements of dissipation with detailed contact 

simulations [6].  The tools developed in this work could be used 

to rigorously characterize the effect of the friction law on the 

nonlinear damping of each mode in a structure. 

Lastly, as advanced, lightweight structures are being 

developed, passive vibration reduction has become increasingly 

important for design. Since bolted joints usually do provide 

increased damping, they may be designed in structures of the 

future as a form of vibration reduction, assuming the damping 

created by the joints and resulting from microslip may be 

suitably modeled [23]. It is therefore hoped that the methods 

presented here will one day allow accurate and efficient 

simulation of microslip and joint energy dissipation, so designers 

can exploit this to maximize damping.  

In summary, the aim of this work is to implement the quasi-

static modal analysis method for structures where the joint is 

modeled in detail, and to assess its accuracy and effectiveness. 

First a 2D model was examined in Abaqus since its smaller size 

and simple mesh allowed for fast computation. Several iterations 

were performed to determine what mesh was needed to obtain 

convergence in the quasi-static calculations of damping. Once a 

converged model had been obtained, the bolt preload and 

coefficient of friction were varied in order to understand how 

these parameters affect the instantaneous frequency and damping 

of the first bending mode.  These types of parameter studies will 

be needed in future studies when predictions are compared with 

measurements of damping versus amplitude. The insights gained 

from the 2D model then guided the analysis for the 3D model, 

where case studies were performed to determine ideal Abaqus 

model settings to obtain a simulation that produces reliable 

results.  

REVIEW OF THE QUASI-STATIC MODAL ANALYSIS 
METHOD 

The quasi-static modal analysis method implemented in this 

paper is similar to one developed by Festjens, Chevallier, and 

Dion [8] where the effective natural frequency and modal 

damping ratios can be extracted from a structure. This is done by 

imposing a quasi-static load to the model that would excite only 

a single mode of the linearized structure. Allen and Lacayo [9] 

recently elaborated on this method, and used the modal load-

displacement curves to construct a hysteresis curve which 

allowed for effective frequency and energy dissipation 

estimations.  

Consider the equation of motion for a structure with a joint, 

which can be written as, 

 ��� + ��� + �� + �	
�, �
 = ����
�
     (1) 

where M, C, and K are, respectively, the mass, damping, and 

stiffness matrices of the system, and x, �� , and ��  are the 

displacement, velocity, and acceleration vectors, respectively. 

The vector 
J

f  represents the internal forces due to a joint model 

containing internal sliders, and θ is a vector that captures the 

state (slip or stick) of each slider element.   

At low amplitudes the joints can be replaced with springs 

equivalent to the zero-load equilibrium stiffness of the joints, 
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and an eigenvalue problem can be solved to estimate the mass-

normalized mode shapes, φ
�
 , of the structure. 

 
( )r rT

λ+ − =  K K M φ 0

.     (3) 

A force ext r=f Mφ
 is applied which distributes a load over 

the entire structure such that only mode r of the system would 

respond if the structure were linear.  Using the approach in [8, 

9], this force is applied to the nonlinear model resulting in the 

following quasi-static problem, 

 ( , ) rJ α+ =Kx f x θ Mφ   (4) 

where α is a scalar which sets the load amplitude.  A finite 

element package returns the response, x(α), which can then be 

mapped onto the rth mode using: 

 T( ) ( )r rq α α= φ Mx   (5) 

One can also compute the amplitude of modes other than the 

one in question to determine whether modal coupling is 

important at each load amplitude.  

Using this approach, the hysteresis curve can be constructed 

from a single, quasi-static ramp-up loading from 0 to α if the 

nonlinear forces are independent of the velocity and if each mode 

obeys the Masing assumptions [5, 8]. The modal force is then 

given by 

 ( ) T
f
r r r

α α α= =φ Mφ . (6) 

Then using Masing’s rules, the force (and similarly 

displacement) over a full loading cycle can be estimated yielding 

the following forward and reverse curves. 
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The secant of this hysteresis curve is then used to estimate 

the instantaneous natural frequency of the mode in question: 

 ( )
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r

α
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α
=   (8) 

The energy dissipated for each vibration cycle is the area 

under the hysteresis curve,  
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The integral above is readily evaluated using the trapezoid 

rule and then the effective damping ratio ζr(α) may be determined 

by analogy with a linear system.  See [3,5] for further details. 
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The damping is typically small and so little hysteresis is 

visible.  When plotting the hysteresis curves, it is helpful to plot 

only the nonlinear part, which is given by the following.  For 

example, see Fig. 3. 

 ( ) ( ) 2

1 1 0
ˆ ˆ

r r r rNL
f q f q q ω= −   (11) 

APPLICATION TO 2D MODEL 

Finite Element Model Creation 
To begin, a 2D model of stacked cantilever beams with a 

bolted joint was constructed in Abaqus. Each beam was 203 mm 

[8 in] long, 6.35 mm [0.25 in] thick and assumed infinite in width 

due to the selection of plane strain CPE4 elements. A fixed 

boundary condition was applied to one end of the structure. The 

bolt was modeled by a line pressure load on both the top and 

bottom faces of the stacked beams in a 6.35 mm [0.25 in] wide 

section 25.4 mm [1 in] from the free end of the structure. A 

pressure of 288 Nm [2546 lb-in] was applied on each segment, 

corresponding to the clamping pressure applied by a 6.35 mm 

[0.25 in] diameter bolt with 4450 N [1000 lb] of preload split 

between the top and bottom surfaces. 

Both the bolt and beams were made of steel with material 

properties E = 200 GPa [2.9e7psi], υ = 0.285, and ρ =6600 kg/m³ 

[7.34e-3 slugs/in³]. The material was linear elastic so that the 

only damping in the model came from Coulomb friction and 

material damping was neglected since it can be readily added 

after the analysis if need be. 

The structure was then meshed in Abaqus with smaller 

elements around the bolt and washer regions which were 

expected to experience microslip. To reduce computational 

costs, larger elements were used towards the fixed boundary 

condition where minimal motion was expected. The final mesh 

used for quasi-static analysis is shown in Fig. 1 where the 

elements are colored to highlight key regions within the model. 

The meshed assembly ultimately consisted of two idenitically 

meshed beams duplicated atop one another.  

 
 

Figure 1. Finite element model of 2D bolted structure model 
composed of top beam (dark green), bottom beam (light 

green), bolt region with pressure line loads (maroon), and 
washer region (blue).  

 

When initially creating the finite element mesh, elements 

were sized following the typical process for stress analysis which 

resulted in approximately 10 elements across the bolt and washer 

contact regions. However, after performing a few quasi-static 

analyses on the model, it was discovered that microslip was not 

being captured and that the model was instead jumping into 

macroslip. Re-examining the importance of element size 

surrounding the bolt, the work by Brink  [22] was found to 

suggest 120 elements over the region of contact, and so the mesh 

was drastically refined and subsequently found to be adequate. A 
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mesh convergence study was then performed to verify these 

results, as documented in a later subsection. 

Next, contact was enabled along the full length of the beams 

with a coefficient of friction µ = 0.6 [24]. Abaqus allows several 

methods for addressing the tangential and normal behavior of 

contact, where the default method is a Penalty method in both 

directions.  Work by Daniel Segalman and Adam Brink in [6, 22] 

suggested changing the tangential formulation to the Lagrange 

Multiplier method while maintaining the default hard contact 

(Penalty) method for normal behavior, so these formulations 

were implemented on the 2D model. These formulations were 

later revisited in detail for the 3D model. 

To verify the efficacy of this change to the tangential contact 

formulation, a comparison of quasi-static modal analysis results 

for the energy dissipation in the joint was done on the 2D model 

with either the Lagrange or Penalty method tangential contact 

formulation. Both methods gave nearly identical solve times and 

results in 2D, suggesting the Lagrange method is a suitable 

tangential contact selection when trying to capture microslip at 

the joint. These results, comparing Lagrange and Penalty 

methods, were in agreement with conclusions drawn in [6] where 

it was found both methods may give accurate results but the 

Lagrange formulation is preferred since the Penalty method 

requires an extensive trial and error process of adjusting the slip 

tolerance and  FEM. 

Quasi-static Analysis Results 
After creating the finite element model, the quasi-static 

analysis method was implemented. A two-step analysis was 

performed that first imposed the bolt preload and then solved for 

the natural frequencies and mode shapes of the structure. 

Available documentation states that Abaqus welds any nodes that 

are in contact at the end of the static preload step and therefore 

these nodes are welded during the subsequent linear modal 

analysis step. 

For both the 2D and later 3D models, the first bending mode, 

forced in Fig. 2, was extracted and was the focus of further 

analysis. The first 10 modes were requested from the eigenvalue 

solver so that later examinations for mode coupling could be 

performed. 
 

 
Figure 2.  Von Mises stress distribution on 2D model 

resulting from a static load in shape of Mode 1. 
 

Once the first mode shape was extracted, the shape of the 

load in Eq. (4) was determined. The load magnitude was 

specified by giving a desired vertical tip deflection at the free end 

of the structure. This displacement value was then translated to a 

maximum forcing amplitude that would scale the forced mode 

shape to yield the specified tip deflection at the final analysis 

step. This force magnitude was then applied in the shape of the 

specified mode, Mode 1 in this case, and was mapped into the 

modal domain using Eq. (5) and (6). An Abaqus input file was 

written to apply this force with stabilization and nonlinear 

geometry settings enabled. This input file was then solved and 

Fig. 2 shows the resulting stresses and deflection in the shape of 

Mode 1. Note that as the beam experiences loading, Abaqus 

evaluates the specified contacting elements as either “sticking” 

or “slipping” and allows the elements to evolve between the two 

as the jointed beams experience and increasing force in the shape 

of Mode 1. 

Since mode shapes vary minimally with load amplitude, 

especially at the smaller forces used for quasi-static analysis, 

there was no need to recalculate or evaluate mode shapes as the 

force amplitude increased. This assumption was later justified by 

examining modal coupling, and is also one difference between 

Festjens et al.’s method and the implementation of Allen et al.'s 

method that is used here. 

 Results from this quasi-static analysis were requested at 50 

points, where the user specifies the total number of extracted 

points, or steps, in the Matlab script that guides the full quasi-

static modal analysis of the model. These results were then 

imported back to Matlab where Masing's assumptions were 

applied as given in Eq. (7) to create a hysteretic response curve. 

The supplied forces and displacements, in addition to the quasi-

static modal analysis' results, were subdivided into the requested 

50 steps and were used for plotting and analysis of the joint 

damping. 

The force displacement curve was almost entirely linear so 

the linear stiffness was subtracted from the plot as given in Eq. 

(11), leaving a plot of only the nonlinear portion of the hysteresis 

curve, shown in Fig. 3. The energy dissipation was then 

calculated from the full hysteresis curve using the trapezoidal 

rule from which Eq. (10) was used to calculate the damping ratio 

that the structure would have when vibrating in this mode. Then 

the secant of the hysteresis curve was used in Eq. (8) to 

determine the natural frequency as a function of amplitude. The 

resulting damping ratios and natural frequencies are plotted 

versus the peak modal velocity amplitude in Fig. 4. The peak 

modal velocity is calculated by multiplying the modal velocity 

(velocity of the modal coordinate, as in [25]) by the mode shape 

at the point where the deflection is largest.  
 

 
Figure 3. Nonlinear portion of the force-displacement curve  
(red circles) from which Masing's rules were used to obtain 

the complete hysteresis curve, shown in blue. 
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Figure 4. Overlay of 2D model results from different forcing 

magnitudes as specified by the tip deflection of an 
equivalent linear model. 

 

In Fig. 4, where each colored line corresponds to forcing the 

2D model into the same shape of Mode 1, but with different 

specified maximum tip deflection values, (i.e. 0.127 mm [0.005 

in] means that a force was applied that would produce a tip 

deflection of 0.127 mm for the linearized model). Various force 

magnitudes were analyzed since the complete microslip regime 

needed to be captured to understand the full damping behavior 

of the joint.  

Each analysis at a specified forcing magnitude took 

approximately 5 minutes on a 4GHz Intel i7 computer using 

three cores.  A significant portion of the time was spent writing 

the results to a file, since for this implementation the 

displacement at each node had to be written to file and imported 

into Matlab. 

A few key conclusions can be drawn from Fig. 4. First, at 

the lowest examined forcing magnitudes, the damping ratio 

begins near 0.01%, which is likely a value below the material 

damping threshold, and is therefore unimportant since this 

behavior would not be observed in practice. The damping ratio 

then increases with amplitude in a power-law fashion up to about 

0.2% at the highest amplitudes considered. Additionally, upon 

examining the natural frequency plot, the lowest forcing 

magnitudes gave an initial natural frequency around 198 Hz. 

This is in agreement with the first mode found by the eigensolver 

at 198.14 Hz, which therefore confirms the accuracy of the 

stiffness in the quasi-static model. 

Furthermore, the sharp increase in the damping ratio and 

drop of the natural frequency at higher peak velocities, 

corresponding to greater forcing magnitudes, signifies the 

beginning of macroslip; at that force level the quasi-static 

procedure will typically no longer give a meaningful result. 

Lastly, mode coupling was examined to ensure that only the 

first bending mode was excited by the quasi-static modal 

analysis. This was done by computing the modal displacement 

of each of the first five modes at each load step using Eq. (5) and 

then dividing these displacements by that of the first mode. 

Hence, Mode 1 always had a magnitude of one and all other 

modes should have been several orders of magnitudes smaller if 

they were not strongly coupled to Mode 1. Figure 5 gives a plot 

of these mode comparison values for the 0.635 mm loading case 

in Fig. 4. It should be noted that these curves were nearly 

identical for all loading cases examined.   

 
Figure 5. Modal excitations for modes 2 through 5 with a 

maximum forcing magnitude corresponding to a tip 
deflection of 0.127 mm. 

 

Mode 3 has a displacement that is 10-100 times smaller than 

that of Mode 1, and the other modes are excited even less; this 

confirms that Mode 1 is dominant. It is interesting to note that 

modes 3 and 5 have contributions that are nonzero at small 

amplitude and decrease as forces on the model increase; this 

suggests a possible inaccuracy in the linearized modes of the 

system computed by Abaqus; there seems to be some difference 

between the true modes of the nonlinear, clamped beam and the 

linearized model that Abaqus uses to compute the modes.  In 

general though, all modes are excited to a sufficiently low level 

in proportion to the bending mode so the re-evaluation of the 

bending mode shape with changes in forcing amplitudes is 

proven unnecessary.    

Examination of Mesh Convergence, Coefficient of 
Friction, and Bolt Preload 

A mesh convergence study was performed to determine the 

ideal mesh for all further analyses. New meshes were first 

produced in Abaqus, then analyzed with the quasi-static modal 

analysis method, from which the damping ratios and natural 

frequencies were determined. These results were then overlaid 

with existing data from Fig. 4  and this process was repeated until 

a revised mesh remained in agreement with the expected 

nonlinear effects experienced by the joint during microslip. 

Ideally, the revised mesh will contain fewer elements and nodes 

than the original mesh which will save computation time. 

 The initial mesh was thought to be finer than needed so the 

new meshes were made increasingly coarse. Convergence was 

determined by finding the first coarse mesh that produced 

erroneous damping ratio and natural frequency plots, then 

selecting the mesh one iteration prior whose results remained in 

agreement with the expected plots. Over twenty different meshes 

were analyzed and the mesh over the bolted joint region 
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experiencing slip is shown for three of those cases in Fig. 6. The 

first mesh, Mesh A, was the original mesh for which results were 

shown in Fig. 3-5. The second mesh, Mesh B, had element 

biasing and the final mesh, Mesh C, was meshed similar to what 

would be deemed necessary for a basic stress analysis. Table 1 

compares node and element counts for each. 
 

 
Figure 6. A close up view of a single beam in the 2D model, 

showing only the bolt region with various meshes. 
 
 

Table 1. Total node and element count comparisons 
between 2D model meshes. 

Mesh Name Node Count Element Count 

A 6188 5688 

B 4342 3984 

C 994 840 
 

Plots overlaying the results from the original Mesh A with 

results from Mesh B and C are provided in Fig. 7. Mesh C 

produced results that do not agree with the others, confirming 

that this mesh was too coarse, while Mesh B's results agree well. 

Thus Mesh B was used for all remaining 2D analyses and was 

the basis for the 3D model when it was later constructed.  Notice 

that, at very low amplitudes, Mesh A gives a very small damping 

ratio indicating that no elements are slipping.  For Mesh C this 

happens at a higher amplitude, and perhaps this feature can be 

used to gauge whether a mesh is adequately refined. 

Two case studies were performed to examine how bolt 

preload and the coefficient of friction impacted the damping ratio 

and natural frequency of the jointed structure; the magnitude of 

bolt preload was first examined. The frequency and damping of 

the structure were found for various preloads and the results are 

shown in Fig. 8. Note the apparent choppiness of the lines arises 

from the parsing together data from several forcing magnitudes. 

From this figure, it is evident that doubling the preload to 576 

Nm [5092 lb-in] on each surface resulted in only a 35% decrease 

in the damping ratio.  The joint does go into macroslip at higher 

velocity amplitudes, or equivalently, when higher forces are 

applied to the structure. There was also a small increase in the 

natural frequency, which is logical since a tighter bolt increases 

the contact area and hence the stiffness of the joint. Conversely, 

applying half the original preload, 144 Nm [1273 lb-in] on each 

surface, caused an approximate 40% increase in the damping 

ratio and slip was initiated at lower amplitudes. This is a 

significant finding; increasing or decreasing the preload by a 

factor of two caused damping to decrease by less than a factor of 

two, and may explain why joint nonlinearity cannot be removed 

from a FEA model by simply tightening the bolts. 

 
Figure 7. Overlay results for Mesh A with specified tip 

displacements of 0.0127 mm, 0.127 mm, and 1.27 mm with 
Mesh B and C both with specified 0.127 mm tip deflection. 

 

 

 
Figure 8. Overlay plots showing results for varying either 

bolt preloads or coefficients of friction. 
 

Lastly, the coefficient of friction was altered to examine its 

impact on the natural frequency and damping ratio. Figure 8 also 

provides plots after altering the coefficient to µ = 0.5 and µ = 0.4. 

From these plots it can be seen that decreasing the coefficient to 

µ = 0.5 increased the damping ratios by about 13% and resulted 

in a slight decrease in natural frequency near macroslip. 

Decreasing the damping ratio to µ = 0.4 increased the damping 

ratio from the original coefficient’s results by 31% and yielded a 

slightly larger decrease in natural frequency.  

In comparing both modeling parameters and their impacts 

on the extracted damping ratios and natural frequencies, it is 
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found that varying the coefficient of friction resulted in smaller 

changes towards both curves than varying the preload of the bolt. 

Therefore if a more dramatic shift of both the damping ratio and 

the natural frequency is desired, while maintaining a consistent 

initial natural frequency value, the bolt preload should be the 

parameter altered. 

APPLICATION TO 3D MODEL 

Finite Element Model Creation 
While the 2D model provides interesting insights, the 

ultimate goal of this work is to predict the stiffness and damping 

of real joints and to compare results from the quasi-static modal 

analysis method with measurements.  Hence, a 3D model for the 

same bolted joint structure was also constructed and analyzed. 

With lessons learned from the 2D modeling process, the mesh 

for the 3D model was more efficiently created. Similar to the 2D 

model, each beam was 203 mm [8 in] long, 6.35 mm [0.25 in] 

thick, and 50.8 mm [2 in] wide. The single bolt was located 25.4 

mm [1 in] from the free end of the beam (the opposite end had 

fixed boundary conditions on both beam faces), identical to what 

was done for the 2D model. Unlike the 2D model though, the 

bolt was physically represented and was modeled after a standard 

6.35 mm [0.25 in] diameter bolt with two washers and a nut. The 

geometry of both the beam and bolt are shown in Fig. 9. The 

mesh for all parts in the assembly, as seen in Fig. 10, was 

composed of C3D8 elements and had the same steel material 

properties used for the 2D model.  

 
Figure 9. Geometry of beam and bolt for 3D model. 
 

 
Figure 10. Finite element model of 3D cantilever stacked 

beams with bolt. Face-to-face contact enabled in the region 
shown by a red line. 

 

For the 3D model, contact was enabled in three distinct 

regions: between the two beams in the 50.8 mm by 50.8 mm [2 

in. by 2 in.] region surrounding the bolt, and between the outer 

beam surfaces and the corresponding top or bottom of the 

washers. When meshing, special consideration was taken to 

ensure that all nodes in these contact regions were aligned 

between the master and slave surfaces. Additionally, nodes along 

the bolt shaft and holes of each beam were aligned.  Similar to 

the 2D modeling procedure, the coefficient of friction for all of 

the contact regions was set to µ = 0.6 and Lagrange tangential 

behavior with hard contact (Penalty) normal behavior were 

selected. Abaqus nonlinear geometry and solution stabilization 

was also enabled similar to 2D.  

To preload the bolt, a “Bolt Load” was applied in Abaqus. 

This required splitting the bolt geometry in two and selecting the 

mid-plane face as the cross section of the bolt. Then the axis of 

the bolt was defined and lastly the force on the bolt was specified 

as 1000 lb (4450 N). The final assembly mesh contained 158,798 

nodes and 139,900 elements. 

Quasi-static Analysis Results 
The same analysis process was carried out on the 3D model 

as was done on the 2D model. A hysteresis curve of the modal 

force with respect to response was created, similar to Fig. 4. 

From this curve, damping ratios and natural frequencies were 

extracted to produce plots of these parameters versus peak 

velocity.  A variety of quasi-static load amplitudes were applied 

to the 3D model to capture results throughout the microslip 

regime and these plots are overlaid in Fig. 11. Attempts for 0.635 

mm [0.025 in] vertical tip deflection and greater failed to 

converge. 
 

 
Figure 11. Overlay of 3D model results from different 

forcing magnitudes specified by tip deflection in legend. 
 

Upon first examination of Fig. 11, the curves corresponding 

to various forcing levels display unexpected results. Since only 

the forcing magnitude, or load level, was altered, one would 

expect all of the curves to show a portion of the same either 

damping versus amplitude curve (top Fig. 11) or frequency 

versus amplitude curve (bottom Fig. 11), similar to the 2D model 

results in Fig. 13. Instead, Fig. 11 gives illogical physical results, 

suggesting a non-consitent natural frequenccy with regard to 

forcing, and therefore the 3D model needed to be modified to 
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yield expected results. Additionally, all plotted load cases in Fig. 

11 failed to converge to the final desired forcing magnitude or 

end tip displacement. Therefore, due to it's nonconverging 

solutions and physicaly unreasonable results, the 3D model was 

reevaluated with different stabilization settings as well as contact 

formulations. 

Examining Abaqus Stabilization and Contact 
Formulation Selections  

Several combinations of Abaqus’ stabilization and contact 

formulations were evaluated and are documented in Table 2. 

Plots of the cases from the first five rows, where both the 

stabilization was changed to contact stabilization and different 

contact formulations were selected, can be seen in Fig. 12. All 

curves are results from quasi-static modal analysis with a load 

specified to produce 0.127 mm [0.005 in] tip displacement. 
 

 Table 2. Trial cases for 3D model with various contact 
formulations and stabilization settings. 

Name Tangential 
Contact 

Slip 
tolerance 
Tolerance 

Normal 
Contact 

Stabilization 

A Lagrange N/A Penalty ALLSDTOL = 0 

B Lagrange N/A Penalty Contact 

C Lagrange N/A Lagrange Contact 

D Penalty 5e-3 Penalty Contact 

E Penalty 5e-4 Penalty Contact 

F Penalty 5e-4 Penalty ALLSDTOL = 0 

G Penalty 1e-5 Penalty ALLSDTOL = 0 

H Penalty 1e-6 Penalty ALLSDTOL = 0 
 

Figure 12 immediately reveals that contact stabilization 

regardless of the contact formulation employed gave spurious 

stiffness and damping at low load levels in Fig. 12. As the load 

increased however, more reasonable results were attained. It 

appears that the contact stabilization algorithm introduces 

spurious forces that contaminate the results for small loads but 

eventually seem to disappear as the highest load levels are 

reached.  In any event, by turning off the adaptive part of the 

stabilization by using ALLSDTOL=0, this problem was avoided.  

Furthermore, the contact stabilization algorithm did not seem to 

converge to significantly higher force levels than the basic 

approach and so there was no need to pursue that further. 

Different contact formulations were examined because of 

the Lagrange formulation's failure to converge in the previous 

3D model. The Lagrange method is preferred since it 

consistently produces physically realistic results, however, it was 

not possible to solve the problem up to the desired load levels 

using that approach. Therefore, penalty formulations were also 

examined, as documented in Table 2, and results were compared 

with those from Lagrange methods.  

Changing to a Penalty tangential contact formulation 

requires specifying a maximum slip tolerance (called “Slip 

tolerance in the GUI), which Abaqus uses to calculate stick and 

slip behavior. The default value was 0.005 but several other 

values were also analyzed, see Table 2. Revisiting the results 

depicted in Figure 12, the Lagrange curves (Case B and C) took 

approximately 24 hours while the Penalty method curves (Case 

D and E) took approximately 6 hours suggesting a significant 

cost benefit.  Furthermore, the penalty formulations converged 

over the whole range of loads that was desired penalty. These 

simulation times are from computation on a 4GHz Intel i7 

computer using two cores. 
 

 
Figure 12. Results for 3D Model at 0.127 mm tip 

displacement for various cases as denoted in Table 2. 
 

However, the Penalty method curves depicted in Fig. 12 are 

still in disagreement with expected results so the slip tolerance 

was further decreased by several orders of magnitude, as 

documented in Table 2 and these results are given in Fig. 13.  
 

 
Figure 13. Results for 3D Model at 0.127 mm tip 

displacement for various cases as denoted in Table 2. 
 

This figure shows that as the slip tolerance decreases, the 

tangential Penalty method converges to the Lagrange solution 
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which was originally plotted in Fig. 11. Case H with a slip 

tolerance at 1e-6 gave results in best agreement with the original 

results from Fig. 11, and is therefore plotted against these results 

in Fig. 14 at various forcing magnitudes. However, whereas the 

computation time was significantly reduced when using the 

penalty method with a large slip tolerance, computation time for 

Case H, which used the Penalty method with a tight tolerance, 

was approximately 22 hours, so the time savings was not as 

significant but at least the Penalty method was able to converge 

over the entire range of load levels. It is therefore concluded that 

a tangential Penalty formulation with a low slip tolerance, 

approximately 1e-5 or 1e-6 for this model, and stabilization with 

ALLSDTOL = 0, gives repeatable, consistent, convergent results 

for quasi-static modal analysis of a 3D model.   
 

 
Figure 14. Results for 3D Model versions A and H from 

Table 2 at various forcing magnitudes corresponding to 
specified tip displacements 0.0635 mm (left), 0.127 mm 

(center), and 0.254 mm (right). 
 

The results in Fig. 14 show agreement between the penalty 

and Lagrange formulations, and the former was able to continue 

the solutions to higher force levels.  However, these results still 

do not seem to make sense physically.  The results suggest that 

as the final load increases, that the stiffness of the joint decreases 

at the same displacement level.  There seems to be no physical 

justification for this behavior; both models begin at the same 

equilibrium state and the load increases monotonically so one 

would expect the stiffness to decrease identically.  Similarly, the 

results suggest that the damping produced by the joint also 

increased with the magnitude of the final load.  At the time of 

this writing, the authors are unable to explain these phenomenon, 

and are seeking to understand what defect they might point to in 

the tolerances used, the solution procedure requested or in 

Abaqus’ contact solver. 

CONCLUSIONS 
While it is still expensive, this work has shown that quasi-

static modal analysis appears to be tractable when modeling 

joints in detail.  To date, 2D models have given reasonable results 

with the expected trends in damping ratio and natural frequency 

when a Lagrange formulation is used for tangential contact. This 

Lagrange method was compared with Abaqus’ default penalty 

method and resulted in similar results in 2D but not 3D. 

While the 2D models do not capture the joints of interest 

accurately, it was extremely helpful to study the 2D model first, 

because it was easy to create and mesh. Furthermore, analysis 

times were on the order of minutes which allowed for easy 

examination of a variety of contact and model parameters. 

Results showed that the most important consideration for 

accurately capturing dissipation at the joint was the finite 

element mesh size. Brink [22] had suggested a somewhat denser 

element mesh than was required for the structure studied here; 

for this system it seems that the mesh near the bolt should be 

modeled in 2D by 11.8 elements per mm along the contacting 

interface. In 3D, the region near the bolt should be modeled using 

2 elements per mm circumferentially, 2.11 elements per mm 

radially up to the outer washer radius, and 1.57 elements per mm 

along the bolt shaft.   

The 2D bolted joint model also provided a basis for 

examining the effect of varying either the bolt preload or the 

coefficient of friction at contacting surfaces on the effective 

damping ratio and natural frequency of the model. The bolt’s 

preload was shown to have a more dramatic effect than the 

coefficient of friction. Changes to either of these parameters 

yielded expected and physically reasonable shifts of the damping 

ratio and natural frequency curves, suggesting that the quasi-

static analysis method is effective for 2D models. 

In 3D, when the Lagrange method was used for tangential 

contact the algorithm failed to converge. It was found that 

changing to a tangential Penalty method formulation, and 

reducing the slip tolerance from the default 0.05 to 1e-5 or 1e-6 

gave results that seemed to agree with the Lagrange method.  

Conclusively, it seems advisable for 3D models to follow this 

pattern for selecting contact formulations wherein first, the 

Lagrange method is used to obtain truth data (possibly only at 

lower force levels) and then changing to a Penalty method and 

progressively reducing the slip tolerance until comparable results 

are obtained.  

Lastly, in the cases studied here we found that adaptive 

stabilization, such as is used in the default “contact stabilization” 

algorithm in Abaqus, added spurious stiffness and damping to 

the solutions at lower load levels.  This can be circumvented by 

using the standards stabilization with ALLSDTOL = 0. 

Unfortunately, even after all of these studies and many, 

many hours of computation time, we were still unable to obtain 

physically reasonable results for the 3D model.  Future studies 

will seek to address this issue.  Furthermore, dynamic 

measurements will be acquired form a similar structure this 

summer during the 2017 Sandia Nonlinear Mechanics and 

Dynamics (NOMAD) summer institute, and the effective 

damping and natural frequency can be extracted from these 

measurements to determine whether this model gives 

quantitatively accurate results.  
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