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Abstract: 
 
This paper investigates methods for coupling analytical dynamic models of 

subcomponents with experimentally derived models in order to predict the response of the 
combined system, focusing on modal substructuring or Component Mode Synthesis (CMS), the 
experimental analog to the ubiquitous Craig-Bampton method.  While the basic methods for 
combining experimental and analytical models have been around for many years, it appears that 
these are not often applied successfully.  The CMS theory is presented along with a new strategy, 
dubbed the Maximum Rank Coordinate Choice (MRCC), that ensures that the constrained 
degrees of freedom can be found from the unconstrained without encountering numerical ill 
conditioning.  The experimental modal substructuring approach is also compared with frequency 
response function coupling, sometimes called admittance or impedance coupling.  These 
methods are used both to analytically remove models of a test fixture (required to include 
rotational degrees of freedom) and to predict the response of the coupled beams.  Both rigid and 
elastic models for the fixture are considered.  Similar results are obtained using either method 
although the modal substructuring method yields a more compact database and allows one to 
more easily interrogate the resulting system model to assure that physically meaningful results 
have been obtained.  A method for coupling the fixture model to experimental measurements, 
dubbed the Modal Constraint for Fixture and Subsystem (MCFS) is presented that greatly 
improves the result and robustness when an elastic fixture model is used. 

1. Introduction 
Modal substructuring or Component Mode Synthesis (CMS) has been standard practice 

for many decades in the analytical realm.  Countless works have treated the subject with regards 
to Finite Element model reduction, where component models are used to create reduced order 
models of complex subsystems.  A wide variety of flavors of Component Mode Synthesis are 
available, the most common apparently being that by Craig and Bampton [1, 2].  Many standard 
texts on vibratory systems or modal analysis treat this subject [1, 3, 4].  Using these methods, 
accurate models of complex systems have been created with orders of magnitude fewer degrees 
of freedom than would have been required if model reduction had not been employed.  A number 
of works have also investigated the possibility of applying the methods to nonlinear systems with 
promising results [5, 6]. 

There has also been considerable interest in creating models from experimental 
measurements that can be combined with analytical models.  Subcomponents are often designed 
by a number of independent groups that do not have the information or the resources to model 
the macro system.  In other applications some particular components may be too difficult to 
model analytically with the required precision.  A number of researchers have investigated the 
possibility of combining analytical and experimental models.  Martinez, Miller and Carne used 
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these methods to couple experimental models for a beam like system and a shell-payload system 
[7].  Urgueira compared the modal substructuring approach with the impedance (or admittance) 
coupling approach treating issues such as the need for residual compliances when free modes 
are used and the difficulty in measuring rotations [8].  The more recent doctoral work by Ind [9] is 
most relevant to this work; he investigated the possibility of determining the response of a 
delicate subcomponent by attaching a fixture, testing the combined system and then using a 
variety of methods to remove the effects of the test fixture from the measured responses.  All of 
these works showed promising results, while also indicating significant difficulties in obtaining the 
required responses with sufficient precision, such as rotational and residual responses, in dealing 
with uncertainties, and in avoiding numerical ill conditioning and non-physicality in the responses.  
Very large errors were sometimes obtained due to small errors in the subcomponent models [10]. 

 This paper presents a subset of work performed at Sandia National Laboratories, aimed 
at revisiting these issues on a simple system in an effort to better establish the procedures and 
methodologies so that these methods can be used with more confidence.  A system similar to 
that discussed here was previously investigated by Simmons, Smith, Mayes and Epp in [11], 
demonstrating how sensitive the admittance or impedance coupling method can be to 
experimental errors when dealing with lightly damped structures.  This paper compares the modal 
substructuring or Component Mode Synthesis (CMS) approach with the FRF coupling admittance 
(or impedance) approach.  The CMS method is employed using both free-free and mass-loaded-
interface modes in an analytical study and using only the latter in the experimental study.  A 
companion paper discusses the experimental issues addressed and presents more detailed 
admittance coupling results [12]. 

This paper is organized as follows.  The modal substructuring theory is briefly presented 
in Section 2, along with the Maximum Rank Coordinate Choice (MRCC) method that avoids ill 
conditioning when enforcing constraints between structures.  A method is also presented that 
joins the modal degrees of freedom of a fixture to the measured responses on a subcomponent 
that has been dubbed the Modal Constraint for Fixture and Subsystem (MCFS).  The system of 
interest is discussed in Section 3, followed by an analytical study using finite element models in 
Section 4.  The experimental results are also presented, and finally some conclusions in Section 
5. 

2. Theory 
2.1.  Component Mode Synthesis 

The basic modal substructuring or Component Mode Synthesis theory will be presented 
briefly for convenience, following the notation used in Ginsberg [3].  Modal substructuring is best 
understood in the context of the Ritz series.  The modal models for each subcomponent define 
N×N mass, stiffness and (sometimes) damping matrices for the subcomponent, where N is the 
number of modes in the model of the substructure.  As in the Ritz method, the number of physical 
degrees of freedom or node points Np associated with the modal model may not be the same as 
the number of modes N.  The model for each subcomponent is uniquely defined by its modal 
parameters where each mode is defined by its natural frequency ωr and mode vector {φr}.  The 
damping matrix can be defined by augmenting this set with the modal damping ratios ζr or loss 
factors for viscous modal damping or structural damping models respectively.  A non-proportional 
damping model requires the modal damping ratios and a set of complex mode vectors in place of 
the real mode vectors {φr} to complete the state space description [3].  The discussion here will 
be confined to real mode vectors and modal damping for simplicity, although the extension to 
state space is relatively straightforward. 

The modal parameters define a model for each subsystem, whose equations of motion 
are the following if the mode vectors {φr} are mass normalized 
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where [I] is an N×N identity matrix and \
\2 r rζ ω⎡ ⎤⎣ ⎦   and \ 2

\rω⎡ ⎤⎣ ⎦ are diagonal matrices containing 

the modal damping constants and modal natural frequencies squared, respectively.  The mode 
matrix [Φ] is NpxN and forces {F} are applied at any of the Np physical coordinates. 

Once the equations of motion for the subsystems are defined, they can be easily joined 
simply by defining constraints between the subsystems.  For example, consider joining two 
subsystems A and B whose individual models are defined in the form of Eq. (1), having NA and NB  
modes and NpA and NpB physical coordinates respectively.  We shall follow the notation in 
Ginsberg [3] for simplicity, although it is more efficient to implement this using Finite Element 
assembly methods.   The total set of equations of motion are  
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 (2), 
where 0 denotes a matrix of zeros of the appropriate dimensions. 

These systems are to be joined in some way.  The connections can usually be described 
by linear constraints between the physical degrees of freedom in the following form 
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These in turn couple the modal degrees of freedom {q} as follows 

[ ]
[ ] [ ] { }

0
0

0
A A A

p
B B B

q q
a a

q q
⎡ ⎤Φ ⎧ ⎫ ⎧ ⎫

⎡ ⎤ = =⎨ ⎬ ⎨ ⎬⎢ ⎥⎣ ⎦ Φ ⎩ ⎭ ⎩ ⎭⎣ ⎦
  (4), 

where [a] is an Nc×(NA+NB) matrix of constraints and Nc is the number of constraints. 
Equations (2) and (4) define a correct set of equations of motion and could be used to simulate 
the response of the system to a variety of inputs.  However, not all of the generalized coordinates 
in Eq. (2) are truly free, the system only has (NA+NB) - Nc degrees of freedom, so it is beneficial to 
condense the equations of motion to an unconstrained set.  To do this, one must first define 
which modal coordinates {qc} will be constrained and which will remain unconstrained {qu}.  The 
procedure is simpler if these are placed at the top of the generalized coordinate vector. 
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  (5) 

This choice, if done acceptably, does not affect the final results since only the physical degrees of 
freedom are meaningful in the combined system.  Ginsberg suggests that this be done manually 
with a sorting matrix [P] that moves some of the modal coordinates, perhaps the last few modes 
for each subsystem, to the top of the generalized coordinate vector and assigns them as 



constrained generalized coordinates.  The previous equation is combined with Eq. (4) resulting in 
the following 
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that is solved as follows to express the constrained generalized coordinates in terms of the 
unconstrained. 

{ } [ ] [ ]{ }1ˆ ˆc c u uq a a q−= −   (7) 

Unfortunately, an incorrect choice in constrained generalized coordinates can result in a 
singular matrix [ ]ˆca  meaning that Eq. (6) cannot be solved for the particular choice of 
constrained generalized coordinates.  This is best illustrated by an example: 

 
 

Example:  Choosing Constrained Generalized Coordinates 
Consider joining two one dimensional systems at a single point.  The constraint matrix [ap] 

consists of a value of 1 and -1 at the two coordinates that are to be joined.  The resulting [a] matrix 
is then 
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where yc indexes the row of the mode matrices corresponding to the physical coordinates that are 
being coupled.  One generalized coordinate must now be defined as the constrained coordinate 
and the preceding equation will be solved for that coordinate in terms of the others as done in Eq. 
(7).  Suppose that we assign the first modal coordinate of the A system (q1)A as constrained.  It is 
found in terms of the other generalized coordinates as 
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 (9). 
It is now clear that this is not possible if the mode coefficient for this mode at the 

connection point ( )1cyΦ  is zero.  When structures are joined at multiple points the analogous 

situation occurs when the matrix [ ]ˆca is singular.  

 

2.1.1. Maximum Rank Coordinate Choice 
When the choice of constrained generalized coordinates results in a singular matrix [ ]ˆca , 

one recourse is to simply choose a different set of constrained generalized coordinates [3].  The 
authors instead devised the following scheme, which has been named the Maximum Rank 
Coordinate Choice (MRCC), that defines a set of constrained coordinates that ensure that 
[ ]ˆca will be nonsingular unless such a choice is impossible.  The authors are not aware of 
another method for assuring that the constrained generalized coordinates are well chosen.  The 
MRCC method begins by finding the singular value decomposition (SVD) of the constraint matrix 
[a] as follows 

[ ] [ ][ ][ ]T
a a aa U S V=   (10). 

(According to the definition of the SVD, [Ua] and [Va] are orthogonal matrices and [Sa] is a 
diagonal matrix of singular values in order of decreasing magnitude.)  Then let [P]=[Va] and by 
Eq. (6) and because [Va] is an orthogonal matrix,  



[ ]ˆ [ ][ ]a aa U S=   (11). 

The choice of [P] has resulted in the largest singular values of [a] and their associated singular 
vectors being placed in the leading columns of [ ]â .  As a result, each column of [ ]ˆca is linearly 
independent, and in fact orthogonal to every other column, so it can always be inverted and the 
constrained generalized coordinates can always be found in terms of the unconstrained via Eq. 
(7), so long as the constraint matrix is of rank Nc. 

One can now find a reduced set of equations of motion for the unconstrained generalized 
coordinates by noting that 
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The reduced equations of motion then become 
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 (14). 
One can now find the modes of the combined system by solving the eigenproblem [K-ω2M]{φr}=0.  
Note that all physical coordinates of the A and B systems have been retained, even though the 
presence of constraint equations implies that some of the physical coordinates might now be 
redundant.  Typically one would remove any duplicate coordinates from {yA} and {yB} either 
before or after coupling the systems.  All of the operations discussed in this section are easily 
automated.  The authors can supply a Matlab function that implements this to interested 
researchers. 

It is important to note that one could also use these procedures to remove a substructure.  
The only difference would be that the structure to be removed would have negative mass, 
stiffness and damping.  In the context of finite element models this seems very reasonable since 
assembly of finite elements into a master system is clearly reversibly by simply changing the 
signs on the elements’ contributions to the system matrices and repeating the assembly process.  
The more general case of coupling Ritz approximations to substructures that is considered here 
is similar in that one is removing mass, stiffness and damping from a system, yet the substructure 
models are global Ritz models rather than local finite elements. 

2.2.  Estimating Connection Point Responses 
The problem investigated in the following sections involves coupling two beams together 

in bending and extension.  The beams must be coupled in both displacement and rotation to yield 
a physically meaningful model, yet rotations are difficult to measure directly.  This work addresses 
this issue by attaching a fixture to the end of the beam and measuring the translations at multiple 
points on the fixture.  The effects of the fixture are removed using the substructuring procedure 
just outlined with negative signs on the subsystem matrices that are being removed.  The 
measurement points on the fixture are shown with black arrows in Figure 1.  These can be used 



to estimate the connection point response using the modal filter described in the companion 
paper [12].  Unfortunately, this process was found to be very sensitive to measurement errors 
and/or errors in the fixture model, as described in Section 4.2. 
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2 0
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Figure 1:  System under test consisting of Beam B and Fixture A.  The 

measurement locations and directions on Fixture A are denoted with black 
arrows, the force application locations and directions with blue arrows. 

One alternative is to constrain every measured point on the fixture of the C system to 
each corresponding point on the fixture model A, yet this assumes that all measurements are 
error-free, and was found to give erratic results.  One would prefer a method that allows the 
fixture model to be joined to the measured substructure model in a least squares sense.  The 
authors devised the following scheme to apply a least squares constraint to a pair of structures 
that does just this. 

2.3.  Modal Constraint for Fixture and Subsystem (MCFS) 
One approach to joining subsystems A and C is to require equal displacement between 

all NM of the measurement points as follows 
{xC}M = {xA}M  (15), 

where the vectors denote the NM x1 set of measurement points on C and A respectively.  Some of 
the constraints above are redundant if the fixture model has fewer than NM (active) degrees of 
freedom, yet eq. (15) implies that each equation is important.  This can serve to amplify 
measurement errors since slight inconsistencies in the measurements enforce additional 
nonphysical constraints.  One would prefer that eq. (15) instead be satisfied in a least squares 
sense so that errors could be averaged out.  This can be done by instead satisfying the following 
weighted set of constraint equations, 

W{xC}M = W{xA}M  (16), 
where the weighting matrix W has fewer rows than columns.  To obtain meaningful results, the 
weighting matrix must be chosen to satisfy the essential constraints.  If the fixture A is well 
described by a modal model with NA < NM modes, then only NA constraints are really needed to 
satisfy eq. (15) to within experimental precision.  One can then make the following choice for W 
that couples the modal degrees of freedom of A to their approximation on C 

pinv(ΦA){xC}M = pinv(ΦA){xA}M  (17), 
where pinv(ΦA) denotes the pseudoinverse of the NM x NA  mode matrix for system A.  This 
represents a least squares solution to the constraint equation (15).  This approach was found to 
give dramatically better results than attempting to use a modal filter to determine the connection 
point responses, as will be demonstrated in Section 4.2.  This will be referred to as the Modal 
Constraint for Fixture and Subsystem (MCFS) method. 



2.4.  FRF Based Admittance Coupling 
The Frequency Response Function (FRF) based coupling method is based on the same 

principles of balancing forces and ensuring compatibility at the interfaces of the substructures, but 
the operations are performed on FRFs rather than on models in the form of differential equations.  
The derivation for this system is presented in the companion paper [12] so only the final result will 
be repeated here: 

HC00
-1=HB00

-1+HA00
-1    

HB20=HC20*HA00
-1*(HA00+HB00)  (18). 

HE21=HB20*(HB00+HD00)-1*HD01    
The subscripts 0, 1 and 2 represent the connection point, force application point, and 

response point respectively.  Hence, the FRF matrices HC00 , HB00, HA00 are all three by three (x 
and y displacement and rotation about z).  Equations (18) are applied at every frequency line of 
interest yielding the desired set of FRFs HE21.  The computation at each frequency line is 
independent and assumes nothing about the mathematical form of the systems except that they 
are linear.  The admittance predictions here were obtained by reconstructing the FRFs for the C 
system from the measured modal parameters and condensing them to the connection point using 
the modal filtering procedure in [12]. 

3. System of Interest 
The problem of interest, illustrated in Figure 2, consists of joining two beams B and D at 

the connection point labeled 0 to form the combined system E.  System C represents physical 
hardware for which a test based model will be derived.  Beam B is found by performing 
measurements on system C and then removing an analytical model of the fixture A attached to 
beam B from the measurements.  The fixture serves a number of purposes.  First, a small 
number of accelerometers are placed on the fixture and used to determine the rotation of the 
connection point 0.  This is necessary since the beams must be coupled in both rotation and 
translation to yield a physically correct master structure.  The fixture also serves to exercise the 
beam near the connection point so that the modes of the experimental system serve as a better 
basis to represent the behavior of the combined system.  It is generally accepted that the free 
modes of a structure do not form an ideal basis for substructure coupling since free modes have 
zero moment and shear force at the interface.  Furthermore, the additional mass on the end of 
the beam serves to bring more modes, and hence more information into the frequency band of 
interest.  The admittance approach may also benefit if the mass of the fixture is on the same 
order as the effective mass of the final structure at the interface, since the net change produced 
by the admittance coupling would be smaller. 
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Figure 2:  Schematic of substructure coupling problem.  Experimental model for 

structure B is to be joined to an analytical (FE) model for structure D after the test 
fixture A attached to structure B is analytically removed. 

Each beam is made of steel with nominal weight density 0.28 lb/in3, modulus of elasticity 
30e6 lb/in2, height 0.75 in and width 1.0 in.  The fixture is a 1.0 in by 1.0 in by 4.6 in long block of 
steel.  The fixture was chosen to be long enough to minimize the errors in estimating the locations 



of the excitation and measurement points.  The fixture is bolted and adhered to beam B using a 
US ¼-28, grade 5 bolt and dental cement [12]. 

4. Results 
4.1.  Simulation Example 

The CMS method was first applied to join simulated experimental and analytical models 
for two beams having the same properties as the experimental ones.  This allows one to evaluate 
the performance of the CMS method in the absence of experimental error.  Structures C and D 
were simulated using a finite element (FE) model with 40 beam elements per foot and the 
nominal dimensions of the beams.  The fixture attached to beam B was modeled as a lumped 
mass, its mass and inertial properties computed from its density and dimensions and 
approximating the block as a solid rectangular bar.  This neglects the accelerometers, their 
mounting blocks and the excitation pads shown in the figures in [12]. 

Two cases will be considered here.  The first follows the schematic in Figure 2 where 
measurements are simulated on the mass loaded system C, the fixture A is analytically removed, 
and the resulting model for beam B is coupled to the FE model for D.  This will be denoted the 
mass loaded (ML) case.  The second case simulates measurements taken on the free-free 
structure B, when no fixture is attached at yc, and then couples the result to the finite element 
model for D.  This case will be denoted the free-free (FF) case. 

Only axial motion of the beams will be considered for brevity.  Similar results were 
obtained when the component models were joined in the lateral direction.  Measurements are 
simulated in both cases by assuming that the modes of the experimental structure (C for ML case 
and B for FF case) are only known up to 10 kHz.  In each case the modal natural frequency and 
the necessary mode shapes are assumed to have been measured perfectly.  The data in the 
frequency band of interest consists of one rigid body mode and one elastic mode on the 
simulated experimental substructure (B or C) for both the FF and ML cases.  Table 1 displays the 
natural frequencies of system C that are below 10kHz with 1.) the lumped-mass fixture (C-ML), 
2.) the natural frequencies of C-ML after analytically removing the fixture (B-MR), which is an 
estimate for the free-free B system, and 3.) the natural frequencies of the system without the 
fixture (B-FF).  The analytical procedure used to remove the lumped mass is not entirely 
accurate, as evidenced by the fact that the second B-MR natural frequency is not identical to the 
second B-FF natural frequency.  This is to be expected, since the model for C from which the 
mass was removed consisted of only the rigid body mode and one elastic mode.  The error 
decreases as more modes are included for beam C, with zero error being obtained when all 41 of 
beam C’s axial modes are used to compute the free-free mode, in which case the modal model 
for the B-MR structure is complete and identical to the finite element model for the free-free 
beam. 

Mode C-ML B-MR B-FF
(mass-loaded) (mass removed) (free-free)

1 0.0 0.0 0.0
2 5128.7 9425.2 8472.5

Natural Frequencies (Hz)

 
Table 1:  Natural frequencies of mass-loaded system C (C-ML), free-free system 

B (B-FF) and natural frequencies of mass-loaded system C after analytically 
removing the fixture (B-MR). 

Both the B-FF and the B-MR structures were then coupled to the FE model for the D 
structure resulting in the E system natural frequencies shown in Table 2.  The result of coupling 
the complete finite element model for system B is also shown (FEA), which is taken to be the 
truth model, and the errors of the FF and ML cases are shown relative to the FEA case.  The ML 
case shows very small errors for modes 2 and 3, yet larger errors for modes 4 and 5 than the FF 
case.  Either method estimates all of the natural frequencies in the 10kHz frequency band with 
less than 4% error.  It is interesting that the ML modes predict the natural frequencies of the 



combined structure well, even though they did not accurately predict the first elastic natural 
frequency of the B system (after the end mass was removed.) 

Mode E-FEA E-FF E-ML Error (E-FF) Error (E-ML)
(free-free) (mass-loaded) (free-free) (mass-loaded)

1 0.0 0.0 0.0 0.0% 0.0%
2 2824.8 2919.4 2829.7 3.3% 0.2%
3 5649.1 5860.6 5651.3 3.7% 0.0%
4 8472.5 8472.5 8678.5 0.0% 2.4%
5 11294.3 11758.9 12171.5 4.1% 7.8%

Natural Frequencies (Hz)

 
Table 2:  Natural frequencies of combined system, E, using the full FEA model 
for system C (FEA), using free-free modes for C (FF) and using mass-loaded 

modes for system C (ML).  The errors for the FF and ML cases are also shown 
relative to the full FEA model. 

Figure 3 shows the first three mode shapes obtained for the combined system E using 
the full FEA model, and using the free-free modes and mass-loaded modes for system B.  The 
mode shapes obtained using the ML modes for system B overlay the true FE modes almost 
exactly.  On the other hand, when the FF modes are used, the mode shapes show noticeable 
errors, especially near the connection point.  The errors in the mode shapes for the FF case are 
about 20% at most, whereas the natural frequency errors for the FF case showed only 4% 
maximum error.  The FF mode shapes have zero slope at the connection point (24 inches), which 
is as one would expect since the shapes for the combined system are linear combinations of the 
FF mode shapes, and each FF mode shapes has zero axial force at its free end.  The ML mode 
shapes do not suffer from this limitation since the mass on the connection point of the C system 
results in its mode shapes, and hence the B-MR mode shapes, having nonzero slope at the free 
end. 
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Figure 3:  First three mode shapes for combined system E using full FEA model 
for beam B (solid lines), using free-free modes for beam B (dash-dot lines) and 

using mass loaded modes for beam B (dotted lines and circles). 

4.1.1. Discussion 
The analysis just described assumed that all of the modes of both structures were 

available below 10 kHz.  In the problem of interest the measurable frequency range is actually 0 
to 6400 Hz, as discussed in [12].  If this were used in the previous analysis, the FF model for 
beam B would not have any elastic modes in the frequency band of interest while the ML model 
would still have one mode in the frequency band.  This was found to increase the error in the FF 
natural frequencies for the E system to 9.3% and 21.4% for the first two elastic modes.  The 10 
kHz band was used in the preceding in order to obtain a more uniform comparison between the 
performance of mass-loaded and free-free modes.  However, in practice, one advantage of mass 
loaded interfaces is that they can reduce the frequencies of a system’s modes, bringing more 
modes into the measurable frequency range. 

 

4.2. Experimental Application 
The modal substructuring method was also applied to an experimental system.  The 

details of the experiment and data acquisition are provided in [12].  The basic problem is identical 
to that presented in the previous section; an experimental model of beam B is to be coupled to an 
analytical model for beam D.  The combined equations of motion are 
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 (19). 
These are supplemented with six constraint equations enforcing equal axial, lateral and rotational 
displacement at the connection point.  The constraint equations are used to reduce the equations 
of motion to an unconstrained set using the MRCC method. 

The analytical model for beam D is an Euler-Bernoulli solution for a beam in bending and 
(a rod in) extension.  The Euler-Bernoulli beam equation was solved for the first 10 elastic modes 
and these were supplemented with the first 9 axial modes found by solving the rod equation.  
These 19 modes were augmented with the three rigid body modes resulting in a 22 mode model 
for beam D.  The natural frequencies of this model were adjusted to match those found by testing 
a 24-in beam in the laboratory. 

System C consists of beam B with the fixture A attached.  A modal test was performed on 
system C with free-free boundary conditions and all of the bending and axial modes below 6400 
Hz were extracted.  An additional axial mode at 8293 Hz was also extracted.  Measurements on 
the fixture A attached to beam B were used to deduce the displacement and rotation of the 
connection point (yc in Figure 2) as discussed in [12].  Models for beam B were obtained by 
subtracting a model for the fixture A from the modal model for system C.  Both rigid and elastic 
models for the fixture were considered, as described in the following two subsections. 

4.2.1. Rigid Fixture 
The first model for the fixture treated it as a rigid body with a mass of 3.33e-3 lb-s2/in and 

moment of inertia 6.99e-3 lb-in-s2 about the axis perpendicular to the plane containing the beam 
and the fixture.  The mass normalized rigid body mode shapes for the fixture were computed at 
the measurement points using the known mass.  This information was used to generate a 3-mode 
model for the fixture as in Eq. (1) with ωn = 0.  The mass matrix for this system was a negative 
identity matrix, since the intent is to subtract the fixture A from the C system.  The negative fixture 
model was coupled to the Beam C model and the Beam D model according to Eq. (2) with six 
constraint equations to enforce equal axial, lateral and rotational displacement at the connection 
point. 

The resulting model for the combined system E was then used to compute the FRFs 
(HE21) between response at point 2 due to force at point 1 (see Figure 2) in both the axial and 
lateral directions.  Figure 4 shows the lateral force to lateral response HE21 FRF.  The result of 
using the Admittance procedure from [12] is also shown, as well as the analytical prediction 
computed by solving the Euler-Bernoulli beam equation for a 36 in beam.  Both predictions agree 
with the analytical result almost perfectly, although there are some very small frequency 
differences between the predictions and the analytical result.  The modal substructuring (MS) 
result also shows a few small amplitude spikes at 2400 and 5200 Hz, which correspond to the 
frequencies of the axial modes of the beam. 
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Figure 4:  Lateral FRF predicted by modal substructuring (MS) and admittance 

using a rigid fixture model and that predicted analytically. 

The axial force to axial response HE21 FRFs predicted by CMS and admittance are 
shown in Figure 5 and compared with the analytical prediction.  The CMS and Admittance 
predictions are very similar, yet both underestimate the natural frequencies of both axial modes.  
There were some differences in the way these methods were implemented [12], otherwise one 
would expect identical results so long as numerical ill-conditioning is not encountered. 
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Figure 5:  Axial FRF predicted by modal substructuring and admittance using a 

rigid fixture model and that predicted analytically. 

It was noted that the modal substructuring approach returned purely imaginary natural 
frequencies for two of the modes of the E system.  The absolute value of the first was very small 
suggesting that it should have been a rigid body mode.  This eigenvalue was assigned a natural 
frequency of zero and retained.  The other had a very large natural frequency, well beyond the 
frequency band of interest, so it was discarded along with its mode vector.  Further investigation 
found that one of the eigenvalues of the E system mass matrix was  -0.0115 (in modal 
coordinates).  Most of the eigenvalues of the mass matrix were unity, so this value was relatively 
small.  This is clearly non-physical since it would imply that the system could have negative 
kinetic energy for a certain combination of the modal amplitudes.  Other than these two features, 
the model obtained by MS was physical. 

It is much more difficult to evaluate the physicality of the admittance prediction.  There 
are properties that one could test, such as whether the imaginary part of the FRF matrices are 
always positive at the driving point [13], yet this must be done at every frequency line. 

4.2.2. Elastic Fixture Joined at Connection Point 
A 3D finite element analysis of the beam-fixture subsystem C revealed that the fixture 

was significantly flexible in the system’s axial direction.  This can be accounted for by treating the 
fixture as elastic and subtracting an elastic fixture model from the measured model for C.  A 
simple elastic model for the fixture was created by modeling the fixture with a single bending 
mode.  In doing so, it was thought that since beam B is coupled to the fixture over a 0.75-in by 1-
in area, the connection might restrain bending in fixture over that area.  Hence, the connection 
was approximated by modeling the fixture as a guided free beam with length (4.6-0.75)/2-in with a 
mass at the guided end equal to the mass of the 0.75/2 in3 segment of the fixture that was fixed 
to the end of the beam.  Analytical solution of the Euler-Bernoulli beam equation for this guided-
free model resulted in a first natural frequency of 17.3 kHz.  This model is not expected to be 
highly accurate since the beam is not long and slender as required by the Euler-Bernoulli theory, 
although it might be sufficiently accurate to account for the flexibility of the fixture adequately. 

Figure 6 shows the lateral FRFs predicted for the combined system using the flexible 
beam model in both the admittance and modal substructuring approaches, compared with the 



analytical result.  Both results agree very well with the analytical model, as they did in Figure 4 for 
the rigid fixture. 
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Figure 6:  Lateral FRF predicted by modal substructuring and admittance using 

an elastic fixture model and that predicted analytically. 

The elastic fixture model has a much more significant effect on the axial modes, as 
illustrated in Figure 7, which compares the predicted FRFs using the one-elastic mode fixture with 
the analytical prediction.  Comparison to rigid fixture result in Figure 5 reveals that the natural 
frequency of the first axial mode is predicted much more accurately with this elastic fixture model 
for both the modal substructuring and admittance approaches.  On the other hand, the second 
axial mode is even more severely underestimated when the elastic fixture model is used.  Both 
the MS and Admittance models predict an anti-resonance near 5500 Hz.  This is clearly non-
physical since Beam E is a free-free structure.  An anti-resonance would imply that forces internal 
to the beam can cause zero displacement at the response point (a vibration absorber), and this is 
not possible at a free end since the vibration absorber would have to be located beyond the end 
of the beam. 
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Figure 7:  Axial FRF predicted by modal substructuring and admittance using an 

elastic fixture model and that predicted analytically. 

The modal substructuring method returned three complex natural frequencies when the 
flexible fixture was used.  The first had a small absolute value, so it was assumed to be a rigid 
body mode and it was assigned a natural frequency of zero.  The next two were a complex 
conjugate pair at 8951.1+2450.6i Hz.  Their accompanying mode vectors were also a complex 
conjugate pair whose coefficients were about four times stronger in the axial direction than they 
were in the lateral. It was also noted that the mass matrix for the E system had all positive 
eigenvalues except one that was equal to -1.  The corresponding eigenvector for that eigenvalue 
was a vector of zeros in physical coordinates.  The eigenvalue of -1 is clearly nonphysical, as it 
would imply that a state exists that possesses negative kinetic energy.  On the other hand, it is 
interesting that the accompanying pattern of motion exists only internally as it corresponds to zero 
motion at all of the system’s measurement points. 

The fixture mode shapes were used in two ways in these analyses.  First, they were used 
to solve a least squares problem to determine the connection point rotation and translation from 
the responses measured by the five accelerometers on the fixture.  This is discussed in more 
detail in the companion paper [12].  Second, they were part of the dynamic model for the fixture 
that was subtracted from the C system to estimate the B system.  The analysis in this section was 
repeated using the flexible mode shape of the fixture in the modal filtering step, but omitting it 
from the modal model for the fixture that was subtracted from system C.  The results obtained 
were virtually identical to those presented in Figures 6 and 7.  The differences between Figures 4 
and 6 and Figures 5 and 7 must then be due to differences in the estimates of the connection 
point translation and rotation mode shapes rather than to differences in the subcomponent 
models.  Interestingly, this alternative analysis (when the elastic mode of the fixture was omitted 
from the CMS model) yielded a positive definite mass matrix and only two complex natural 
frequencies, both of which had very small magnitudes and hence were assumed to be rigid body 
modes. 

4.2.2.1. Discussion 
The results presented in the previous sections show that the modal substructuring 

approach gives excellent results in the lateral direction; the lateral FRFs of the E system agree 



very well, implying that the E system’s bending modes are predicted very accurately.  The results 
are also quite good in the axial direction, except for the last axial mode that is predicted to be at a 
10% lower frequency than it actually is.  The magnitudes of the errors in this mode in both 
Figures 5 and 7 are much larger than one would expect based on the results of the simulation 
presented in Section 4.1.  It was noted that one could obtain results that were virtually identical to 
those in Figures 6 and 7 by using the flexible mode of the fixture model in the modal filtering step 
and omitting it from the system model.  The additional flexible mode had a significant effect on the 
modal filter that was used to estimate the connection point responses.  The estimate of the first 
axial frequency improved when this mode was added to the modal filter, although perhaps at the 
expense of the second.  These observations seem to suggest that the errors encountered in 
estimating the natural frequencies of the axial modes were not due to deficiency in the size of the 
modal models for the A and C systems but in the difficulty associated with accurately measuring 
the mode shapes at the connection point. 

4.2.3. Elastic Fixture Joined Using MCFS Method 
The MCFS method in equation (17) was also employed to couple the negative fixture 

model A to the C component at all of the measurement points (in a least-squares sense).  The D 
component was coupled to the connection point degrees of freedom of the A component of the 
combined A-C system.  The resulting predicted axial FRFs are shown in Figure 8.  The bending 
FRFs were similar to those presented previously in Figures 4 and 6.  The least squares method 
predicts the axial FRF very accurately, with excellent agreement at both axial natural frequencies.  
This analysis yielded a combined system mass matrix having one negative eigenvalue and the 
overall system had one complex rigid body mode and a pair of complex natural frequencies at 13 
kHz.  It was also noted that nearly identical results were obtained when the fixture model was 
replaced with 1.) an Euler-Bernoulli free-free beam model (4.6-in long), 2.) a 2.3-in long guided-
free Euler-Beronoulli beam model, and 3.) the 1.925-in guided-free model described previously 
that was used in Figures 4 through 8.  The Admittance result and the CMS result found using a 
modal filter to determine connection point responses (Figure 7) both changed significantly in the 
vicinity of the second axial mode depending on which fixture model was used. 
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Figure 8:  Axial FRF predicted by CMS using an elastic fixture model and 

coupling A and C using the least squares method.  The analytical FRF is also 
shown. 

4.2.3.1. Discussion 
Sections 4.2.2 and 4.2.3 presented the results of coupling the analytical elastic fixture 

model to the measured C system in two different ways.  The first used a modal filter to estimate 
the three connection point coordinates from the measurements on the C system.  The second 
also used a modal filter based on the fixture model, but coupled the four modal coordinates of the 
A system to their representation on the C system.  The A system is described by a four mode 
model, so the amplitude of each modal contribution can be determined in a least squares sense 
from the six measurement points using the known mode matrix (i.e. {qA} = pinv(ΦA){xA}M since ΦA 
is NmxNA and Nm > NA.)  However, the modal amplitudes cannot be determined uniquely from the 
instantaneous connection point displacements alone because there are only three connection 
point DOF and four modes.  If the model for the fixture (A) were known perfectly, then knowledge 
of the motion at the connection point and the fixture model would be sufficient to determine the 
motion of the rest of the fixture as a function of time.  This is related to the frequency domain 
inverse method for determining the forces acting on a structure and its variants [14, 15], which 
are known to be quite sensitive to errors in the system model.  It seems logical that it might be 
easier to constrain the motion of C to match that of A using four points on the perimeter of the 
fixture rather than using only the three degrees of freedom at the connection point even though 
both are theoretically possible.  Hence, it is not really surprising that the MCFS method that 
employs one constraint per mode to directly constrain the modes of the A system to their 
projection onto C is more accurate and much more robust than constraining the structures at the 
connection point alone when the fixture (A) has more than three active modes. 

This is not so much an issue when one is interested only in combining substructures 
since a physically meaningful result is obtained so long as the boundaries of each substructure 
are properly joined.  On the other hand, when one wishes to subtract a component from a 
measured model, one must assure that all of the modes the component model are adequately 
constrained to the corresponding system measurements or the result may be highly sensitive to 
the component model. 



4.2.4. Remarks 
Before concluding, it should be noted that a close inspection of the C system’s mode 

shapes revealed that the motion of the fixture in the second axial mode included some rotation 
about the connection point.  This suggests either that the fixture was not attached exactly in line 
with its center of mass or that the mass of the accelerometers, their mounting blocks and the 
force pads (which was neglected in the fixture model) was sufficient to cause asymmetry.  This 
may have contributed to some of the difficulties described in the preceding sections. 

It was also noted that complex natural frequencies were encountered and that the 
combined system mass matrix was not always positive definite.  This is somewhat troubling since 
it leads to a non-physical model, yet it should be expected when one subcomponent is removed 
from a system because there is always the possibility that the removed mass or stiffness could be 
greater than what was originally in the system.  This is the analog to high frequency errors in 
natural frequency predictions when two finite-length modal models are joined.  One would hope 
that these errors would only affect modes that are out of the frequency band of interest, as is 
always the case when joining structures.  This seemed to be the case here since most of the 
complex natural frequencies were above the frequency band of interest.  The other complex 
natural frequency had small magnitude, appearing to be the missing rigid body mode, so it 
seemed quite reasonable to set it to zero.  Future efforts will be directed at modeling the fixture 
more accurately to avoid or minimize these types of errors. 

5. Conclusions 
The CMS method has been compared to the impedance or admittance coupling method 

for a simple structure comprised of two beams joined at their ends.  The general theory employed 
was described as well as a novel method that can be used to avoid ill conditioning when 
eliminating constrained degrees of freedom from the combined system model, dubbed the 
Maximum Rank Coordinate Choice (MRCC).  The modal substructuring method was then 
demonstrated on two systems modeled using finite elements, demonstrating the utility and high 
accuracy of the methods, especially when mass-loaded-interface modes are employed.  The 
companion paper [12] showed that poor results were obtained when admittance coupling was 
performed on the measured FRFs.  On the other hand, good results were obtained using both the 
CMS and admittance approaches when the admittance approach employed reconstructed 
Frequency Response Functions (FRFs).  A familiar rule of thumb that states that one should use 
all of the subcomponents’ modes covering a frequency band of 1.5 to 2.0 times the frequency 
band of interest for the assembly.  Taken in reverse, this suggests that since the subcomponents 
in this study were only described from 0 to 6400 Hz by the modal models used, the results should 
only be trusted out to 3200 or 4200 Hz.  Significantly better results were obtained in the axial 
direction when the Modal Constraint for Fixture and Substructure (MCFS) method was employed, 
which coupled the modal coordinates of the fixture to their projection onto the C system.  The 
MCFS method obtained excellent agreement over the entire 6400 Hz measurement band.  The 
good performance of the MCFS method was attributed to the fact that direct constraint between 
all of the fixture modes and the measured component assures that the fixture model and the 
component are adequately constrained, even if the fixture model is less than perfect. 

Some non-physicality was identified in the final combined system model found by the 
CMS method and its character and sources were investigated.  It was noted that the methods 
available to evaluate the physicality of the admittance coupling results are somewhat more 
cumbersome because they must be applied at every frequency line.  The modal substructuring 
method has the advantages of easy integration into existing finite element codes, a compact and 
easy to manipulate database for the experimental structure, and the fact that one can apply 
insight gained from the voluminous works on CMS, modal substructuring and the Ritz method. 
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