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ABSTRACT 

Several of the authors, and others, have explored the use of 

modal-like models for structures having nonlinearities 

associated with compressive joints (such as bolted connections.)  

In these models, the deformations are treated as consisting of 

modal expansions, but with the modal coordinates that evolving 

nonlinearly over time.   There have been several theoretical 

treatments of this strategy and the authors report here on an early 

effort to confirm the approach through experiment. 

For this purpose simple structures consisting of pairs of 

plates were assembled using four bolted connections.  The 

structures were excited by modal hammer at various locations 

and the modes identified by scanning laser vibrometer.   In each 

case, multiple modes were excited and the evolution of modal 

coordinates was achieved by band-pass filtering at the relevant 

frequencies. 

Making some simple kinematic assumptions about relative 

deformations of the component plates and exploiting symmetries 

permits the mapping from ring-down of each mode to 

constitutive behavior of each joint.  If the strategy of using joint-

like modal models for bolted structures is valid, the joint 

constitutive models deduced from any mode should be adequate 

to predict the apparent, but nonlinear modal behavior at other 

resonances.  Multiple test specimens were manufactured to 

assess this predictive capability in the context of part-to-part 

variability intrinsic to the dynamics of such structures. 

 
INTRODUCTION 

 

One of the perpetually intriguing and frustrating aspects of 

structural dynamics if how damping is to be integrated into the 

models.  There is extensive and classical literature about how to 

incorporate linear damping into , ,M C K  mass-damping-

stiffness formalisms.  These include mass-proportional and 

stiffness-proportional damping, and modal damping.  

Additionally, more complex formalisms for the damping matrix 

can be derived to accommodate effects of general linear 

viscoelasticity (1) or even rotational dynamics (2). 

The issue becomes much more complex when we 

acknowledge the nonlinearity intrinsic to real structures.  (By 

structures, we mean conventional structures assembled from 

multiple components by nuts and bolts, screws, rivets, etc.)  

There is substantial literature on the nonlinearity observed in 

structures and we site just a few (3-6).  Among the qualitative 
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nonlinearities observed on mechanical joints and jointed 

structure are: 

1. Nonlinear damping.  For a linear system the dissipation 

should grow quadratically with imposed force, but much 

faster growth of dissipation with applied load is found 

experimentally.  

2. Softening with applied loads.  This is illustrated most clearly 

with harmonic excitation where the resonant frequencies 

decrease with force amplitude. 

3. Macro-slip at high loads. 

 

The first two of these features is explored systematically 

using a resonant device such as shown in the following figure. 

                      
Fig. 1: Photograph of experimental setup used to measure 

dissipation in a lap joint.  A finite element representation of 

the joint itself is shown on the right. 

       

This particular facility was devised by Gregory (4) and 

exploits the same physics as one developed by Gaul and 

colleagues earlier (6).  The nonlinear damping is illustrated in 

the following figure from (4) comparing the dissipation in 

jointed and unjointed specimens at different load amplitudes. 

The mechanics of this test specimen is detailed in (4).  

 
Fig. 2: Energy dissipation  vs. Force measured from the 

joint shown in Fig. 1. 

 

 As expected, the solid specimens manifest much less 

dissipation than do the jointed specimens and the dissipation 

associated with the solid specimens comply with a power-law 

relationship with exponent 2.  The jointed specimens conform to 

a power law slope greater than 2.  In general individual joints 

manifest a power-law slope between 2.3 and 2.9. (4) 

The softening and macro-slip properties of bolted joints are 

also broadly discussed in the literature and are summarized well 

in (4).  It is important in what follows that in the broad regimes 

where structural dynamics is applied, where vibration is 

significant but loads stay substantially below those necessary to 

cause macro-slip, it is the nonlinearity of damping that is most 

dramatic.  These are also load regimes below those necessary for 

geometric nonlinearity besides those at the joint to manifest. 

In the following, we explore some of the modeling 

approaches and assumptions that go into current strategies to 

incorporate observed nonlinearity into the structural dynamics 

models of built-up systems.  Additionally, we explore some data 

from simple experiments to assess the validity of one of the most 

useful simplifying assumptions. 

 

MODELS FOR JOINTS AND JOINTED STRUCTURES 
 

The first step to modeling jointed structures would appear to 

be that of learning to model individual joints and then either 

incorporating those joint models directly into the structural 

model or using insights gained in this first step to suggest new 

strategies appropriate at the structural level.  Let’s examine 

individual joint models first. 

  

Joint Constitutive Models 
 

Joint specimens are themselves structures, so modeling of 

those specimens and comparison of the predictions of their 

models with experiment or deduction of model parameters from 

experiment requires some sort of separation between the 

interface phenomena and the rest of the specimen.  For this the 

concept of a “whole joint” model is introduced.  The approach 

described here is employed in FE modeling of large structures 

with small contact patches. The technique is to define a rigid 

surface (geometric patch) on each side of the interface and to 

slave each rigid surface to a single representative node. This 

concept is suggested in the following figure. The joint 

constitutive model then couples the forces (and moments) and 

displacements (and rotations) of those two representative nodes. 

In commercial FE code, one usually defines the rigid surfaces 

using rigid elements (such as RBE3) or multi-point constraints 

(MPCs). 

 
 

Fig. 3: Schematic showing how interfaces are modeled using 

a whole joint model. 

 



 3 Copyright © 2015 by ASME 

In this approach the gross elasticity of the specimen is 

represented by the finite element mesh and the nonlinearity of 

the joint is captured by the scalar constitutive model connecting 

the opposing nodes. 

Interestingly, the nonlinear behavior of mechanical joints is 

very similar to that of one dimensional metal elasto-plasticity.  

One of the simpler by still very general metal plasticity model is 

that associated with the names of Masing, Bausinger, Prandtl, 

Ishlinskii, and Iwan.  Something of the history of this 

mathematical model is discussed in (7).  The mathematical form 

is  

  
0
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Where F  is the interface force, u  is interface 
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This mathematical constitutive equation captures the behavior of 

a parallel arrangement of Jenkins elements as suggested by the 

following figure. 

 

 
Fig. 4: Schematic of parallel arrangement of Jenkins 

elements. 

 

Several choices of   can be chosen to reproduce the power-

law dissipation observed experimentally and indeed the model 

parameters can be deduced in systematic manners from 

experimental data (8).  This constitutive equation along with the 

whole-joint kinematics have been introduced into finite element 

structural dynamics code and have been used quite successfully 

to predict the response of test specimens. 

Implementation of this approach to systems with many 

interfaces is probably impractical.  There would far too many 

interfaces to parameterize the corresponding   through 

experiment.  This is an argument that it is necessary to develop 

some other approach to capture the nonlinear behavior of 

complex structures. 

 

The Structural Dynamics Paradox and a Hypothesis 
 

This is a good stage to discuss an inconsistency between 

what we know about nonlinearity of real structures and how we, 

as a community, perform structural dynamics.  In general 

structural dynamics is performed employing thoroughly linear 

models.  In fact there are some very sophistocated methods for 

extrapolating damping matrices from structural experiments.   

Surprisingly, these linear modeling endeavors are very 

successful. How can we reconcile the success of linear models 

with our observations of dramatic nonlinearity in real structures?  

The authors offer a hypothesis that might resolve this apparent 

inconsistency: 

 

Real structures do behave nonlinearly, but are 

reasonably approximated in the regime of deformation 

amplitude by a linear model whose parameters are 

determined by that deformation amplitude.   

 

One ramification of this hypothesis is that linear models can 

be successful only when they are parameterized using data 

collected in the amplitude range at which predictions are 

required.  We realize that this generally is the practice.   

We also must assess what other hypotheses are necessary for 

the above to be consistent.  One issues is that each experiment 

includes loadings containing many modal components, so we 

must assume that the nonlinear response is such that each modal 

response can be calibrated separtely.  In other words, the 

nonlinear response of each mode is independent of the 

force/deformation amplitudes of the other modes.  This suggests 

that we look for nonlinear modal models, meaning models where 

deformation is expressed as linear combinations of the modes of 

some underlying linear systems, but where the modal 

coordinates evolve in a nonlinear manner. 

What kind of nonlinear modal model should we explore.  

One hint is that the underlying nonlinearity is that due to joints 

and the joint forces evolve as indicated in Equations (1) and (2).  

Another hint is that obtained by subjecting structures with a 

plethora of interfaces to harmonic excitation.  In such cases we 

again see a power-law relationship between force amplitude and 

dissipation with exponents substantially larger than 2. 

 

Modeling the Joint-Like Behavior of Structures 

 

Here we develop a system of equations for the full structure 

representing the joint nonlinearity as an unknown force
J

BF  : 
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X JM u C u K u F F   B B B B B B B B

  (3) 

where a d, n,B B BM C K
 are mass, damping, and stiffness 

matrices respectively and 
X

BF  is the vector of imposed loads.  

This matrix is diagonalized by the modal matrix B   
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where { }Bq  are modal coordinates.  The assumptions of the 

previous section are now invoked.  We assume that the nonlinear 

modal force associated with mode evolves only according to the 

deformation history of just that mode.   
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This leaves us with parametrizing a k for each mode, but this 

is done via modal testing on the structure and can be 

accomplished independently of the number of interfaces 

fundamentally responsible for the system nonlinearity.  This 

form of constitutive model was explored in (9) and (10).  For the 

moments, we refer to structural dynamics models of this sort as 

“modal Masing models”. 

 

TESTING THE MODAL MASING ASSUMPTION 
 

The above sort of constitutive model for the overall structure 

is very appealing, but is it consistent with what can be observed 

experimentally.  Let us consider the very simple structure 

consisting of two plates bolted together at three locations.  This 

is sketched in the following figure: 

 
Fig. 5: Schematic of the plate assembly studied. 

 
This simple structure has sufficient symmetries that we can 

learn a lot from some simple impact testing.  The test specimen 

is supported on bungee (see below) and struck with an impact 

hammer.  A Polytec PSV400 scanning laser vibrometer was used 

to identify modes and an Endevco 25B accelerometer was used 

to capture the ring-down of vibration. 

 

  
Fig. 6: Photograph of the plate specimen suspended by 

elastic cords for testing. 

 
Using the Zeroed Early-time Fourier decomposition 

technique developed in (11), one obtains plots such as the 

following, showing how at early times damping is higher and the 

resonance frequency is lower than it is later on when the 

amplitude has diminished.  These information-rich plots are 

obtained by performing Fourier analysis on data from different 

length time windows; analyses corresponding to time windows 

from t=0  out to short times are shown in blue and analyses 

corresponding to time windows from t=0 out to long times 

(indicated in the legend) are shown in red.                               

 
Fig. 7: Zeroed Early-time FFT of a representative 

measurement showing typical joint type nonlinearity.  The 

Fourier analysis corresponding to a single deformation 

mode is indicated in the blue box. 

 
This is very joint-like behavior and supportive or our hypothesis.   

We combine these experimental results with some simple 

analytic modeling.  First, we must make a very strong kinematic 

assumption.  We assume that for all modes of interest to us, the 

plates deform in a mutually “spooning” manner, as shown below. 
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Fig. 8: Schematic showing how the plate kinematics were 

treated. 

 

Finite element analysis is also helpful to us.  Though finite 

element modeling of built-up structures is problematic, there is 

great confidence in modal analysis of individual monolithic 

plates.   

  
Fig. 9: Finite element model of the plate specimen. 

 

With the spooning assumption we deduce that the composite 

plate will have the same modes as would each component plate 

vibrating on its own.  (Of course the frequencies of the individual 

plates and the composite will be different.)  Additionally with the 

spooning assumption and the finite element mode shapes we can 

deduce the discontinuity in displacement at the joints with plate 

displacement: 

  2j x yw it w j    (6) 

where wx and wy are the rotations of the plate in the x and y 

directions and t is half the thickness as shown above.  The 

dissipation, DJ, at each joint is presumed to be a power-law 

function of the shear force, FJ, there with exponent . 

 
J JD F   (7) 

 Considering that we are dealing with small oscillations, the 

joint force and joint displacement are proportional 

 J JF k    (8) 

Given the resonance and ring down of any mode where all 

joints deform in the same amplitude, we can deduce all necessary 

parameters: n, , a dk   . 

If our formulation and all our assumptions about modal 

independence are correct, we should be able to use one mode to 

deduce joint parameters and then predict the resonance 

frequencies and power-law behavior of any other mode.  (For 

instance, the resonant frequency of a mode of the jointed 

structure can be expresses in terms of the resonance of an 

individual plate and the stiffness of the joints:  

(𝜔𝑘
𝐵)2 = 𝜔𝑘

2 +
1

2
 𝑘 ∑ ∆𝑗,𝑘

2

𝑗

 

where 𝜔𝑘
𝐵is the kth natural frequency of the bolted assembly, 𝜔𝑘is 

the corresponding stiffness of the individual plate, and ∆𝑗,𝑘 is the 

relative displacement of joint j corresponding unit displacement 

of the kth  mode.)  

 

We proceed by determining which modes to examine.  The 

finite element-derived modes are show below.  There are reasons 

why some of them cannot be used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

            Fig. 10: FEA mode shapes of a single plate. 

 
There is only one accelerometer and it lies along a nodal line 

of Mode 8; there is no data to be had for that mode.  (Other 

locations for the accelerometer were considered, but the ultimate 

decision was made to maximize signal strength of the other 

modes.) Modes 10 and 11 occur at the same frequency and it is 

impossible to distinguish the mode displacement of either one of 

them using only one accelerometer.  There is a similar problem 

with modes 12 and 13, so they can’t be addressed in this 

particular study.  That leaves Modes 7, 9, and 14.  The 

measurements revealed that Mode 7 damps out so quickly that 

there were insufficient cycles to fit a power-law envelope.  

Hence, we use Mode 9 to calibrate our joints and use the 

resulting nonlinear modal model to predict the power-law 

dissipation of mode 14. 

The plate was excited with a modal impact hammer with a 

rubber tip at various force levels ranging from approximately 

300 to 600 N peak and the power-law plot of dissipation versus 

modal amplitude for Mode 9, the first breathing mode, was found 

and is shown in the following figure.  The first number in each 

legend entry is the approximate force level in Newtons.  We see 

that there is some sensitivity as to where the hammer hit occurs.  

Mode 7  Mode 8  Mode 9  

Modes 10, 11  Modes 12, 13  Mode 14  
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The notation (CC) and (TT) indicate that the excitation was at 

the center or near the top corner of the plate, respectively.  The 

amplitude of the hit is indicated by its value in Newtons, such as 

400N, 600N, etc.    Perhaps the center hits also excite modes 

where the plates move opposite each other as opposed to 

spooning.  From kinematic considerations, we would indeed 

expect that opposing motion would cause less relative 

displacement at the joints and hence less dissipation.  It also may 

be possible that the initial shock to the plate induces a short 

macro-slip event that changes the ensuing energy dissipation. 

 
Fig. 11: Measured energy dissipation versus amplitude for 

Mode 9 for several trials at two locations. 

 

We may now predict the dissipation Mode 14 (second 

breathing mode) and compare to the experimental values for that 

mode.  Once again the modal energy dissipation was measured 

using excitations at the center (CC) and near the top (TT).  The 

results are shown in the following figure.  In this case there was 

less variation with excitation point. 

 

 
Fig. 12: Energy dissipation versus amplitude predicted for 

Mode 14. 

 

We have two sets of predictions: those based on center hits 

and response of Mode 9 and those based on corner hits and 

response of Mode 9. We discover that predictions based on 

corner hits are actually very good approximations for the 

dissipation measured on Mode 14.  We also discover that, while 

predictions employing data taken for Mode 9 and center hits 

seem to capture the power law slope accurately, there is an offset 

in the dissipation in those predictions (i.e. due to ) that is not 

accurate.  The authors suspect that the large systematic variation 

in the dissipation in Mode 9 is due to the strong excitation of two 

modes by center hits: one consistent with the kinematics 

assumed in Figure 8 and one inconsistent with those kinematics.  

The authors intend to address this possibility in planned 

experiments involving multiple accelerometers.   

 
CONCLUSIONS 

Though there some uncertainty associated with the 

kinematics of the problem, there is sufficient agreement between 

the predications derived using the key assumptions underlying 

modal Masing models and experimental ring-down data. 

One potential source of error is the fact that the samples used 

to date were not machined with high precision, so the four joints 

may not be loaded equally as the plate deforms.  New samples 

have been created and more extensive testing is planned on these 

to further explore these techniques.  Of course more experiments 

on more interesting structures will be necessary before one can 

begin to have confidence in this approach.  Additionally, some 

clarification on plate kinematics should be obtained by placing 

accelerometers on each plate and comparing phase. 
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