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Abstract: 

 This work uses a method whereby weak nonlinearity in a substructure, as typically arises due to microslip in bolted 
interfaces, can be captured and modeled on a mode-by-mode basis.  The method relies on the fact that the modes of a weakly 
nonlinear structure tend to remain uncoupled so long as their natural frequencies are distinct and higher harmonics generated 
by the nonlinearity do not produce significant response in other modes. A single degree-of-freedom (DOF) system with an 
Iwan joint, which is known as a modal Iwan model, effectively captures the way in which the stiffness and damping depend 
on amplitude for each mode. This work presents the experiments used to generate these modal Iwan models. In a companion 
paper this model is assembled to another component using dynamic substructuring techniques to estimate the amplitude 
dependent frequency and damping of the full assembly.  
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1. Introduction 

Experimental-analytical substructuring allows one to predict the dynamic response of an assembly by coupling 
substructures derived from experiments with substructures represented by finite element models. There are numerous 
applications of experimental-analytical substructuring, but in particular this is useful when one has a subcomponent of a 
system that is difficult to model. When using subcomponents to predict the response of an assembly there are often many 
joints in the structure; either contained within a given subcomponent or in between two of them. Such joints are known to be 
a significant source of nonlinear damping in built up assemblies. Capturing these nonlinear joint dynamics in an experimental 
subcomponent model is one way to account for these dynamics when predicating responses for the full assembly. This work 
outlines methods used for testing structures with weakly nonlinear joints by using a recently proposed framework that models 
the structure as a collection of uncoupled, weakly nonlinear (in the case of micro-slip) oscillators. These nonlinear modal-like 
models are used in a companion paper, " Substructuring of a nonlinear beam using modal Iwan framework, Part II: Nonlinear 
Modal Substructuring" [1] in order to complete substructuring predictions. This paper addresses the detection, identification, 
and verification of these models on subcomponent structures. 

The nonlinear models in this paper build on the efforts of Segalman, and his colleagues at Sandia National Laboratories, 
who pursued a multi-year project in which models for mechanical joints were derived and calibrated to match experimental 
force-dissipation measurements [2, 3]. They showed that one can determine the parameters for each joint in a structure and 
employ nonlinear time integration to compute the response including the effects of the joints. More recently, Segalman 
proposed to model each mode of a structure as independent but with an Iwan joint in parallel with the modal stiffness to 
capture the nonlinear damping (and to a lesser extent nonlinear stiffness) of the joint [4]. Using this method one can identify 
amplitude dependant modal stiffness and damping for each mode. Allen and Deaner extended Segalman’s work by adding a 
viscous damper in parallel with the Iwan element to account for the linear material damping that dominates for each mode at 
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very small amplitudes [5] and began to more thoroughly explore the extent to which this modal approximation is accurate for 
real structures with several joints [6]. The approach used here is similar to that which was first used by Deaner to characterize 
a beam with a bolted joint. However, this work presents an updated means of interpreting the dissipation in the modal Iwan 
model that allows one to more clearly see how the damping ratio changes with response amplitude [7], while still allowing 
power-law behavior to be identified. In industry, modeling nonlinearities is often avoided by testing the structure at single 
amplitude, with the expectation that the resulting linearized model will be relevant in the environment of interest or the worst 
case environment.  However, even though the idea is generally sound, when nonlinearities are ignored it is likely that the 
resulting model will be inaccurate because each mode may activate the nonlinearity at a different amplitude. 
 The paper is organized as follows. Section 2 outlines the theory behind the toolbox used for detection and 
identification of nonlinear modal models.  Section 3 contains details about the test specimen, the Brake-Reuss Beam (BRB), 
and experimental set-up information. In Section 4 these techniques are validated by generating nonlinear modal models for 
the Brake-Reuss Beam system using modal Iwan models. A simulation of these models is then compared to that of the true 
structure. Section 5 concludes the paper and discusses some future work in this research area. This work continues in Part II 
[1] where these modal models are used in a dynamic substructuring prediction. 

2. Nonlinear Modal Models 

This section contains an overview of our latest process for experimental detection and characterization of nonlinear 
modal behavior. Figure 1 shows the steps of the processes we go through to detect, characterize and verify these nonlinear 
modal models. The goal is to highlight each step of the process and give insight into the different tools used when looking for 
nonlinear modal behavior in an experimental system. A more rigorous explanation to many of these tools is contained in [7]. 

 

 
Figure 1. Nonlinear Modal Behavior Workflow 

 
The fundamental equation or motion for a structure can be written as: 

 

 ( , )jx x x F x F   M C K   (1) 

 

 where , , and K represent the linear mass, damping and stiffness matrices,  is the excitation force and  is a 

nonlinear force due to the joints in the structure. Each mode is assumed to be independent and its mode shape is assumed to 
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ponse of the system changes at high and low amplitudes. All 
easurements are related to one modal response, thus the following equation can be solved in a least squares sense to obtain 
e modal amplitude from the acceleration measurements, 

ain the same as in the low-level linear system. These assumpti s remain valid as long as the jointed structure remains 
weakly nonlinear and the modes remain uncoupled and are not closely spaced. [7, 8] 

To begin identifying the nonlinear modal models contained in jF , the structure is excited with an impulsive load at high 

low force levels. The low force level measurement is used to find linear modal parameters as is the common practice in 
industrial applications. Next, the high load level data is used to screen each mode for nonlinear behavior.   

Often in weakly nonlinear structures very small frequency shifts are observed but, large changes in damping are seen as 
amplitude increases. These differences are apparent when once compares the modal parameters extracted from a high forcing 
level impact test with those from a low forcing level. Additionally, comparing the frequency response function of the 
measured signals can provide insight as to how the res
m
th
 

 ( ) ( )rq t x trφ    

 

where rφ  is the rth mass-normalized mode vector, ( )rq t  is the corresponding modal response and ( )

(2) 

x t  is a vector of 

accelerations that were measured during a single-impact hammer test. This method allows multiple hammer strikes to be 
compared even from different driving point locations.  
 Each mode can now be represented as a single degree-of-freedom (SDOF) system as shown in Fig. 2. This SDOF 
system contains a modal mass which is tied to ground with a linear spring and damper. Also, a nonlinear element 
representing the joint force is also connected to this mass which can be used to describe the nonlinear behavior of this modal 

sponse. This nonlinear element could take many forms but for this work a 4-parameter Iwan element is used to represent 
force. 
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Figure 2. Schematic of SDOF model used for each modal degree of freedom 

he original equation of motion can now be written in modal coordinates as shown in EqnT . (3). 

     \ \ 2 T    0 0 0\ \
2 jq q q F F      I    (3) 

 
The next step in the process is to quantify the change in frequency and damping with amplitude. This is accomplished using 

e Hilbert transform algorithm as detailed in [5, 9]. This approach fits the modal response, , to the following analytic 

nctional form: 
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where ( )r t

( ) i ( )t t 

  and ( )i t  are a series of splines in time and are, respectively, the real and imaginary parts of the time varying 

response model. The damped natural frequency can be related to the phase of the analytic signal as was discussed in [5]. 
Obtaining the damping ratio is covered in detail [7] but relates to both the amplitude and phase of the analytic signal. Based 
on the derivations mentioned the modal parameters can be obtained as shown in Eqn. (5). In addition to describing the 

onlinear characteristics of the mode, these parameters also allow for the conversion of modal acceleration to modal velocity 
and displacement. 
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Recall, each mode will be modeled with a single degree of freedom system with a spring, damper, and nonlinear joint force 
which is modeled as a 4-Parameter Iwan model. This joint force can be written in the following form, 

  
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where  is the force in the joint, u  is joint displacement, jF   is a kernel that characterizes the joint and x  is a continuum of 

state variables that evolve as  
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The form of the kernel, (), is discussed in detail in [3] and can be defined by four parameters, [ ,  ,  ,  ]s TF K   ,  

where sF  is the joint force required to begin macro-slip,  is the stiffness in the joint, TK   is related to the exponent in the 

power-law relationship between damping and amplitude in the micro-slip regime and   defines the shape of the dissipation 

curve near the transition from micro to macro-slip. This kernel was designed to reproduce the power-law damping that has 
been observed in experiments. When this joint model is used in a modal framework, these four parameters define the 
nonlinear characteristics of each mode in the system and can be obtained from experimental measurements as outlined in [5, 
7].  

3. Experimental System - Brake-Reuss Beam System 

This process was applied to a bolted structure consisting of two half beams with a lap joint containing three individual 
bolts. This beam is known as the Brake-Reuss beam (BRB) system first researched by Brake and Reuss in [10]. The bolts in 
this assembly were tightened to the recommended 20 ft-lb torque [11]. This system has been studied by several groups at the 
Nonlinear Mechanics and Dynamics (NOMAD) institute hosted by Sandia National Labs in the past [12, 13]. The beam 
studied here consists of beam halves 1A and 1B from the 2015 NOMAD institute. 
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Figure 3. Photograph of Brake-Reuss beam system experimental set-up 

The primary modes of interest in this study are the bending modes in the xy-plane as defined in Fig. 4. Based on 
previous experiments [12] the frequency range of interest was 0-2000 Hz, where the first few bending modes could be readily 

  



obtained. The system was instrumented with 15 low sensitivity (5 mV/g) accelerometers, 13 of these sensors are in the 
primary direction of interest with 2 off-axis sensors for troubleshooting. Using low level hammer hits on the accelerometer at 
point A, the modal parameters of the first four bending modes were extracted from the test specimen. Figure 4 shows these 
bending modes for the measurement points in the y-direction. 
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Figure 4. Bending mode shapes of Brake-Reuss beam structure 

Table 1 contains a list of the natural frequencies and damping ratios extracted for each of the modes using the Algorithm 
of Mode Isolation (AMI), a linear modal parameter identification algorithm that is detailed in [14]. With linear modes 
defined, the next step is to screen these modes for nonlinear behavior and identify candidate nonlinear modal models. 

 
Table 1: Linear (low amplitude) modal parameters 

Elastic 
Mode 
Index 

Natural 
Frequency 

[Hz] 

Damping 
Ratio 

Deflection Type 

1 172.70 0.00095 1st Bending 
2 583.26 0.00143 2nd Bending 
3 1179.99 0.00376 3rd Bending 
4 1645.43 0.00814 4th Bending 

  

4. Nonlinear Modal Behavior: Detection and Model Identification 

4.1  Nonlinear Model Behavior: Detection 

With a linear model for the first four bending modes established, the structure was ready to be tested at higher impact 
levels in order to screen for nonlinearity. The assembly was probed by hitting the beam several times at varying load levels 
and at several drive points to deduce whether any modes might behave nonlinearly. By comparing the frequency response 
function for each of these hits we can see how the response of the first mode changes as force level is increased, see Figure 5. 
In a truly linear system all of these curves would overlay as the amplitude of the force and response would be linearly scaled.  
Due to the nonlinearities in the Brake-Reuss Beam assembly, increasing the impulsive force results in a slight decrease in the 
resonant frequency and an increase in the modal damping observed by the decreasing FRF amplitude. These changes are 
similar to what has been observed in the past when a nonlinear modal model was well suited to fit the response [7]. 
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Figure 5. First bending mode multi-level frequency response function 

While this frequency shift shows that the stiffness nonlinearity is quite small, this mode exhibited much more significant 
nonlinearity in damping. A similar analysis was performed on the second elastic mode, which also revealed a measurable 
shift in the natural frequency of over the same range of input force. The third and forth elastic modes showed smaller traces 
of nonlinearity so it was decided to create nonlinear modal models for the first two bending modes and use linear models for 
the third and fourth bending modes. A summary of the observed frequency and damping nonlinearities is shown in Table 2. 
The trends from this table are used solely to screen modes and make sure the results of the fit models are reasonable. 

Table 2: Summary of results for Brake-Reuss Beam system NA = not applicable (linear mode) 
* Damping Ratios obtained from Half Power Bandwidth of highest and lowest force level strikes 

Elastic 
Mode 

Natural 
Frequency 

[Hz] 

% Shift in 
Peak 

Frequency 

Linear 
Damping 

Ratio* 

Maximum 
Damping 

Ratio* 

% Shift in 
Damping 

1 172.70 -3.81% 0.00095 0.01060 +1015% 

2 583.26 -1.28% 0.00143 0.00625 +337% 

3 1179.99 NA 0.00376 NA NA 

4 1645.43 NA 0.00814 NA NA 

 
Now that the first two modes have been identified as nonlinear, their corresponding amplitude dependent stiffness and 

damping need to be obtained. A spatial filter is first applied to each of the measured data sets in order to isolate each mode as 
in Eqn. (2). This results in a SDOF response for each mode for each test run completed. The fast Fourier transform of these 
spatially filtered signals is shown in the Fig. 6. It is important to properly filter the signals into single harmonic, any 
contamination from closely spaced modes can cause major distortions when the stiffness and damping are fit versus 
amplitude. 
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Figure 6. FFT of spatially filtered signals 

 
Next, the Hilbert transform is used to obtain an expression in the form of Eqn. (4) for each single degree of freedom 

response. In order to achieve a higher quality fit of frequency and damping, a band-pass filter is applied to the modally 
filtered signal to ensure the signal is a single harmonic. Then a mirroring algorithm is used to mirror the time signal back in 
time directly after the impulse is applied. This mirroring makes the change in amplitude less abrupt and reduces the end 
effects in the Hilbert transform. Figure 7 shows this mirrored signal for the 1st bending mode. The magnified plots show that 
the signal has smoothly varying amplitude and hence will be well describe by the SDOF model.  
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Figure 7. Mirrored signal of 1st bending mode modal acceleration 

The envelope and phase of this mirrored signal was then fit to a spline with 30 knots as shown in Fig. 8. The top portion 
of the subplot shows a fit of the Hilbert envelope and the middle portion shows a fit of the unwrapped phase. Finally the 
bottom plot shows how well the Hilbert signal recreated the original spatially filtered response. 
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Figure 8. Hilbert fit for 1st bending mode: Hilbert Envelop (top), Hilbert Phase (middle),Reconstructed 
Signal (bottom) 

Using the relationships from Eqn. (5), the fit envelope and phase can be related to the damping and stiffness of the 
signal. Plotting the damping and stiffness versus amplitude yields a relationship from which nonlinear modal model 
parameters can be extracted. Figure 9 and 10 show an example of this process for the 1st bending mode of the system where 
the damped natural frequency and damping ratio are plotted versus time and amplitude, respectively.  

Note that later in time (lower in amplitude) a frequency is seen near 172.7 Hertz which is the linear frequency from 
modal testing in Table 1. Early in the time signal (when the modal amplitude is high) the frequency gets as low as 169 Hz, or 
about a 2% shift in frequency, close to what was observed by testing at multiple forcing levels as shown in Fig. 5. Similar 
comparisons can be seen in the linear damping ratio which matches the measurement present in Table 1. The nonlinear 
damping ratio reaches levels much higher than observed in the simple FRF screening process, most likely due to the half-
power bandwidth assumption being used on a nonlinear data set. 
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Figure 9. Hilbert fit for 1st bending stiffness and damping mode in time 
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Figure 10. Amplitude dependant stiffness and damping curves 

4.2 Nonlinear Model Behavior: Model Identification 

The results shown in Figs. 9 and 10 were extracted from only one of the excitation amplitudes at which tests were 
performed. The spectra at various load levels are shown in Fig. 5.  To ensure that the modes were adequately uncoupled, 
testing was also conducted from differing drive point locations. For each impact test a pair of stiffness and damping curves 
were generated. This ensemble of damped natural frequency and damping ratio curves for each nonlinear mode can be 
overlaid to see how repeatable these amplitude dependent measurements are. These overlaid curves were used to extract 
modal Iwan model parameters as shown in Fig. 11. 

The modal Iwan model is defined by four parameters, [ ,  ,  ,  ]s TF K   . To fit the dissipation parameter, χ, of the Iwan 

modal model these amplitude dependant damping curves were fit in a least squares sense. In this figure the total modal 
damping in the mode, extracted by the Hilbert transform, is given by the blue curves. Next, the linear contribution was 
removed from these curves revealing the nonlinear part of the damping in red (i.e. the part that is not linear and viscous). At 
low amplitudes this can be very noisy but at higher amplitudes a distinct trend is clear on this log-log scale. χ is then fit to this 
distinct high amplitude potion of the nonlinear damping curve by setting the slope of this curve equal to χ + 1. This Iwan fit is 
shown in black. Finally to ensure the total modal damping is well simulated the linear portion of the damping is added back 
to the Iwan fit to obtain the total modal damping, shown in green. 
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 Figure 11.  Measured Modal Damping for Mode 1 

 
The other modal Iwan parameters are more ambiguous but were selected based off of engineering judgment and previous 

testing history. There was no obvious evidence of macro-slip in the experimental test; therefore, the slip force can be 
assumed to be greater than any of the excitations applied experimentally. 

   (8) S dpF Fφ
The joint stiffness, KT, is dependent on the frequency shift observed once the structure is in macro-slip, and because 

macro-slip wasn’t achieved in these tests this parameter can’t be readily estimated. This beam was previously tested by 
Bonney et. al. [12] and their tests included higher amplitude impacts where the macroslip frequency for the first mode was 

observed to be 130 Hz.  This was used to estimate  TK using : 

   (9) 2 2
0 0 0( )T shiftK K K       

In principle, the parameter   can be found from the y-intercept of the dissipation versus amplitude curve, but in this 

case this would not be reliable since sF  and  are not known precisely.  Instead TK   was assumed to be zero 

(corresponding to a case where the power law term in the Iwan model is much larger than the macro-slip term) and then 
varied to see whether the results were sensitive to that assumption.  

These concepts were used to estimate starting values for the parameters and then they were varied until the frequency 
and damping versus amplitude curves of the modal Iwan model  (found by integrating the SDOF equation of motion with the 
Newmark algorithm [15]) matched what was measured experimentally.  Table 3 shows the final parameters that were used in 
order to model the first and second elastic modes. 

  



 

Table 3: Iwan model parameters Brake-Reuss Beam System  

Parameter 
Simulation Case

1st Mode 
Simulation Case 

2nd Mode 

sF   137.72 152.14 

TK   484680 2668200 

  0.26159 0.29688 

  -0.049947 -0.41637 

  
The accuracy of these final parameters was initially checked by simulating a SDOF modal response to a singe impact for 

each nonlinear mode and comparing the results to the corresponding measured modal filtered signal. Figure 12 shows this 
comparison in the time domain for the first bending mode. Here, one can observe that in both early and late time the modal 
model closely matches the measured data. 
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Figure 12. Modal Acceleration - 1st Elastic Mode 

 
These responses can be further compared via their amplitude dependent stiffness and damping curves of each signal. 

These curves were extracted from the simulated response using the Hilbert transform as described previously. Figures 13 and 
14 show the comparison between the measured and simulated response for the simulated loading case. The model obtains 
good correlation throughout the amplitude range of interest. A similar process was followed for the second bending mode 
leading to another nonlinear modal model. All of these figures show an excellent agreement between the model and measured 
data. Therefore the modal Iwan model with parameters from Table 3 sufficiently captures the nonlinear characteristics of the 
first two elastic modes. 
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Figure 13.  Measured and Simulated Modal Frequency for Elastic Modes 1 and 2 
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Figure 14.  Measured and Simulated Modal Damping for Elastic Modes 1 and 2 

 
With nonlinear modal models for the first two bending modes, the fidelity of the multi-modal model can now be 

assessed. The responses of four elastic modes were simulated due to modal forces corresponding to a 180 N impulsive force 
at drive point location A from Fig. 3. Each mode was integrated separately with the first two elastic modes using the 
nonlinear modal model in as in Eqn. (3). Once each single degree of freedom calculation was complete, the linear mode 
shape matrix was used to transform these results back into physical space. Figure 15 shows the simulated nonlinear and 
measured drive point acceleration responses. Note, a simulation was also conducted using a purely linear modal model using 
the parameters from Table 1. Here one can observe that the standard linear model over predicts the amplitude of response for 
a large majority of the ring down.  
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Figure 15.  Drive point acceleration with the linear model 

 
In Figure 16 one can again observe the transient response due to an impulsive load but the linear model has been 

removed for visual clarity. The amplitude matches fairly well in low and high amplitudes and the frequency is only off 
slightly later in the decay. This validates the assumption earlier that the nonlinearity in the third and fourth bending modes 
was sufficiently small.  
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Figure 16.  Drive point acceleration  

 
Figure 17 shows the FFT of the modal acceleration for the simulated response. Enhanced views in Fig. 18 show how 

well the nonlinear prediction matches the true measurement. As expected based on a viewing of the time history, a linear 
model over predicts the amplitude by under predicting amplitude. 
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Figure 17. FFT of Modal acceleration  
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Figure 18. FFT of Modal acceleration enhanced view of elastic modes 1 (left) and 2 (right) 

5. Conclusions 

 This work explored the applicability of a modal Iwan model for a Brake-Reuss Beam assembly.  Experimental results 
were initially screened by examining the frequency response functions in order to determine which modes needed to be 
treated as nonlinear. Mirrored time history data was used with the Hilbert transform to estimate the amplitude dependent 
stiffness and damping behavior of each mode. Modal Iwan parameters were extracted for these nonlinear bending modes 
using a combination of engineering judgment, previous testing experience, and amplitude dependent stiffness and damping 
curves. This type of model is only accurate if the modes of the system to be reasonably spaced and remain dynamically 
uncoupled. Each simulated nonlinear modal model response correlated with the modally filtered measured signal well.  
 A nonlinear pseudo-modal model consisting of six modes was then created. This model contained two rigid modes, two 
nonlinear modes, and two linear modes. A simulation was conducted in which the response of this nonlinear multi-mode 

  



model was compared to measured data in the physical domain.  By just treating the first two elastic modes as nonlinear,  the 
measured response of the system was well matched and showed great improvement over a standard linear model. By just 
treating the first two elastic modes as nonlinear modal models the response of the system was well represented, showing great 
improvement over a standard linear model.  
 As mentioned previously, this is one subcomponent of an assembly that we desire to study.  This model is clearly superior 
to the standard linear model at representing this subcomponent and is therefore expected to produce a more accurate 
substructuring prediction. Part II [1] of this paper will explore the results of utilizing these nonlinear modal models in a 
component mode synthesis dynamic substructuring framework. Thus far the modes of the system have remained uncoupled. 
Substructuring will only succeed if the modal model is still valid even after a subcomponent is removed and added to another 
structure. 
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