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Abstract
The Nonlinear Identification through Feedback of the Output (NIFO) and Conditioned Reverse Path (CRP) methods
are a popular family of approaches for nonlinear system identification. They estimate the underlying linear Frequency
Response Function (FRF) as well as the parameters describing the mechanical system’s nonlinearities. However, one
troubling aspect is that the parameters obtained are complex numbers and typically are found to vary with frequency,
so post-processing must be employed to obtain physically reasonable parameters and an accurate estimate of the
underlying FRFs. This work proposes two methods (based on the H1 and H2 algorithms) which can be used in
the estimation of the linear FRF as well as frequency-independent nonlinear parameters. This paper evaluates the
methods numerically using a single degree of freedom system and exploring various methods for determining which
nonlinear parameters to include in the model.
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Introduction

The Nonlinear Identification through Feedback of the Output (NIFO) method and Conditioned Reverse Path (CRP)
are popular approaches for nonlinear system identification. They estimate the underlying linear Frequency Response
Function (FRF) as well as the parameters describing the mechanical system’s nonlinearities. The H1-based NIFO
method was first proposed in [1], while its twin algorithm, based on the H2 estimator, in [2]. Both NIFO algorithms
have been sucessfully used in the estimation of the linear frequency response together with the parameters describing
system’s nonlinearity. However, one troubling aspect is that the parameters obtained are complex numbers and
typically are found to vary with frequency, so post-processing must be employed to obtain physically reasonable
parameters [3, 4].

This work proposes two methods (based on the H1 and H2 algorithms) which can be used in the estimation of the
linear FRF as well as frequency-independent nonlinear parameters. Since these two new methods allow for system
identification via augmenting the number of outputs, we call them NIXO methods – for Nonlinear Identification
through eXtended Outputs. The methods are first evaluated numerically using a single degree of freedom system.
Moreover, a strategy for utilizing the NIXO approaches in the black-box identification of a single degree of freedom
mechanical system is presented.

In a future work, both NIXO methods will be employed experimentally to identify the physical parameters
describing the nonlinearity of a 3D printed beams for oscillations near their first resonance frequencies. The results
will be then used to compute the NNM backbone curve and compared to the solution obtained by another estimation
algorithm and data collected using the well-established testing approach.



Derivation of NIFO and NIXO methods

In this section, the theory behind the three different nonlinear system identification algorithms is presented. These
three algorithms are:

– H1– and H2–based NIFO methods that were previously proposed by Adams et al. [1, 2] (also known as the
modified H1 and H2 algorithms),

– Two new H1– and H2–based algorithms dubbed Nonlinear Identification through eXtended Outputs (H1-NIXO
and H2-NIXO) and

– Two new H1– and H2–based algorithms dubbed Nonlinear Identification through eXtended Outputs with
Linear Data Provided (H1-NIXO-LDP and H2-NIXO-LDP).

The derivations start with steps common for all the algorithms, then they fork and focus on each method separately.
For simplicity, we consider a single degree of freedom (SDOF) mechanical system described with equations of motion
(EOM) defined in Eqs. (1) or (2), yet we believe that the algorithms can be generalized to MDOF systems.

mẍ + cẋ + kx + c2ẋ|ẋ|+ k3x
3 = f(t), (1)

mẍ + cẋ + kx + c2ẋ
2 + k3x

3 = f(t), (2)

where m, c, k, c2 and k3 are real and constant parameters, x(t) is the response of the system excited for certain
initial conditions with a forcing function f(t). If the individual time functions are expressed as in (3), then Eqs. (1) or
(2) become equivalent to Eq. (4) with D(Ω) = k−mΩ2 + icΩ and frequency–independent c2 and k3. Equation (4)
is true for every individual frequency Ω, where Ω ∈ {Ω1, 2Ω1, . . . , nΩ1}, n is the number of frequency samples and
Ω1 is the lowest of the frequencies considered.

x(t) = Re
{ n∑

k=1

Xk eikΩ1t
}

f(t) = Re
{ n∑

k=1

F k eikΩ1t
}

ẋ(t)|ẋ(t)| = Re
{ n∑

k=1

dY k
2 eikΩ1t

}
∨ ẋ2(t) = Re

{ n∑
k=1

dY k
2 eikΩ1t

}
x(t)|x2(t)| = Re

{ n∑
k=1

Y k
3 eikΩ1t

}
∨ x3(t) = Re

{ n∑
k=1

Y k
3 eikΩ1t

}
(3)

D(Ω) X(Ω) + c2 dY2(Ω) + k3 Y3(Ω) = F (Ω), (4)

Using Navg spectral averages (obtained using e.g. a Hanning window) of signals x(t), f(t) and higher powers of
x(t) and ẋ(t), Eq. (4) can be written in the form shown in Eqs. (5) and (6). For SDOF systems, matrices X, dY2, Y3

and F have size of 1×Navg. Moreover, Equations (5) and (6) are valid for every individual k-th frequency sample,
k ∈ {1, . . . , n}.

D(kΩ1) [X1, . . . , XNavg ] + c2 [dY2,1, . . . , dY2,Navg ] + k3 [Y3,1, . . . , Y3,Navg ] = [F1, . . . , FNavg ] (5)

D(Ω) X(Ω) + c2 dY2(Ω) + k3 Y3(Ω) = F(Ω) (6)

NIFO Algorithms

H1–based NIFO method (modified H1 algorithm)

The original NIFO estimator was first proposed in [1]. It can be obtained by rearranging Eq. (6) into the form
presented in Eq. (7), where the quantity H is a Frequency Response Function (H(Ω) = D−1(Ω)). The modified H1

algorithm is based on Eq. (8), which is obtained by right-multiplying Eq. (7) by the matrix
[
FH −dYH

2 −YH
3

]
.

Note that an equation in the form of Eq. (8) can be written for every individual frequency.

X =
[
H c2H k3H

]  F
−dY2

−Y3

 (7)



X
[
FH −dYH

2 −YH
3

]
=
[
H c2H k3H

]  F
−dY2

−Y3

 [FH −dYH
2 −YH

3

]
[
SXF −SXdY2

−SXdY3

]︸ ︷︷ ︸
b

=
[
H c2H k3H

]︸ ︷︷ ︸
x̂

SFF −SFdY2 −SFY3

SdY2dY2 SdY2Y3

SY3Y3


︸ ︷︷ ︸

A

(8)Herm. Mtrx

The H1–based NIFO algorithm results in multiple systems of linear equations of the form b = x̂A (each system
corresponds to a different frequency sample). Matrix A is square and for problems of our interest it is usually
non-singular, thus it might be possible to accurately estimate the frequency response function H(Ω) and parameters
c2 and k3 through solving Eq. (8).

Note that the nonlinear parameters c2 and k3 were introduced in Eqs. (1) or (2) as real and constant numbers.
However, they are computed as complex and possibly frequency-dependent, since some of the parameters in Eq. (8)
are complex (as already mentioned above) and the system of equations is solved for each frequency sample separately.

H2–based NIFO method (modified H2 algorithm)

The H2–based NIFO algorithm was first presented in [2]. It is derived by adding additional pseudo-outputs to Eq. (7).
These additional outputs, Xnl,1 and Xnl,2, correspond to the nonlinear terms in the EOM, as shown in Eq. (9). The
modified H2 algorithm is based on the formula presented in Eq. (10). It can be obtained through right-multiplying
Eq. (9) by matrix

[
XH XH

nl,1 XH
nl,2

]
. As shown in Eq. (10), the modification proposed in Eq. (9) is needed to

overcome the issue of inverting a rectangular matrix. Moreover, due to the cubic stiffness and quadratic damping
nonlinearities, we can write: Xnl,1 = dY2 and Xnl,2 = Y3 and bring Eq. (10) to a form of Eq. (11). Detailed
derivation of the modified H2 method is presented in [2]. X

Xnl,1

Xnl,2

 =

H c2H k3H
−1

−1

 F
−dY2

−Y3

 (9)

 X
Xnl,1

Xnl,2

 [XH XH
nl,1 XH

nl,2

]
=

H c2H k3H
−1

−1

 F
−dY2

−Y3

 [XH XH
nl,1 XH

nl,2

]
SXX SXXnl,1

SXXnl,2

SXnl,1Xnl,1
SXnl,1Xnl,2

SXnl,2Xnl,2

 =

H c2H k3H
−1

−1

 SFX SFXnl,1
SFXnl,2

−SdY2X −SdY2Xnl,1
−SdY2Xnl,2

−SY3X −SY3Xnl,1
−SY3Xnl,2

 (10)
Herm. Mtrx

U︷ ︸︸ ︷SXX SXdX2 SXX3

SdX2dX2 SdX2X3

SX3X3

 =

X̂︷ ︸︸ ︷H c2H k3H
−1

−1


B︷ ︸︸ ︷ SFX SFdX2 SFX3

−SdY2X −SdY2dX2 −SdY2X3

−SY3X −SY3X3

 (11)Herm. Mtrx

Hermitian Sub-matrix

Summary of the modified H2 algorithm derivation is analogous to the one presented in section on its twin
algorithm – H1–based NIFO. Nevertheless, one additional comment might be worth noting. Namely, the rows of
matrices B and U (ranging from the 2nd to the last) are almost the same. The rows of matrix B are rows of U,
but multiplied by −1. This simple observation can be used to save time spent on algorithm implementation. Using
Matlab notation we could write:

B(2:end, :) = -U(2:end, :);



Nonlinear Identification through eXtended Outputs Algorithms

H1–based NIXO method

The NIXO methods seek to form a larger linear system in which frequency independent parameters can be enforced.
We begin by right-multiplying Eq. (6) by FH to obtain Eq. (12), which is valid for every individual frequency line.
Hence, it is possible to express each of these equations the matrix form shown in Eq. (13). Note that the frequency
sample number is indicated in the quantities’ sub- or superscripts, e.g. SXF (Ωi) = S i

XF or D(Ωi) = Di.

D(Ω) XFH + c2 dY2F
H + k3 Y3F

H = FFH

D(Ω) SXF + c2 SdY2F + k3 SY3F = SFF (12)

S
1

XF S 1
dY2F

S 1
Y3F

. . .
...

...
S n
XF S n

dY2F
S n
Y3F


︸ ︷︷ ︸

SH1
XF


D1

...
Dn

c2

k3

 =

S
1

FF
...

S n
FF


︸ ︷︷ ︸

SH1
FF

, (13)

where n stands for the number of frequency samples.
Unfortunately, Eq. (13) cannot simply be solved by inverting the matrix on the left because there are more

unknowns than equations. To be more precise we obtained 2n equations and 2n + pdamp + pstiff unknowns, since
some of the parameters in Eq. (13) are complex numbers in general. Naturally, pdamp and pstiff represent herein the
number of the nonlinear damping and stiffness terms in the equation of motion (1) or (2). In this particular example
pdamp = 1 and pstiff = 1.

If the solution of the underdetermined system of equations exists – it is not unique. This can lead to inaccuracies
in the parameter estimation. The main concept behind the new H1 Nonlinear Identification through eXtended
Outputs (H1-NIXO) estimator is to overcome this indeterminacy by providing input and output data sets collected
in vibration tests where the system oscillates at multiple different amplitudes. Such data can be used to increase
the the number of equations in Eq. (13) while keeping the number of unknowns fixed. The idea originates from two
observations:

1. Parameters from Eqs. (1, 2), namely m, c, k as well as c2 and k3, define the mechanical system regardless of
the excitation type

2. Nonlinear response of the system occurs when it oscillates at large enough amplitudes. Hence, if the set of
equations (13) is put together, separately, for mechanical system oscillating at, say, two different amplitudes – it
might be possible (due to the nonlinearity) that these 4n real equations will be linearly independent. Since the
number of real unknowns (2n + pdamp + pstiff ) is kept constant - then this new (stacked) system of equations
becomes overdetermined and thus will typically have a unique solution1.

To define the algorithm mathematically, consider the same mechanical system subjected, separately, to multiple
forcing functions. This forcing functions have to be chosen such that they cause a response at multiple different
displacement magnitudes (e.g. they could be chosen as multiple swept sines of different forcing levels), see Eq. (14).

mẍ + cẋ + kx + c2ẋ|ẋ|+ k3x
3 = fI(t)

mẍ + cẋ + kx + c2ẋ|ẋ|+ k3x
3 = fII(t)

...

mẍ + cẋ + kx + c2ẋ|ẋ|+ k3x
3 = fr(t)

, (14)

where r is the number of different forcing functions used to excite the mechanical system.

1One cannot guarantee that the new equations will be linearly independent of those already provided, but if the nonlinearities are
amplitude dependent and sufficiently different amplitudes are used then this is likely to be the case.



If we repeat the derivation presented above in this section we end up with r-times the number of equations
presented in Eq. (13) and an unchanged number of unknowns, with the final form given in Eq. (15).

SH1
XF,I

SH1
XF,II

...

SH1
XF,r




D1

...
Dn

c2

k3

 =



SH1
FF,I

SH1
FF,II

...

SH1
FF,r


(15)

Since some of the parameters in Eq. (15) are complex, the estimates of c2 and k3 are not guaranteed to be real
numbers. To overcome this issue, the real and imaginary parts of the unknowns should be estimated separately so
that one can force the nonlinear parameter values to be real. To do so, Eq. (15) should be brought to its equivalent
form presented in Eq. (16). The system of derived equations (16) is now overdetermined and the unknown parameters
can be estimated by solving a linear least squares problem.

Re{S 1
XF,I} −Im{S 1

XF,I} Re{S 1
dY2F,I} Re{S 1

Y3F,I}
Im{S 1

XF,I} Re{S 1
XF,I} Im{S 1

dY2F,I} Im{S 1
Y3F,I}

. . .
.
.
.

.

.

.
Re{S n

XF,I} −Im{S n
XF,I} Re{S n

dY2F,I} Re{S n
Y3F,I}

Im{S n
XF,I} Re{S n

XF,I} Im{S n
dY2F,I} Im{S n

Y3F,I}

Re{S 1
XF,II} −Im{S 1

XF,II} Re{S 1
dY2F,II} Re{S 1

Y3F,II}
Im{S 1

XF,II} Re{S 1
XF,II} Im{S 1

dY2F,II} Im{S 1
Y3F,II}

. . .
.
.
.

.

.

.
Re{S n

XF,II} −Im{S n
XF,II} Re{S n

dY2F,II} Re{S n
Y3F,II}

Im{S n
XF,II} Re{S n

XF,II} Im{S n
dY2F,II} Im{S n

Y3F,II}

.

.

.
.
.
.

.

.

.

Re{S 1
XF,r} −Im{S 1

XF,r} Re{S 1
dY2F,r} Re{S 1

Y3F,r}
Im{S 1

XF,r} Re{S 1
XF,r} Im{S 1

dY2F,r} Im{S 1
Y3F,r}

. . .
.
.
.

.

.

.
Re{S n

XF,r} −Im{S n
XF,r} Re{S n

dY2F,r} Re{S n
Y3F,r}

Im{S n
XF,r} Re{S n

XF,r} Im{S n
dY2F,r} Im{S n

Y3F,r}





Re{D1}
Im{D1}

.

.

.
Re{Dn}
Im{Dn}

c2
k3


=



Re{S 1
FF,I}

Im{S 1
FF,I}
.
.
.

Re{S n
FF,I}

Im{S n
FF,I}

Re{S 1
FF,II}

Im{S 1
FF,II}
.
.
.

Re{S n
FF,II}

Im{S n
FF,II}

.

.

.

Re{S 1
FF,r}

Im{S 1
FF,r}
.
.
.

Re{S n
FF,r}

Im{S n
FF,r}



(16)

H2–based NIXO method

To identify the nonlinear mechanical system using the new H2 Nonlinear Identification through eXtended Outputs
(H2-NIXO) estimator, bring Eq. (6) to a form of Eq. (17) and right-multiply it by matrix

[
XH dYH

2 YH
3

]
.

Equation (18) is valid for every individual frequency sample. Thus, it is possible to express each of these equations
in a matrix form shown in Eq. (19). As before the frequency sample number is indicated in the quantities’ sub- or
superscripts, e.g. SXX(Ωi) = S i

XX or D(Ωi) = Di.

[
D(Ω) c2 k3

]  X
dY2

Y3

 = F (17)

[
D(Ω) c2 k3

]  X
dY2

Y3

 [XH dYH
2 YH

3

]
= F

[
XH dYH

2 YH
3

]
[
D(Ω) c2 k3

] SXX SXdY2 SXY3

SdY2dY2
SdY2Y3

SY3Y3

 =
[
SFX SFdY2

SFY3

] ∣∣∣∣∣( )H =⇒Herm. Mtrx

=⇒
SXX SXdY2 SXY3

SdY2dY2 SdY2Y3

SY3Y3

DH(Ω)
c2

k3

 =

 SXF

SdY2F

SY3F

 (18)Herm. Mtrx





S 1
XX S 1

XdY2
S 1
XY3

. . .
...

...
S n
XX S n

XdY2
S n
XY3

S 1
dY2X

S 1
dY2dY2

S 1
dY2Y3

. . .
...

...
S n
dY2X

S n
dY2dY2

S n
dY2Y3

S 1
Y3X

S 1
Y3dY2

S 1
Y3Y3

. . .
...

...
S n
Y3X

S n
Y3dY2

S n
Y3Y3




DH

1
...

DH
n

c2

k3

 =



S 1
XF
...

S n
XF

S 1
dY2F
...

S n
dY2F

S 1
Y3F
...

S n
Y3F



(19)

To assure that the nonlinear parameters c2 and k3 are estimated as real numbers, the problem stated in Eq. (19)
should be separated into real and imaginary parts, as illustrated in the previous section. As with the prior algorithm,
with H2-NIXO we then obtain a linear least squares problem to solve to estimate the nonlinear system parameters.

Nonlinear Identification through eXtended Outputs Algorithms with Linear Data Provided

Two new nonlinear estimators are presented in the previous section. In addition to finding the values of the parameters
describing the nonlinearities, the algorithms also return estimates of the linear Frequency Response Function (FRF).
Since linear experimental vibration analysis can be considered today as well–established, the linear FRF values could
possibly be treated as known (i.e. they could be obtained in a separate test where the structure vibrates at low
enough amplitude). With this assumption, we could modify the final equations obtained in the previous sections
by bringing the FRF terms to the RHS vector of known values. This simple observation reduces the number of
unknowns – now the only unknown parameters are c2 and k3. This also significantly reduces sizes of matrices in
Eqs. (15), (16) and (19), which makes the algorithms more efficient from the computational viewpoint. This is
elaborated below.

H1-NIXO with Linear Data Provided

If the linear Frequency Response Function is known then Eq. (15) can be brought to the form shown in Eq. (20)
where quantities corresponding to Dj ’s are now placed in the RHS vector of known values. Note also that collecting
data from multiple vibration tests is no longer needed. The system of equations (20) is most likely overdetermined,
since the number of frequency samples (n ∼ 1000) is usually larger than the number of unknown polynomial terms
(pdapmp, pstiff ∼ 10). In case of pdapmp + pstiff > n (which is possible but unlikely), then the number of equations
can be populated by providing data collected in vibration tests where the mechanical system oscillates at multiple
different amplitudes (as explained in one of the previous sections).S

1
dY2F

S 1
Y3F

...
...

S n
dY2F

S n
Y3F


︸ ︷︷ ︸

A1

[
c2

k3

]
=

S
1

FF − S 1
XFD1

...
S n
FF − S n

XFDn


︸ ︷︷ ︸

b1

(20)

To enforce the algorithm to estimate the nonlinear parameters c2 and k3 as real numbers, Eq. (20) should be
brought to its equivalent real form shown in Eq. (21), where matrix A1 and vector b1 are defined in Eq. (20).[

Re{A1}
Im{A1}

] [
c2

k3

]
=

[
Re{b1}
Im{b1}

]
(21)

H2-NIXO with Linear Data Provided

The derivation for this algorithm is analogous to that in the previous section. If the linear Frequency Response
Function is known then Eq. (19) can be brought to the form shown in Eq. (22) where quantities corresponding to
Dj ’s are now placed in the vector on the RHS. The system of equations (22) is always overdetermined.





S 1
XdY2

S 1
XY3

...
...

S n
XdY2

S n
XY3

S 1
dY2dY2

S 1
dY2Y3

...
...

S n
dY2dY2

S n
dY2Y3

S 1
Y3dY2

S 1
Y3Y3

...
...

S n
Y3dY2

S n
Y3Y3


︸ ︷︷ ︸

A2

[
c2

k3

]
=



S 1
XF − S 1

XXDH
1

...
S n
XF − S n

XXDH
n

S 1
dY2F

− S 1
dY2X

DH
1

...
S n
dY2F

− S n
dY2X

DH
n

S 1
Y3F
− S 1

Y3X
DH

1
...

S n
Y3F
− S n

Y3X
DH

n


︸ ︷︷ ︸

b2

(22)

To enforce the algorithm to estimate the nonlinear parameters c2 and k3 as real numbers, Eq. (22) should be
brought to its equivalent form presented in Eq. (21), where A1 and b1 are obviously replaced with A2 and b2,
respectively. Matrix A2 and vector b2 are defined in Eq. (22).

Case Study

Mechanical System Description

The algorithms are evaluated using input and output signals collected during simulated experiments of a mechanical
system described by the Duffing equation (23). Values for the parameters were proposed in [1] and are given in
Tab. 1. Auto- and cross-spectra in every case study presented are obtained by applying 25-second-long Hanning
windows with 51% of overlap.

mẍ + cẋ + kx + k3x
3 = f(t) (23)

Tab. 1: Parameters describing SDOF mechanical system with cubic stiffness nonlinearity.

m
[
kg
]

c
[

N s
m

]
k
[

N
m

]
k3

[
N

m3

]
1 4 103 105

Forcing Signals Description

Input and output signals are generated by exciting the structure with two types of forcing functions:

Swept Cosine Forcing Signal

f(t) = F cos(Ω(t) t) Ω(t) = Ωst +
Ωend − Ωst

tend − tst
(t− tst) t ∈ [tst, tend] (24)

Broad-Band Burst Random Forcing Signal

f(t) = F BurstRand(t) t ∈ [tst, tend] (25)

Case Study 1. System Identification with Model Function Known À Priori

The NIXO and NIFO methods are first used to identify the mechanical system (23) with the model function known
beforehand. Forcing signals (both swept cosine and burst random) are defined in Tabs. 2 and Tab. 3. The results
obtained are presented in Tables 4 to 7 and discussed briefly at the end of this subsection.



Tab. 2: Values of parameters characteristic to swept cosine and burst random forcing functions.

Swept Cosine:
Ωst

[
Hz
]

Ωend

[
Hz
]

tst
[
s
]

tend
[
s
]

0.01 15 0 1500

Burst Random:
tst
[
s
]

tend
[
s
]

∆t
[
s
]

Burst Start Burst End

0 512.5 0.01 0% 100%

Tab. 3: Values of parameters shared by swept cosine and burst random forcing functions.
Force amplitudes expressed in newtons, frequencies expressed in hertz.

Signal Type FI or F FII DF FO Ωfilt
1 Ωfilt

2 Ωspect
1 Ωspect

2 I/O Signals Results

Swept Cosine 5.0 0.1 - - - - 0.3 15 Tab. 4 Tab. 5
Burst Random 10.0 0.1 2 8 0.3 15 0.3 15 Tab. 6 Tab. 7

DF – Decimation Factor

FO – Butterworth Filter Order

Ωfilt – cut-off frequency; Ωfilt
1 and Ωfilt

2 are lower and upper cut-off frequencies, respectively

Ωspect – auto- and cross-spectra are computed for frequency range (Ωspect
1 , Ωspect

2 ).



Tab. 4: Case study with Swept Cosine used as a forcing function. Input/Output Signals.

Signal Type FI or F FII DF FO Ωfilt
1 Ωfilt

2 Ωspect
1 Ωspect

2

Swept Cosine 5.000 0.100 - - - - 0.3 15
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Tab. 5: Case study with Swept Cosine used as a forcing function. Results.
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Tab. 6: Case study with Burst Random forcing function. Input/Output Signals.

Signal Type FI or F FII DF FO Ωfilt
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Tab. 7: Case study with Burst Random forcing function. Results.

Signal Type FI or F FII DF FO Ωfilt
1 Ωfilt

2 Ωspect
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Comments to Case Study 1

1. In the case studies explored here, the NIFO methods failed to estimate the linear frequency response function
when the input signal was swept cosine. However, if the system was excited with a burst random signal then
NIFO estimated the FRF of the underlying linear system to a satisfactory extent. The NIXO methods, on the
other hand, succeed in finding accurate enough estimates of the linear FRF regardless of the excitation type.

2. The NIFO algorithms returned accurate k3 values away from the resonant frequency, while in the vicinity of the
linear resonance their estimations were wildly erroneous. The NIXO methods return cubic stiffness parameter
as a single frequency-independent value. Every NIXO algorithm succeeded in estimating k3 to a satisfactory
extent except for H1-NIXO–LDP. However, the accuracy of that method can be increased if data for higher
excitation amplitudes is included (as shown in [5]).

3. It is worth noting that (for the NIXO and NIXO–LDP algorithms) the real part of k3 found as a complex
number matches the value of the cubic nonlinear parameter estimated as a real number. Moreover, the real
part of k3 is usually an accurate estimate when the imaginary part is found as a much smaller number. For
example, the results obtained with the NIFO algorithms (with swept cosine used as the excitation) show that
for off-resonant frequencies Im{k3} was much smaller than Re{k3}. Thus, when an accurate parameter was
found it typically was predominantly real. Additionally, this observations can be used as one of the decision
criteria in the black-box system identification .

Case Study 2(a). Black-box System Identification – Impact of the Polynomial Degree

In this section, we propose a strategy to utilize the NIXO approaches to identify a single degree of freedom mechanical
system of unknown nonlinearity. The algorithms are tested to estimate the parameters of Eq. (23) presented in Tab. 1.
The model function used in the estimation process is given in Eq. (26).

Multiple tests, with different values of polynomial degree p and unknown ki parameters (i ∈ {2, . . . , p}), were
conducted. A swept cosine forcing function, defined in Tabs. 2, 3 and presented in Tab. 4, was used as the input
signal. The results obtained for the case where p = 6 are presented in Tab. 8.

mẍ + cẋ + kx + k2x|x|+ k3x
3 + · · ·+ kpx|x|p−1 = f(t) (26)

The outcomes from this case study, obtained using NIXO methods, show that the cubic nonlinearity is most
likely dominant in the mechanical system’s response. Note that the cubic nonlinear stiffness term turned out to be
the most significant for the identification with a polynomial of sixth degree (see e.g. the last column in Tab. 8). The
results obtained with NIFO seem to be inconclusive.

Black-box system identification conducted for the remaining values of p (p ∈ {2, 3, . . . , 9}/{6}) is presented in [6].
It shows similar outcomes for the identification with a polynomial of up to a sixth degree. The analyses conducted
for polynomials of degree higher than 6 gave unclear results for both NIXO and NIFO algorithms. Hence, this
approach would be limited to smaller numbers of polynomial terms. To explore this further, a second analysis was
conducted. This time, the model function consisted of a cubic term and one additional nonlinear stiffness term only.
The description and results obtained in this case study are presented in the next subsection.
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Case Study 2(b). Black-box System Identification – Impact of the Additional Polynomial
Term

In the previous section, the results obtained correctly revealed that the stiffness nonlinearity in the mechanical system
was most likely cubic. That term was dominant when the model function was a polynomial of up to sixth degree.
However, when the model function (26) was assumed to be a polynomial of higher degree, the results did not give
any insight into which nonlinear terms were dominant and which terms could be eliminated from the model function
(for details see [6]).

In this section, the results obtained using Eq. (27) as a model function are presented. This function assumes that
the nonlinearity in the system consists of a cubic term and one additional term only.

mẍ + cẋ + kx + k3x
3 + krx|x|p−1 = f(t) (27)

The mechanical system is again subjected to the swept cosine excitation defined previously. Table 9 shows the
outcomes from the analysis for additional term power p = 9. Results obtained for the remaining powers, namely
p ∈ {7, 8} can be found in [6].

Comments to Case Study 2

A strategy to identify an SDOF mechanical system with unknown nonlinearity using NIXO methods was presented
in this section. A few comments on the results obtained are enumerated below.

1. In the first stage of the system identification process, NIXO methods using Eq. (26) as a model function were
used. The outcomes from this stage showed that a cubic nonlinear stiffness was present in the mechanical
system. Additionally, the nonlinear stiffness terms of powers lower than or equal to 6 were discovered to be
less significant in the system’s response.

2. In the second stage of the proposed strategy, NIXO methods used the model function presented in Eq. (27).
The results from this stage showed that the cubic nonlinearity was also dominant over nonlinearities of higher
powers.

3. NIFO methods did not work well when the mechanical system was excited with a swept cosine function.
However, this type of forcing can be used as an input signal for the system identification based on the NIXO
algorithms. Time did not allow exploring the use of broadband random forcing with NIFO, although the
examples in the previous section showed that NIFO was more satisfactory in that case, typically similar to the
NIXO method.

Conclusion and Future Work

This paper presented several new methods that can be successfully used in the estimation of the linear FRF as well
as frequency-independent nonlinear parameters of a nonlinear system. The methods were first used in the system
identification of a single degree of freedom system with the nonlinearity known à priori. Additionally, a black-box
identification scheme utilizing the NIXO approaches was presented. Results were compared to those obtained using
NIFO methods, which are popular approaches for nonlinear system identification.

Based on the outcomes presented in this work, it can be said that the NIXO algorithms show certain advantages
over the NIFO approaches. First of all, the NIXO-based methods are not input-signal-sensitive. In the case studies
used here, the NIFO algorithms required the mechanical system to be excited with a random forcing function.
Furthermore, when considering black-box identification, NIXO methods turned out to be more effective than NIFO.
The results returned by the former family of methods clearly showed that the cubic nonlinearity was dominant in
the system response. The outcomes from the NIFO black-box identification did not show which nonlinear stiffness
term was dominant in the system’s response. Hence, they did not allow for making a confident decision on which of
the nonlinear stiffness terms could be eliminated from the model function.

In a future work, both NIXO methods will be employed experimentally to identify the physical parameters
describing the nonlinearity of a 3D printed beams for oscillations near their first vibration modes. The results will
be then used to compute the NNM backbone curve and compared to the solution obtained by another estimation
algorithm and data collected using the well-established testing approach.
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